-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsd2020.py
386 lines (316 loc) · 15 KB
/
sd2020.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
#!/usr/bin/env python
# coding: utf-8
# In[31]:
import pandas as pd
import numpy as np
import os
import csv
# warnings.simplefilter(action='ignore', category=FutureWarning)
pd.options.display.max_columns = 30
# In[32]:
def get(xlsx):
counties=xlsx.sheet_names
sheet_index=np.arange(len(xlsx.sheet_names))
sheet_to_df_map = {}
for sheet in sheet_index:
sheet_to_df_map[counties[sheet]] = xlsx.parse(sheet, skiprows= 6,skipfooter=1)
sheet_to_df_map[counties[sheet]]['County']=counties[sheet]
return sheet_to_df_map
# In[33]:
pres=pd.ExcelFile('raw/president_precinct_results.xlsx')
def format_president():
df=pd.concat(get(pres).values()).rename(columns={'Donald J. Trump and Michael R. Pence':'DONALD J TRUMP',
'Jo Jorgensen and Jeremy "Spike" Cohen':'JO JORGENSEN',
'Joseph R. Biden and Kamala Harris':'JOSEPH R BIDEN'})
df = df.drop(df.columns[0],axis=1)
df=pd.melt(df, id_vars=['Precinct','County'], value_vars=['DONALD J TRUMP','JO JORGENSEN','JOSEPH R BIDEN'])
df['County']=df['County'].str.upper()
df.columns = ['precinct','county_name','candidate','votes']
# add party
conditions = [(df['candidate'] == 'DONALD J TRUMP'),(df['candidate'] == 'JOSEPH R BIDEN'),(df['candidate'] == 'JO JORGENSEN')]
df['party_detailed'] =np.select(conditions, ['REPUBLICAN', 'DEMOCRAT', 'LIBERTARIAN'])
df['party_simplified'] = df['party_detailed']
# add office, dataverse, district
df['office']='US PRESIDENT'
df['dataverse'] = 'PRESIDENT'
df['district'] = 'STATEWIDE'
df['stage']='GEN'
df['magnitude'] = 1
return df
president = format_president()
# In[34]:
sen=pd.ExcelFile('raw/senate_precinct_results.xlsx')
def format_senate():
df=pd.concat(get(sen).values()).rename(columns= {'Mike Rounds':'MIKE ROUNDS','Dan Ahlers ':'DAN AHLERS'})
df = df.drop(df.columns[0],axis=1)
df = df[[df.columns[-1]]+df.columns[:-1].tolist()]
df=pd.melt(df, id_vars=['Precinct','County'], value_vars=df.columns[2:].tolist())
df['County']=df['County'].str.upper()
df.columns = ['precinct','county_name','candidate','votes']
# add party
conditions = [(df['candidate'] == 'MIKE ROUNDS'),(df['candidate'] == 'DAN AHLERS')]
df['party_detailed'] =np.select(conditions, ['REPUBLICAN', 'DEMOCRAT'])
df['party_simplified'] = df['party_detailed']
# add office, dataverse, district
df['office']='US SENATE'
df['dataverse'] = 'SENATE'
df['district'] = 'STATEWIDE'
df['stage']='GEN'
df['magnitude'] = 1
return df
us_senate = format_senate()
# In[35]:
house=pd.ExcelFile('raw/house_precinct_results.xlsx')
def format_house():
df=pd.concat(get(house).values()).rename(columns= {'Dusty Johnson':'DUSTY JOHNSON','Randy "Uriah" Luallin ':'RANDY "URIAH" LUALLIN'})
df = df.drop(df.columns[0],axis=1)
df = df[[df.columns[-1]]+df.columns[:-1].tolist()]
df=pd.melt(df, id_vars=['Precinct','County'], value_vars=df.columns[2:].tolist())
df['County']=df['County'].str.upper()
df.columns = ['precinct','county_name','candidate','votes']
# add party
conditions = [(df['candidate'] == 'DUSTY JOHNSON'),(df['candidate'] == 'RANDY "URIAH" LUALLIN')]
df['party_detailed'] =np.select(conditions, ['REPUBLICAN', 'LIBERTARIAN'])
df['party_simplified'] = df['party_detailed']
# add office, dataverse, district
df['office']='US HOUSE'
df['dataverse'] = 'HOUSE'
df['district'] = '000'
df['stage']='GEN'
df['magnitude'] = 1
return df
us_house = format_house()
