forked from dice-group/Ontolearn
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathexperiments.py
180 lines (162 loc) · 8.99 KB
/
experiments.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
# -----------------------------------------------------------------------------
# MIT License
#
# Copyright (c) 2024 Ontolearn Team
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
# -----------------------------------------------------------------------------
"""Experiments to validate a concept learning model."""
import json
import time
from random import shuffle
from typing import List, Tuple, Set, Dict, Any, Iterable
import numpy as np
from owlapy.iri import IRI
from owlapy.owl_individual import OWLNamedIndividual
from sklearn.model_selection import KFold
class Experiments:
def __init__(self, max_test_time_per_concept=3):
self.random_state_k_fold = 1
self.max_test_time_per_concept = max_test_time_per_concept
@staticmethod
def store_report(model, learning_problems: List[Iterable], test_report: List[dict]) -> Tuple[str, Dict[str, Any]]:
"""
Create a report for concepts generated for a particular learning problem.
Args:
model: Concept learner.
learning_problems: A list of learning problems (lps) where lp corresponds to target concept, positive and
negative examples, respectively.
test_report: A list of predictions (preds) where test_report => { 'Prediction': str, 'F-measure': float,
'Accuracy', 'Runtime':float}.
Returns:
Both report as string and report as dictionary.
"""
assert len(learning_problems) == len(test_report)
assert isinstance(learning_problems, list) # and isinstance(learning_problems[0], list)
assert isinstance(test_report, list) and isinstance(test_report[0], dict)
store_json = dict()
print('###############')
""" (1) Convert E^+ and E^- into strings to store them in JSON format """
for (th, lp, pred) in zip(range(len(learning_problems)), learning_problems, test_report):
report = dict()
target_class_expression, typed_positive, typed_negative = lp
report.update(pred)
report['Positives'], report['Negatives'] = [owl_indv.str for owl_indv in typed_positive], \
[owl_indv.str for owl_indv in typed_negative]
store_json[th] = report
print('##################')
""" (2) Serialize classification report """
with open(model.storage_path + '/classification_reports.json', 'w') as file_descriptor:
json.dump(store_json, file_descriptor, indent=3)
del store_json
""" (3) Deserialize (2) for the sake of validating its correctness"""
with open(model.storage_path + '/classification_reports.json', 'r') as read_file:
report = json.load(read_file)
array_res = np.array(
[[v['F-measure'], v['Accuracy'], v['NumClassTested'], v['Runtime']] for k, v in report.items()])
# Extract Infos
f1, acc, num_concept_tested, runtime = array_res[:, 0], array_res[:, 1], array_res[:, 2], array_res[:, 3]
del array_res
report_str = '{}\t' \
' F-measure:(avg.{:.2f} | std.{:.2f})\t' \
'Accuracy:(avg.{:.2f} | std.{:.2f})\t\t' \
'NumClassTested:(avg.{:.2f} | std.{:.2f})\t' \
'Runtime:(avg.{:.2f} | std.{:.2f})'.format(model.name,
f1.mean(), f1.std(),
acc.mean(),
acc.std(),
num_concept_tested.mean(),
num_concept_tested.std(),
runtime.mean(),
runtime.std())
return report_str, {'F-measure': f1, 'Accuracy': acc, 'NumClassTested': num_concept_tested, 'Runtime': runtime}
def start_KFold(self, k=None, dataset: List[Tuple[str, Set, Set]] = None, models: Iterable = None):
"""
Perform KFold cross validation.
Args:
models: concept learners.
k: k value of k-fold.
dataset: A list of tuples where a tuple (i,j,k) where i denotes the target concept j denotes the set of
positive examples and k denotes the set of negative examples.
Note:
This method returns nothing. It just prints the report results.
"""
models = {i for i in models}
assert len(models) > 0
assert len(dataset) > 0
assert isinstance(dataset[0], tuple)
assert isinstance(dataset[0], tuple)
assert k
dataset = np.array(dataset) # due to indexing feature required in the sklearn.KFold.
kf = KFold(n_splits=k, random_state=self.random_state_k_fold, shuffle=True)
results = dict()
counter = 1
for train_index, test_index in kf.split(dataset):
train, test = dataset[train_index].tolist(), dataset[test_index].tolist()
print(f'##### FOLD:{counter} #####')
start_time_fold = time.time()
for m in models:
m.train(train)
test_report: List[dict] = m.fit_from_iterable(test, max_runtime=self.max_test_time_per_concept)
report_str, report_dict = self.store_report(m, test, test_report)
results.setdefault(m.name, []).append((counter, report_dict))
print(f'##### FOLD:{counter} took {round(time.time() - start_time_fold)} seconds #####')
counter += 1
self.report_results(results)
def start(self, dataset: List[Tuple[str, Set, Set]] = None, models: List = None):
assert len(models) > 0
assert len(dataset) > 0
assert isinstance(dataset[0], tuple)
assert isinstance(dataset[0], tuple)
shuffle(dataset)
""" (1) Convert string representation of positive and negative examples into OWLNamedIndividual """
for i in range(len(dataset)):
t, p, n = dataset[i]
typed_pos = set(map(OWLNamedIndividual, map(IRI.create, p)))
typed_neg = set(map(OWLNamedIndividual, map(IRI.create, n)))
dataset[i] = (t, typed_pos, typed_neg)
results = dict()
counter = 1
""" (1) Predict OWL Class Expression """
for m in models:
print(
f'{m.name} starts on {len(dataset)} number of problems. '
f'Max Runtime per problem is set to {self.max_test_time_per_concept} seconds.')
test_report: List[dict] = m.fit_from_iterable(dataset, max_runtime=self.max_test_time_per_concept)
str_report, dict_report = self.store_report(m, dataset, test_report)
results.setdefault(m.name, []).append((counter, dict_report))
self.report_results(results, num_problems=len(dataset))
@staticmethod
def report_results(results, num_problems):
"""Prints the result generated from validations.
"""
print(f'\n##### RESULTS on {num_problems} number of learning problems#####')
for learner_name, v in results.items():
r = np.array([[report['F-measure'], report['Accuracy'], report['NumClassTested'], report['Runtime']] for
(fold, report) in v])
f1_mean, f1_std = r[:, 0].mean(), r[:, 0].std()
acc_mean, acc_std = r[:, 1].mean(), r[:, 1].std()
num_concept_tested_mean, num_concept_tested_std = r[:, 2].mean(), r[:, 2].std()
runtime_mean, runtime_std = r[:, 3].mean(), r[:, 3].std()
print(
f'{learner_name}\t'
f' F-measure:(avg. {f1_mean:.2f} | std. {f1_std:.2f})\t'
f'Accuracy:(avg. {acc_mean:.2f} | std. {acc_std:.2f})\t\t'
f'NumClassTested:(avg. {num_concept_tested_mean:.2f} | std. {num_concept_tested_std:.2f})\t\t'
f'Runtime:(avg.{runtime_mean:.2f} | std.{runtime_std:.2f})')