forked from dice-group/Ontolearn
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathclip_architectures.py
141 lines (130 loc) · 5.77 KB
/
clip_architectures.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
# -----------------------------------------------------------------------------
# MIT License
#
# Copyright (c) 2024 Ontolearn Team
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
# -----------------------------------------------------------------------------
import torch, torch.nn as nn
import random
from typing import List
from ontolearn.nces_modules import *
class LengthLearner_LSTM(nn.Module):
"""LSTM architecture"""
def __init__(self, input_size, output_size, proj_dim=256, rnn_n_layers=2, drop_prob=0.2):
super().__init__()
self.name = 'LSTM'
self.loss = nn.CrossEntropyLoss()
self.lstm = nn.LSTM(input_size, proj_dim, rnn_n_layers,
dropout=drop_prob, batch_first=True)
self.dropout = nn.Dropout(drop_prob)
self.fc1 = nn.Linear(2*proj_dim, proj_dim)
self.fc2 = nn.Linear(proj_dim, proj_dim)
self.fc3 = nn.Linear(proj_dim, output_size)
def forward(self, x1, x2):
''' Forward pass through the network.'''
x1, _ = self.lstm(x1)
x1 = x1.sum(1).contiguous().view(x1.shape[0], -1)
x2, _ = self.lstm(x2)
x2 = x2.sum(1).contiguous().view(x2.shape[0], -1)
x = torch.cat([x1, x2], dim=-1)
x = self.fc1(x)
x = torch.selu(x)
x = self.dropout(x)
x = self.fc2(x)
x = x + torch.tanh(x)
x = self.fc3(x)
return x
class LengthLearner_GRU(nn.Module):
"""GRU architecture"""
def __init__(self, input_size, output_size, proj_dim=256, rnn_n_layers=2, drop_prob=0.2):
super().__init__()
self.name = 'GRU'
self.loss = nn.CrossEntropyLoss()
self.gru = nn.GRU(input_size, proj_dim, rnn_n_layers,
dropout=drop_prob, batch_first=True)
self.dropout = nn.Dropout(drop_prob)
self.fc1 = nn.Linear(2*proj_dim, proj_dim)
self.fc2 = nn.Linear(proj_dim, proj_dim)
self.fc3 = nn.Linear(proj_dim, output_size)
def forward(self, x1, x2):
''' Forward pass through the network.'''
x1, _ = self.gru(x1)
x1 = x1.sum(1).contiguous().view(x1.shape[0], -1)
x2, _ = self.gru(x2)
x2 = x2.sum(1).contiguous().view(x2.shape[0], -1)
x = torch.cat([x1, x2], dim=-1)
x = self.fc1(x)
x = torch.selu(x)
x = self.dropout(x)
x = self.fc2(x)
x = x + torch.tanh(x)
x = self.fc3(x)
return x
class LengthLearner_CNN(nn.Module):
"""CNN architecture"""
def __init__(self, input_size, output_size, num_examples, proj_dim=256, kernel_size: list=[[5,7], [5,7]], stride: list=[[3,3], [3,3]], drop_prob=0.2):
super().__init__()
assert isinstance(kernel_size, list) and isinstance(kernel_size[0], list), "kernel size and stride must be lists of lists, e.g., [[5,7], [5,7]]"
self.name = 'CNN'
self.loss = nn.CrossEntropyLoss()
self.conv1 = nn.Conv2d(in_channels=1, out_channels=4, kernel_size=(kernel_size[0][0], kernel_size[0][1]), stride=(stride[0][0], stride[0][1]), padding=(0,0))
self.conv2 = nn.Conv2d(in_channels=4, out_channels=8, kernel_size=(kernel_size[1][0], kernel_size[1][1]), stride=(stride[1][0], stride[1][1]), padding=(0,0))
self.dropout1d = nn.Dropout(drop_prob)
self.dropout2d = nn.Dropout2d(drop_prob)
conv_out_dim = 3536
self.fc1 = nn.Linear(conv_out_dim, proj_dim)
self.fc2 = nn.Linear(proj_dim, proj_dim)
self.fc3 = nn.Linear(proj_dim, output_size)
def forward(self, x1, x2):
''' Forward pass through the network.'''
x1 = x1.unsqueeze(1)
x2 = x2.unsqueeze(1)
x = torch.cat([x1, x2], dim=-2)
x = self.conv1(x)
x = torch.selu(x)
x = self.dropout2d(x)
x = self.conv2(x)
x = x.view(x.shape[0], -1)
x = self.fc1(x)
x = torch.selu(x)
x = self.dropout1d(x)
x = self.fc2(x)
x = x + torch.tanh(x)
x = self.fc3(x)
return x
class LengthLearner_SetTransformer(nn.Module):
"""SetTransformer architecture."""
def __init__(self, input_size, output_size, proj_dim=256, num_heads=4, num_seeds=1, num_inds=32):
super().__init__()
self.name = 'SetTransformer'
self.loss = nn.CrossEntropyLoss()
self.enc = nn.Sequential(
ISAB(input_size, proj_dim, num_heads, num_inds),
ISAB(proj_dim, proj_dim, num_heads, num_inds))
self.dec = nn.Sequential(
PMA(proj_dim, num_heads, num_seeds),
nn.Linear(proj_dim, output_size))
def forward(self, x1, x2):
''' Forward pass through the network.'''
x1 = self.enc(x1)
x2 = self.enc(x2)
x = torch.cat([x1, x2], dim=-2)
x = self.dec(x).squeeze()
return x