|
| 1 | +from collections import defaultdict |
| 2 | +import re |
| 3 | +import ast |
| 4 | +import base64 |
| 5 | +import io |
| 6 | +import random |
| 7 | +import numpy as np |
| 8 | +import os |
| 9 | +import json |
| 10 | +import logging |
| 11 | +from PIL import Image |
| 12 | + |
| 13 | +from lmms_eval.tasks._task_utils.file_utils import generate_submission_file |
| 14 | + |
| 15 | +lmms_logger = logging.getLogger("lmms-eval") |
| 16 | + |
| 17 | +OPEN_ENDED_PROMPT = "Answer the question using a single word or phrase." |
| 18 | + |
| 19 | + |
| 20 | +def construct_prompt(doc): |
| 21 | + question = doc["question"] |
| 22 | + # question = f"{question}\n{OPEN_ENDED_PROMPT}" |
| 23 | + question = f"{OPEN_ENDED_PROMPT}\n{question}" |
| 24 | + return question |
| 25 | + |
| 26 | + |
| 27 | +def websrc_doc_to_text(doc): |
| 28 | + question = construct_prompt(doc) |
| 29 | + return question |
| 30 | + |
| 31 | + |
| 32 | +def websrc_doc_to_visual(doc): |
| 33 | + img_bs64 = doc["image"] |
| 34 | + img = Image.open(io.BytesIO(base64.b64decode(img_bs64))) |
| 35 | + del doc['image'] |
| 36 | + return [img] |
| 37 | + |
| 38 | + |
| 39 | +def websrc_process_results(doc, results): |
| 40 | + pred = results[0] |
| 41 | + parsed_pred = pred |
| 42 | + id = doc["page_id"] |
| 43 | + websrc_ans = {"id": id, "domain": doc['domain'], "answer": doc["answer"], "parsed_pred": parsed_pred} |
| 44 | + return { |
| 45 | + "websrc_squad_f1": websrc_ans, |
| 46 | + "submission": { |
| 47 | + id: pred, |
| 48 | + }, |
| 49 | + } |
| 50 | + |
| 51 | + |
| 52 | +def websrc_test_aggregate_results_for_submission(results, args): |
| 53 | + path = generate_submission_file("websrc_test_for_submission.json", args) |
| 54 | + with open(path, "w") as f: |
| 55 | + json.dump(results, f) |
| 56 | + lmms_logger.info(f"Results saved to {path}.") |
| 57 | + |
| 58 | + |
| 59 | +def websrc_aggregate_results(results): |
| 60 | + evaluation_result = {} |
| 61 | + |
| 62 | + # Group results by domain |
| 63 | + subset_to_eval_samples = defaultdict(list) |
| 64 | + for result in results: |
| 65 | + subset_to_eval_samples[result["domain"]].append(result) |
| 66 | + |
| 67 | + # Evaluate each domain |
| 68 | + for subset, sub_eval_samples in subset_to_eval_samples.items(): |
| 69 | + judge_dict, metric_dict = evaluate_websrc(sub_eval_samples) |
| 70 | + metric_dict.update({"num_example": len(sub_eval_samples)}) |
| 71 | + evaluation_result[subset] = metric_dict |
| 72 | + |
| 73 | + # Aggregate results for all domains |
| 74 | + printable_results = {} |
| 75 | + for domain in DOMAINS: |
| 76 | + if domain not in evaluation_result: |
| 77 | + continue |
| 78 | + printable_results[domain] = { |
| 79 | + "num": int(evaluation_result[domain]["num_example"]), |
| 80 | + "f1": round(evaluation_result[domain]["f1"], 3), |
| 81 | + } |
| 82 | + all_ins_f1 = np.sum([cat_results["f1"] * cat_results["num_example"] for cat_results in evaluation_result.values()]) / sum( |
| 83 | + [cat_results["num_example"] for cat_results in evaluation_result.values()] |
| 84 | + ) |
| 85 | + printable_results["Overall"] = { |
| 86 | + "num": sum([cat_results["num_example"] for cat_results in evaluation_result.values()]), |
| 87 | + "f1": round(all_ins_f1, 3), |
| 88 | + } |
| 89 | + print(printable_results) |
| 90 | + return printable_results["Overall"]["f1"] |
| 91 | + |
| 92 | + |
| 93 | +################## |
| 94 | +# Helper functions written by official MMMU repo. |
| 95 | +################## |
| 96 | +DOMAINS = [ |
| 97 | + 'auto', |
| 98 | + 'book', |
| 99 | + 'camera', |
| 100 | + 'game', |
| 101 | + 'jobs', |
| 102 | + 'movie', |
| 103 | + 'phone', |
| 104 | + 'restaurant', |
| 105 | + 'sports', |
| 106 | + 'university', |
| 107 | + 'hotel', |
| 108 | +] |
| 109 | + |
| 110 | + |
| 111 | +def evaluate_websrc(samples): |
| 112 | + |
| 113 | + def _normalize_str(string): |
| 114 | + # lower it |
| 115 | + string = string.lower() |
| 116 | + |
| 117 | + # strip non-alphanumeric characters |
| 118 | + string = re.sub(r"[^a-zA-Z0-9]", "", string) |
| 119 | + |
| 120 | + # strip leading and trailing whitespaces |
| 121 | + string = string.strip() |
| 122 | + |
| 123 | + return string |
| 124 | + |
| 125 | + judge_list = [] |
| 126 | + for sample in samples: |
| 127 | + gold_i = set(_normalize_str(sample["answer"])) |
| 128 | + pred_i = set(_normalize_str( sample["parsed_pred"])) |
| 129 | + if len(pred_i) == 0: |
| 130 | + judge_list.append(0.0) |
| 131 | + continue |
| 132 | + |
| 133 | + comm_i = gold_i.intersection(pred_i) |
| 134 | + prec_i = len(comm_i) / len(pred_i) |
| 135 | + rec_i = len(comm_i) / len(gold_i) |
| 136 | + f1_i = 2 * prec_i * rec_i / (prec_i + rec_i) if prec_i + rec_i > 0 else 0 |
| 137 | + judge_list.append(f1_i) |
| 138 | + |
| 139 | + f1 = np.mean(judge_list) |
| 140 | + return judge_list, {"f1": f1} |
0 commit comments