-
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train.py
216 lines (187 loc) · 8.35 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
####这个代码是在Blender数据集上 不加t 改了一下数据读取方式 在mvsnerf环境下可运行
import os, sys
from opt import config_parser
import torch
from collections import defaultdict
import random
from torch.utils.data import DataLoader
from datasets import dataset_dict
# models
from models.nerf import Embedding, NeRF
from models.rendering import render_rays
# optimizer, scheduler, visualization
from utils import *
# losses
from losses import loss_dict
import imageio
# metrics
from metrics import *
from torchvision import transforms
# pytorch-lightning
from pytorch_lightning.callbacks import ModelCheckpoint
from pytorch_lightning import LightningModule, Trainer
from pytorch_lightning.loggers import TestTubeLogger
class NeRFSystem(LightningModule):
def __init__(self, args):
super(NeRFSystem, self).__init__()
self.args = args
self.loss = loss_dict[self.args.loss_type]()
self.embedding_xyz = Embedding(3, 10) # 10 is the default number
self.embedding_dir = Embedding(3, 4) # 4 is the default number
self.embeddings = [self.embedding_xyz, self.embedding_dir]
self.nerf_coarse = NeRF()
self.models = [self.nerf_coarse]
if self.args.N_importance > 0:
self.nerf_fine = NeRF()
self.models += [self.nerf_fine]
def decode_batch(self, batch):
rays = batch['rays'] # (B, 8)
rgbs = batch['rgbs'] # (B, 3)
return rays, rgbs
def forward(self, rays):
"""Do batched inference on rays using chunk."""
B = rays.shape[0] #160000
results = defaultdict(list)
for i in range(0, B, self.args.chunk):
rendered_ray_chunks = \
render_rays(self.models,
self.embeddings,
rays[i:i+self.args.chunk], #[32768, 8]
self.args.N_samples,
self.args.use_disp,
self.args.perturb,
self.args.noise_std,
self.args.N_importance,
self.args.chunk, # chunk size is effective in val mode 32768
self.train_dataset.white_back)
for k, v in rendered_ray_chunks.items():
results[k] += [v] #k 'rgb_coarse' v为数值
for k, v in results.items():
results[k] = torch.cat(v, 0)
return results
def prepare_data(self):
dataset = dataset_dict[self.args.dataset_name]
kwargs = {'root_dir': self.args.root_dir,
'img_wh': tuple(self.args.img_wh)}
if self.args.dataset_name == 'llff':
kwargs['spheric_poses'] = self.args.spheric_poses
kwargs['val_num'] = self.args.num_gpus
self.train_dataset = dataset(split='train', **kwargs)
self.val_dataset = dataset(split='val', **kwargs)
def configure_optimizers(self):
self.optimizer = get_optimizer(self.args, self.models)
scheduler = get_scheduler(self.args, self.optimizer)
return [self.optimizer], [scheduler]
def train_dataloader(self):
return DataLoader(self.train_dataset,
shuffle=True,
num_workers=4,
# batch_size=self.args.batch_size,
batch_size=1,
pin_memory=True)
def val_dataloader(self):
return DataLoader(self.val_dataset,
shuffle=False,
num_workers=4,
batch_size=1, # validate one image (H*W rays) at a time
pin_memory=True)
def training_step(self, batch, batch_nb):
log = {'lr': get_learning_rate(self.optimizer)}
rays, rgbs = self.decode_batch(batch)
rays = rays.squeeze()
rgbs = rgbs.squeeze()
list = random.sample(range(0,160000),1024)
rays = rays[list]
