Skip to content

Latest commit

 

History

History

Miller

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 

Twitter spammer detection using data stream clustering


├── preprocess.py       # generate required features
└── stream_cluster.py   # train model on given dataset
  • implement details: “Re-tweet count” feature is discarded since required information is not included in datasets. “Link count”, “Reply/mention count”, and “Hashtag count” are available only in “cresci-2015”, “cresci-2017”, “Twibot-20”, and “Twibot-22” datasets.

How to reproduce:

  1. specify the dataset by running dataset=Twibot-22 (Twibot-22 for example) ;

  2. generate required features from raw dataset by running:

    python preprocess.py --dataset ${dataset}

  3. train clustering model by running:

    python stream_cluster.py --dataset ${dataset}

Result:

random seed: 100, 200, 300, 400, 500

dataset acc precison recall f1
Cresci-2015 mean 0.7551 0.7207 1.0000 0.8377
Cresci-2015 std 0.0000 0.0000 0.0000 0.0000
Cresci-2017 mean 0.7713 0.7721 0.9911 0.8680
Cresci-2017 std 0.0017 0.0018 0.0011 0.0007
Twibot-20 mean 0.6450 0.6071 0.9744 0.7481
Twibot-20 std 0.0035 0.0020 0.0047 0.0026
Twibot-22 mean 0.3037 0.2946 0.9789 0.4529
Twibot-22 std 0.0001 0.0000 0.0001 0.0000
botometer-feedback-2019 mean 0.7736 0.0000 0.0000 0.0000
botometer-feedback-2019 std 0.0000 0.0000 0.0000 0.0000
cresci-rtbust-2019 mean 0.5441 0.5217 0.3750 0.4364
cresci-rtbust-2019 std 0.0000 0.0000 0.0000 0.0000
cresci-stock-2018 mean 0.5253 0.5478 0.5889 0.5676
cresci-stock-2018 std 0.0000 0.0000 0.0000 0.0000
midterm-2018 mean 0.8372 0.8385 0.9981 0.9114
midterm-2018 std 0.0000 0.0000 0.0000 0.0000
gilani-2017 mean 0.5104 0.4889 0.7719 0.5986
gilani-2017 std 0.0000 0.0000 0.0000 0.0000
baseline acc on Twibot-22 f1 on Twibot-22 type tags
Miller et al. 0.3037 0.4529 F T k means