# In[36]:
puc=pd.ExcelFile('raw/pu_precinct_results.xlsx')
def format_puc():
df=pd.concat(get(puc).values()).rename(columns= {'Gary Hanson':'GARY HANSON','Devin Saxon':'DEVIN SAXON',
'Remi W. B. Bald Eagle':'REMI W B BALD EAGLE'})
df = df.drop(df.columns[0],axis=1)
df = df[[df.columns[-1]]+df.columns[:-1].tolist()]
df=pd.melt(df, id_vars=['Precinct','County'], value_vars=df.columns[2:].tolist())
df['County']=df['County'].str.upper()
df.columns = ['precinct','county_name','candidate','votes']
# add party
conditions = [(df['candidate'] == 'GARY HANSON'),(df['candidate'] == 'REMI W B BALD EAGLE'),(df['candidate'] == 'DEVIN SAXON')]
df['party_detailed'] =np.select(conditions, ['REPUBLICAN', 'DEMOCRAT','LIBERTARIAN'])
df['party_simplified'] = df['party_detailed']
# add office, dataverse, district
df['office']='PUBLIC UTILITIES COMMISSIONER'
df['dataverse'] = 'STATE'
df['stage']='GEN'
df['district'] = 'STATEWIDE'
df['magnitude'] = 1
return df
public_utilities = format_puc()
# In[37]:
m26=pd.ExcelFile('raw/measure_26.xlsx')
def format_m26():
df=pd.concat(get(m26).values()).rename(columns= {'Yes':'YES','No':'NO'})
df = df.drop(df.columns[0],axis=1)
df = df[[df.columns[-1]]+df.columns[:-1].tolist()]
df=pd.melt(df, id_vars=['Precinct','County'], value_vars=df.columns[2:].tolist())
df['County']=df['County'].str.upper()
df.columns = ['precinct','county_name','candidate','votes']
# add party
df['party_detailed'] = ''
df['party_simplified'] = df['party_detailed']
# add office, dataverse, district
df['office']='Initiated Measure 26: An initiated measure to legalize marijuana for medical use.'
df['office'] = df['office'].str.upper()
df['dataverse'] = 'STATE'
df['district'] = 'STATEWIDE'
df['stage']='GEN'
df['magnitude'] = 1
return df
measure_26 = format_m26()
# In[38]:
ammendment_a=pd.ExcelFile('raw/ammendment_A.xlsx')
def format_ammendment_a():
df=pd.concat(get(ammendment_a).values()).rename(columns= {'Yes':'YES','No':'NO'})
df = df.drop(df.columns[0],axis=1)
df = df[[df.columns[-1]]+df.columns[:-1].tolist()]
df=pd.melt(df, id_vars=['Precinct','County'], value_vars=df.columns[2:].tolist())
df['County']=df['County'].str.upper()
df.columns = ['precinct','county_name','candidate','votes']
# add party
df['party_detailed'] = ''
df['party_simplified'] = df['party_detailed']
# add office, dataverse, district
df['office']='Constitutional Amendment A: An amendment to the South Dakota Constitution to legalize, regulate, and tax marijuana; and to require the Legislature to pass laws regarding hemp as well as laws ensuring access to marijuana for medical use.'
df['office'] = df['office'].str.upper()
df['dataverse'] = 'STATE'
df['district'] = 'STATEWIDE'
df['stage']='GEN'
df['magnitude'] = 1
return df
ammendment_a = format_ammendment_a()
# In[39]:
ammendment_b=pd.ExcelFile('raw/ammendment_B.xlsx')
def format_ammendment_b():
df=pd.concat(get(ammendment_b).values()).rename(columns= {'Yes':'YES','No':'NO'})
df = df.drop(df.columns[0],axis=1)
df = df[[df.columns[-1]]+df.columns[:-1].tolist()]
df=pd.melt(df, id_vars=['Precinct','County'], value_vars=df.columns[2:].tolist())
df['County']=df['County'].str.upper()
df.columns = ['precinct','county_name','candidate','votes']
# add party
df['party_detailed'] = ''
df['party_simplified'] = df['party_detailed']
# add office, dataverse, district
df['office']='Constitutional Amendment B: An amendment to the South Dakota Constitution authorizing the Legislature to allow sports wagering in Deadwood.'