rgbs = rgbs[list]
results = self(rays) #[1024,3]
log['train/loss'] = loss = self.loss(results, rgbs)
typ = 'fine' if 'rgb_fine' in results else 'coarse'
# w, h = self.hparams.img_wh
# img_pred = results['rgb_fine'].view(h, w, 3).cpu().numpy()
# img_pred_ = (img_pred*255).astype(np.uint8)
# dir_name = '/home/liufengyi/test/nerf_pl-master/nerf_pl-master'
# i = 0
# imageio.imwrite(os.path.join(dir_name, f'{i:03d}.png'), img_pred_)
with torch.no_grad():
psnr_ = psnr(results[f'rgb_{typ}'], rgbs)
log['train/psnr'] = psnr_
return {'loss': loss,
'progress_bar': {'train_psnr': psnr_},
'log': log
}
def validation_step(self, batch, batch_nb):
rays, rgbs = self.decode_batch(batch)
rays = rays.squeeze() # (H*W, 3) [160000, 8]
rgbs = rgbs.squeeze() # (H*W, 3)
results = self(rays) #[160000,3]
log = {'val_loss': self.loss(results, rgbs)}
typ = 'fine' if 'rgb_fine' in results else 'coarse'
img = results['rgb_coarse'].reshape(400,400,3).permute(2,0,1).cpu()
img1 = rgbs.reshape(400,400,3).permute(2,0,1).cpu()
toPIL = transforms.ToPILImage()
pic = toPIL(img)
pic.save(f'random_{batch_nb}.jpg')
pic = toPIL(img1)
pic.save(f'random1_{batch_nb}.jpg')
if batch_nb == 0:
W, H = self.args.img_wh
img = results[f'rgb_{typ}'].view(H, W, 3).cpu()
img = img.permute(2, 0, 1) # (3, H, W)
img_gt = rgbs.view(H, W, 3).permute(2, 0, 1).cpu() # (3, H, W)
depth = visualize_depth(results[f'depth_{typ}'].view(H, W)) # (3, H, W)
stack = torch.stack([img_gt, img, depth]) # (3, 3, H, W)
self.logger.experiment.add_images('val/GT_pred_depth',
stack, self.global_step)
log['val_psnr'] = psnr(results[f'rgb_{typ}'], rgbs)
return log
def validation_epoch_end(self, outputs):
mean_loss = torch.stack([x['val_loss'] for x in outputs]).mean()
mean_psnr = torch.stack([x['val_psnr'] for x in outputs]).mean()
return {'progress_bar': {'val_loss': mean_loss,
'val_psnr': mean_psnr},
'log': {'val/loss': mean_loss,
'val/psnr': mean_psnr}
}
if __name__ == '__main__':
args = config_parser()
system = NeRFSystem(args)
a = os.path.join(f'/data1/liufengyi/get_results/nerfpl_t/runs_new/{args.exp_name}/ckpts/','{epoch:02d}')
checkpoint_callback = ModelCheckpoint(a,
monitor='val/loss',
mode='min',
save_top_k=5,)
logger = TestTubeLogger(
save_dir="logs",
name=args.exp_name,
debug=False,
create_git_tag=False
)
trainer = Trainer(max_epochs=args.num_epochs,
checkpoint_callback=checkpoint_callback,
# callbacks=[checkpoint_callback],
logger=logger,
weights_summary=None,
progress_bar_refresh_rate=1,
gpus=args.num_gpus,
distributed_backend='ddp' if args.num_gpus > 1 else None,
num_sanity_val_steps=1,
# check_val_every_n_epoch = max(system.args.num_epochs//system.args.N_vis,1),
check_val_every_n_epoch = 1,
benchmark=True,
precision=16,
val_check_interval=0.25,
amp_level='O1')
# trainer = Trainer(max_epochs=args.num_epochs,
# checkpoint_callback=checkpoint_callback,
# resume_from_checkpoint=args.ckpt_path,
# logger=logger,
# # early_stop_callback=None,
# weights_summary=None,
# progress_bar_refresh_rate=1,
# gpus=args.num_gpus,
# distributed_backend='ddp' if args.num_gpus>1 else None,
# num_sanity_val_steps=1,
# benchmark=True,
# val_check_interval=0.25,
# profiler=args.num_gpus==1)
trainer.fit(system)