forked from LUSSeg/PASS
-
Notifications
You must be signed in to change notification settings - Fork 0
/
inference_pixel_attention.py
133 lines (108 loc) · 5.13 KB
/
inference_pixel_attention.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
import os
import argparse
import torch
import torch.nn as nn
import numpy as np
from tqdm import tqdm
import torch.nn.functional as F
from torchvision import transforms
from PIL import Image
import src.resnet as resnet_model
from src.singlecropdataset import InferImageFolder
import torch.multiprocessing as mp
import torch.distributed as dist
def parse_args():
parser = argparse.ArgumentParser(description="Inference")
parser.add_argument("--mode", type=str, required=True)
parser.add_argument("--dump_path", type=str, default=None, help="The path to save results.")
parser.add_argument("--data_path", type=str, default=None, help="The path to ImagenetS dataset.")
parser.add_argument("--pretrained", type=str, default=None, help="The model checkpoint file.")
parser.add_argument("-a", "--arch", metavar="ARCH", help="The model architecture.")
parser.add_argument("-c", "--num-classes", default=50, type=int, help="The number of classes.")
parser.add_argument("-t", "--threshold", default=0, type=float, help="The threshold to filter the 'others' categroies.")
parser.add_argument("--test", action='store_true', help="whether to save the logit. Enabled when finding the best threshold.")
parser.add_argument("--centroid", type=str, default=None, help="The centroids of clustering.")
parser.add_argument("--dist_url", default="env://", type=str, help="""url used to set up distributed training; see https://pytorch.org/docs/stable/distributed.html""")
parser.add_argument("--rank", type=int, default=0)
args = parser.parse_args()
return args
def main_worker(rank, args):
args.rank = rank
dist.init_process_group(backend='nccl', init_method=args.dist_url, world_size=args.num_gpus,
rank=args.rank)
torch.cuda.set_device(rank)
device = torch.device("cuda:{}".format(rank))
centroids = np.load(args.centroid)
centroids = torch.from_numpy(centroids).cuda()
centroids = nn.functional.normalize(centroids, dim=1, p=2)
# build model
model = resnet_model.__dict__[args.arch](hidden_mlp=0, output_dim=0, nmb_prototypes=0, train_mode='pixelattn')
checkpoint = torch.load(args.pretrained, map_location="cpu")["state_dict"]
state_dict = {}
for k in checkpoint.keys():
if k.startswith("module") and not k.startswith("module.prototypes") and not k.startswith("module.projection"):
state_dict[k[len("module.") :]] = checkpoint[k]
msg = model.load_state_dict(state_dict, strict=False)
print("=> loaded model '{}'".format(args.pretrained))
assert len(msg.missing_keys) == 0, msg.missing_keys
model.cuda()
model.to(device)
model.eval()
# build dataset
data_path = os.path.join(args.data_path, args.mode)
normalize = transforms.Normalize(
mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]
)
dataset = InferImageFolder(
root=data_path,
transform=transforms.Compose(
[
transforms.Resize(256),
transforms.ToTensor(),
normalize,
]
),
rank=rank,
num_gpus=args.num_gpus
)
dataloader = torch.utils.data.DataLoader(
dataset, batch_size=1, num_workers=16, pin_memory=True
)
dump_path = os.path.join(args.dump_path, args.mode)
for images, path, height, width in tqdm(dataloader):
path = path[0]
cate = path.split("/")[-2]
name = path.split("/")[-1].split(".")[0]
if not os.path.exists(os.path.join(dump_path, cate)):
os.makedirs(os.path.join(dump_path, cate))
with torch.no_grad():
h = height.item()
w = width.item()
out, mask = model(images.cuda(device), mode='inference_pixel_attention')
mask = F.upsample(mask, (h, w), mode="bilinear", align_corners=False).squeeze()
out = nn.functional.normalize(out, dim=1, p=2)
B, C, H, W = out.shape
out = out.view(B, C, -1).permute(0, 2, 1).contiguous().view(-1, C)
cosine = torch.mm(out, centroids.t())
cosine = cosine.view(1, H, W, args.num_classes).permute(0, 3, 1, 2)
logit = mask
prediction = torch.argmax(cosine, dim=1, keepdim=True) + 1
prediction = F.interpolate(prediction.float(), (h, w), mode="nearest").squeeze()
prediction[logit.squeeze() < args.threshold] = 0
res = torch.zeros(size=(prediction.shape[0], prediction.shape[1], 3))
res[:, :, 0] = prediction % 256
res[:, :, 1] = prediction // 256
res = res.cpu().numpy()
logit = logit.cpu().numpy()
res = Image.fromarray(res.astype(np.uint8))
res.save(os.path.join(dump_path, cate, name + ".png"))
if args.test:
np.save(os.path.join(dump_path, cate, name + ".npy"), logit)
if __name__ == "__main__":
args = parse_args()
args.num_gpus = torch.cuda.device_count()
if args.num_gpus == 1:
main_worker(rank=0, args=args)
else:
torch.multiprocessing.set_start_method('spawn')
mp.spawn(main_worker, nprocs=args.num_gpus, args=(args,))