df['office'] = df['office'].str.upper()
df['dataverse'] = 'STATE'
df['district'] = 'STATEWIDE'
df['stage']='GEN'
df['magnitude'] = 1
return df
ammendment_b = format_ammendment_b()
# In[40]:
supreme_court=pd.ExcelFile('raw/supreme_court.xlsx')
def format_supreme_court():
df=pd.concat(get(supreme_court).values()).rename(columns= {'Yes':'STEVEN JENSEN - YES','No':'STEVEN JENSEN - NO'})
df = df.drop(df.columns[0],axis=1)
df = df[[df.columns[-1]]+df.columns[:-1].tolist()]
df=pd.melt(df, id_vars=['Precinct','County'], value_vars=df.columns[2:].tolist())
df['County']=df['County'].str.upper()
df.columns = ['precinct','county_name','candidate','votes']
# add party
df['party_detailed'] = 'NONPARTISAN'
df['party_simplified'] = df['party_detailed']
# add office, dataverse, district
df['office']='RETENTION FIRST SUPREME COURT DISTRICT'
df['dataverse'] = 'STATE'
df['district'] = 'STATEWIDE'
df['stage']='GEN'
df['magnitude'] = 1
return df
state_supreme_court = format_supreme_court()
# # need each county file bleh (only one for each district race)
# In[41]:
#loops through each of the senate/house district files and concats into one df each
def get_state_congress(xlsx):
counties=xlsx.sheet_names
sheet_index=np.arange(len(xlsx.sheet_names))
sheet_to_df_map = {}
for sheet in sheet_index:
sheet_to_df_map[counties[sheet]] = xlsx.parse(sheet, skiprows= 6,skipfooter=1)
sheet_to_df_map[counties[sheet]]['County']=counties[sheet]
district = sheet_to_df_map[counties[sheet]].columns[0]
if district[-1].isalpha():
district_num = district[-3:]
else:
district_num = district[-2:]
sheet_to_df_map[counties[sheet]][district]=district_num
sheet_to_df_map[counties[sheet]] = sheet_to_df_map[counties[sheet]].rename({district:'district'},axis=1)
return sheet_to_df_map
state_senate_filenames=sorted([i for i in os.listdir('/Users/declanchin/Desktop/MEDSL/2020-precincts/precinct/SD/raw/state_senate') if i[0].isalpha()])
senate_path = 'raw/state_senate/'
state_house_filenames=sorted([i for i in os.listdir('/Users/declanchin/Desktop/MEDSL/2020-precincts/precinct/SD/raw/state_house') if i[0].isalpha()])
house_path = 'raw/state_house/'
def collapse_all_districts(filenames,path):
nested_dict = {}
#creates nested dictionary of each district election by county
for i in np.arange(len(filenames)):
xlsx_file = pd.ExcelFile(path+filenames[i])
nested_dict[filenames[i]] = get_state_congress((xlsx_file))
#concat all nested values so we have a dict of df
dictionary = {}
for district in nested_dict:
dictionary[district] = pd.concat(nested_dict[district].values())
df = dictionary[district]
df = df[[df.columns[-1]]+df.columns[:-1].tolist()]
df=pd.melt(df, id_vars=['Precinct','County','district'], value_vars=df.columns[3:].tolist())
df['County']=df['County'].str.upper()
df.columns = ['precinct','county_name','district','candidate','votes']
df['candidate'] = df['candidate'].str.replace(r"\(.*\)","",regex=True).str.replace('\.','',regex=True).str.strip()
df['candidate'] = df['candidate'].str.upper().str.replace(r"\s+"," ",regex=True)
df['district'] = df['district'].str.zfill(3)
df['dataverse'] = 'STATE'
if 'senate' in district:
df['office']= 'STATE SENATE'
else:
df['office']= 'STATE HOUSE'
if 'state_house_12' in district:
df['readme_check'] = 'TRUE'
if 'recount' in district:
df['stage']= 'GEN RECOUNT'
else:
df['stage']= 'GEN'
if 'A' in district:
df['magnitude'] = 1
elif 'B' in district:
df['magnitude'] = 1
elif 'senate' in district:
df['magnitude'] = 1
else:
df['magnitude'] = 2
dictionary[district]= df
return pd.concat(dictionary.values())
state_senate_df = collapse_all_districts(state_senate_filenames,senate_path)
state_house_df = collapse_all_districts(state_house_filenames,house_path)
