forked from open-mmlab/mmsegmentation
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtwins_svt-s_uperhead_8xb2-160k_ade20k-512x512.py
49 lines (45 loc) · 1.47 KB
/
twins_svt-s_uperhead_8xb2-160k_ade20k-512x512.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
_base_ = [
'../_base_/models/twins_pcpvt-s_upernet.py',
'../_base_/datasets/ade20k.py', '../_base_/default_runtime.py',
'../_base_/schedules/schedule_160k.py'
]
crop_size = (512, 512)
data_preprocessor = dict(size=crop_size)
checkpoint = 'https://download.openmmlab.com/mmsegmentation/v0.5/pretrain/twins/alt_gvt_small_20220308-7e1c3695.pth' # noqa
model = dict(
data_preprocessor=data_preprocessor,
backbone=dict(
type='SVT',
init_cfg=dict(type='Pretrained', checkpoint=checkpoint),
embed_dims=[64, 128, 256, 512],
num_heads=[2, 4, 8, 16],
mlp_ratios=[4, 4, 4, 4],
depths=[2, 2, 10, 4],
windiow_sizes=[7, 7, 7, 7],
norm_after_stage=True),
decode_head=dict(in_channels=[64, 128, 256, 512]),
auxiliary_head=dict(in_channels=256))
optim_wrapper = dict(
_delete_=True,
type='OptimWrapper',
optimizer=dict(
type='AdamW', lr=0.00006, betas=(0.9, 0.999), weight_decay=0.01),
paramwise_cfg=dict(custom_keys={
'pos_block': dict(decay_mult=0.),
'norm': dict(decay_mult=0.)
}))
param_scheduler = [
dict(
type='LinearLR', start_factor=1e-6, by_epoch=False, begin=0, end=1500),
dict(
type='PolyLR',
eta_min=0.0,
power=1.0,
begin=1500,
end=160000,
by_epoch=False,
)
]
train_dataloader = dict(batch_size=2, num_workers=2)
val_dataloader = dict(batch_size=1, num_workers=4)
test_dataloader = val_dataloader