# In[42]:
# from selenium import webdriver
# from selenium.webdriver.firefox.firefox_profile import FirefoxProfile
# import time
# # scraping party info from website
# browser = webdriver.Chrome(executable_path="/Users/declanchin/Documents/chromedriver")
# url = 'https://electionresults.sd.gov/resultsSW.aspx?type=LEG&map=DIST'
# browser.get(url)
# cand_party = [i.text for i in browser.find_elements_by_class_name("display-results-box-d")]
# crosswalk = [i.split('\n') for i in cand_party]
# crosswalk = pd.DataFrame(crosswalk, columns = ['candidate', 'party_detailed'])
# crosswalk['candidate'] = crosswalk['candidate'].str.replace('\.','',regex=True).str.strip()
# crosswalk['party_detailed'] = crosswalk['party_detailed'].str.upper().str.replace('DEMOCRATIC','DEMOCRAT')
# crosswalk.to_csv('state_leg_candidate_party_crosswalk.csv',index=False)
# In[43]:
crosswalk = pd.read_csv('/Users/declanchin/Desktop/MEDSL/2020-precincts/precinct/SD/state_leg_candidate_party_crosswalk.csv')
house_and_senate = pd.concat([state_house_df,state_senate_df])
house_and_senate['candidate'] = house_and_senate['candidate'].str.replace('SETH WILLIAM VAN"T HOF',"SETH WILLIAM VAN'T HOF")
crosswalk=crosswalk.merge(house_and_senate[['candidate','office']], on='candidate', how = 'left').drop_duplicates()
# two tim reeds, need to add office to differentiate for merge
crosswalk=crosswalk[~((crosswalk['candidate']=='TIMOTHY REED')&(crosswalk['party_detailed']=='DEMOCRAT')&(crosswalk['office']=='STATE HOUSE'))]
crosswalk=crosswalk[~((crosswalk['candidate']=='TIMOTHY REED')&(crosswalk['party_detailed']=='REPUBLICAN')&(crosswalk['office']=='STATE SENATE'))]
house_and_senate=house_and_senate.merge(crosswalk, on = ['candidate','office'], how = 'left')
# # wrapping up
# In[44]:
#concat all statewide and federal results
df=pd.concat([president,us_senate,us_house,public_utilities,measure_26,ammendment_a,ammendment_b,
state_supreme_court,house_and_senate])
#add county fips
county_fips = pd.read_csv('/Users/declanchin/Desktop/MEDSL/2020-precincts/help-files/county-fips-codes.csv')
county_fips = county_fips[county_fips['state']=='South Dakota'].drop(columns='state')
df=df.merge(county_fips, on='county_name')
# add jurisdiction
df['jurisdiction_name']= df['county_name']
df['jurisdiction_fips'] = df['county_fips']
# add mode, district, magnitude, dataverse, year, stage, state, special, writein, date, office, readme_check
df['mode']='TOTAL'
df['year']= 2020
df['state'] = 'SOUTH DAKOTA'
df['special'] = 'FALSE'
df['writein'] = 'FALSE'
df['date']= '2020-11-03'
df['readme_check'] = df['readme_check'].fillna('FALSE')
# state codes
state_codes = pd.read_csv('/Users/declanchin/Desktop/MEDSL/2020-precincts/help-files/merge_on_statecodes.csv')
state_codes = state_codes[state_codes['state']=='South Dakota']
state_codes['state'] = state_codes['state'].str.upper()
df=df.merge(state_codes, on='state')
# fix party_simplified issue
def get_party_simplified(x):
if x in ['REPUBLICAN','DEMOCRAT','LIBERTARIAN','NONPARTISAN']: return x
if x =='': return ''
else: return 'OTHER'
df['party_simplified'] = df.party_detailed.apply(get_party_simplified)
# fix precinct
df['precinct'] = df['precinct'].str.upper().str.strip()
# reordering
df = df[['precinct', 'office', 'party_detailed', 'party_simplified', 'mode',
'votes', 'county_name', 'county_fips', 'jurisdiction_name',
'jurisdiction_fips', 'candidate', 'district', 'magnitude', 'dataverse',
'year', 'stage', 'state', 'special', 'writein', 'state_po',
'state_fips', 'state_cen', 'state_ic', 'date', 'readme_check']]
df.head()
# In[45]:
df.to_csv('2020-sd-precinct-general.csv',index=False, quoting=csv.QUOTE_NONNUMERIC)
# In[ ]: