diff --git a/flash_notebooks/custom_task_tutorial.ipynb b/flash_notebooks/custom_task_tutorial.ipynb index 9c28486f60..10c698573e 100644 --- a/flash_notebooks/custom_task_tutorial.ipynb +++ b/flash_notebooks/custom_task_tutorial.ipynb @@ -374,24 +374,7 @@ ] } ], - "metadata": { - "kernelspec": { - "name": "python385jvsc74a57bd0db7cb6f8b99581485a229201158c5b3d87043825d76fdd729161e90706f71f5a", - "display_name": "Python 3.8.5 64-bit ('.venv')" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.8.5" - } - }, + "metadata": {}, "nbformat": 4, "nbformat_minor": 4 } diff --git a/flash_notebooks/generic_task.ipynb b/flash_notebooks/generic_task.ipynb index ab68e36a6a..a3ddd6a86b 100644 --- a/flash_notebooks/generic_task.ipynb +++ b/flash_notebooks/generic_task.ipynb @@ -45,7 +45,7 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": null, "id": "foreign-design", "metadata": {}, "outputs": [], @@ -60,7 +60,7 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": null, "id": "mathematical-barbados", "metadata": {}, "outputs": [], @@ -83,7 +83,7 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": null, "id": "selective-request", "metadata": {}, "outputs": [], @@ -106,7 +106,7 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": null, "id": "stunning-anime", "metadata": {}, "outputs": [], @@ -124,7 +124,7 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": null, "id": "hispanic-independence", "metadata": {}, "outputs": [], @@ -142,7 +142,7 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": null, "id": "literary-destruction", "metadata": {}, "outputs": [], @@ -160,21 +160,10 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": null, "id": "public-berlin", "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "name": "stderr", - "text": [ - "GPU available: True, used: False\n", - "TPU available: False, using: 0 TPU cores\n", - "/home/edgar/software/lightning-flash/.venv/lib/python3.8/site-packages/pytorch_lightning/utilities/distributed.py:68: UserWarning: GPU available but not used. Set the gpus flag in your trainer `Trainer(gpus=1)` or script `--gpus=1`.\n", - " warnings.warn(*args, **kwargs)\n" - ] - } - ], + "outputs": [], "source": [ "trainer = pl.Trainer(\n", " max_epochs=10,\n", @@ -193,85 +182,10 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": null, "id": "neural-genre", "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "name": "stderr", - "text": [ - "\n", - " | Name | Type | Params\n", - "---------------------------------------\n", - "0 | model | Sequential | 101 K \n", - "1 | metrics | ModuleDict | 0 \n", - "---------------------------------------\n", - "101 K Trainable params\n", - "0 Non-trainable params\n", - "101 K Total params\n", - "0.407 Total estimated model params size (MB)\n", - "Epoch 0: 14%|█▎ | 35/256 [00:00<00:01, 217.40it/s, loss=2.4, v_num=26, val_accuracy=0.000, val_cross_entropy=2.280, train_accuracy_step=0.000, train_cross_entropy_step=2.130] /home/edgar/software/lightning-flash/.venv/lib/python3.8/site-packages/pytorch_lightning/utilities/distributed.py:68: UserWarning: The dataloader, val dataloader 0, does not have many workers which may be a bottleneck. Consider increasing the value of the `num_workers` argument` (try 12 which is the number of cpus on this machine) in the `DataLoader` init to improve performance.\n", - " warnings.warn(*args, **kwargs)\n", - "/home/edgar/software/lightning-flash/.venv/lib/python3.8/site-packages/pytorch_lightning/utilities/distributed.py:68: UserWarning: The dataloader, train dataloader, does not have many workers which may be a bottleneck. Consider increasing the value of the `num_workers` argument` (try 12 which is the number of cpus on this machine) in the `DataLoader` init to improve performance.\n", - " warnings.warn(*args, **kwargs)\n", - "Epoch 0: 50%|█████ | 128/256 [00:00<00:00, 203.95it/s, loss=1.68, v_num=26, val_accuracy=0.000, val_cross_entropy=2.280, train_accuracy_step=0.000, train_cross_entropy_step=4.150]\n", - "Validating: 0it [00:00, ?it/s]\u001b[A\n", - "Epoch 0: 52%|█████▏ | 132/256 [00:00<00:00, 202.98it/s, loss=1.68, v_num=26, val_accuracy=0.000, val_cross_entropy=2.280, train_accuracy_step=0.000, train_cross_entropy_step=4.150]\n", - "Epoch 0: 74%|███████▍ | 189/256 [00:00<00:00, 251.55it/s, loss=1.68, v_num=26, val_accuracy=0.000, val_cross_entropy=2.280, train_accuracy_step=0.000, train_cross_entropy_step=4.150]\n", - "Epoch 0: 100%|██████████| 256/256 [00:00<00:00, 297.31it/s, loss=1.68, v_num=26, val_accuracy=0.359, val_cross_entropy=1.690, train_accuracy_step=0.000, train_cross_entropy_step=2.510, train_accuracy_epoch=0.344, train_cross_entropy_epoch=2.050]\n", - "Epoch 1: 50%|█████ | 128/256 [00:00<00:00, 182.66it/s, loss=0.809, v_num=26, val_accuracy=0.359, val_cross_entropy=1.690, train_accuracy_step=1.000, train_cross_entropy_step=0.851, train_accuracy_epoch=0.344, train_cross_entropy_epoch=2.050] \n", - "Validating: 0it [00:00, ?it/s]\u001b[A\n", - "Epoch 1: 75%|███████▌ | 193/256 [00:00<00:00, 241.14it/s, loss=0.809, v_num=26, val_accuracy=0.359, val_cross_entropy=1.690, train_accuracy_step=1.000, train_cross_entropy_step=0.851, train_accuracy_epoch=0.344, train_cross_entropy_epoch=2.050]\n", - "Epoch 1: 100%|██████████| 256/256 [00:00<00:00, 288.24it/s, loss=0.809, v_num=26, val_accuracy=0.484, val_cross_entropy=1.680, train_accuracy_step=0.000, train_cross_entropy_step=2.670, train_accuracy_epoch=0.633, train_cross_entropy_epoch=1.090]\n", - "Epoch 2: 50%|█████ | 128/256 [00:00<00:00, 194.30it/s, loss=0.458, v_num=26, val_accuracy=0.484, val_cross_entropy=1.680, train_accuracy_step=1.000, train_cross_entropy_step=0.294, train_accuracy_epoch=0.633, train_cross_entropy_epoch=1.090] \n", - "Validating: 0it [00:00, ?it/s]\u001b[A\n", - "Epoch 2: 51%|█████ | 130/256 [00:00<00:00, 188.73it/s, loss=0.458, v_num=26, val_accuracy=0.484, val_cross_entropy=1.680, train_accuracy_step=1.000, train_cross_entropy_step=0.294, train_accuracy_epoch=0.633, train_cross_entropy_epoch=1.090]\n", - "Epoch 2: 100%|██████████| 256/256 [00:00<00:00, 294.59it/s, loss=0.458, v_num=26, val_accuracy=0.508, val_cross_entropy=1.850, train_accuracy_step=1.000, train_cross_entropy_step=0.649, train_accuracy_epoch=0.789, train_cross_entropy_epoch=0.549]\n", - "Epoch 3: 50%|█████ | 128/256 [00:00<00:00, 200.81it/s, loss=0.358, v_num=26, val_accuracy=0.508, val_cross_entropy=1.850, train_accuracy_step=1.000, train_cross_entropy_step=0.0079, train_accuracy_epoch=0.789, train_cross_entropy_epoch=0.549] \n", - "Validating: 0it [00:00, ?it/s]\u001b[A\n", - "Epoch 3: 56%|█████▋ | 144/256 [00:00<00:00, 215.08it/s, loss=0.358, v_num=26, val_accuracy=0.508, val_cross_entropy=1.850, train_accuracy_step=1.000, train_cross_entropy_step=0.0079, train_accuracy_epoch=0.789, train_cross_entropy_epoch=0.549]\n", - "Epoch 3: 100%|██████████| 256/256 [00:00<00:00, 309.92it/s, loss=0.358, v_num=26, val_accuracy=0.602, val_cross_entropy=1.670, train_accuracy_step=0.000, train_cross_entropy_step=0.726, train_accuracy_epoch=0.875, train_cross_entropy_epoch=0.473] \n", - "Epoch 4: 50%|█████ | 128/256 [00:00<00:00, 209.98it/s, loss=0.166, v_num=26, val_accuracy=0.602, val_cross_entropy=1.670, train_accuracy_step=1.000, train_cross_entropy_step=0.105, train_accuracy_epoch=0.875, train_cross_entropy_epoch=0.473] \n", - "Validating: 0it [00:00, ?it/s]\u001b[A\n", - "Epoch 4: 57%|█████▋ | 146/256 [00:00<00:00, 225.27it/s, loss=0.166, v_num=26, val_accuracy=0.602, val_cross_entropy=1.670, train_accuracy_step=1.000, train_cross_entropy_step=0.105, train_accuracy_epoch=0.875, train_cross_entropy_epoch=0.473]\n", - "Epoch 4: 100%|██████████| 256/256 [00:00<00:00, 317.78it/s, loss=0.166, v_num=26, val_accuracy=0.641, val_cross_entropy=1.500, train_accuracy_step=1.000, train_cross_entropy_step=0.00293, train_accuracy_epoch=0.938, train_cross_entropy_epoch=0.210]\n", - "Epoch 5: 50%|█████ | 128/256 [00:00<00:00, 185.66it/s, loss=0.0797, v_num=26, val_accuracy=0.641, val_cross_entropy=1.500, train_accuracy_step=1.000, train_cross_entropy_step=0.0154, train_accuracy_epoch=0.938, train_cross_entropy_epoch=0.210]\n", - "Validating: 0it [00:00, ?it/s]\u001b[A\n", - "Epoch 5: 57%|█████▋ | 146/256 [00:00<00:00, 199.74it/s, loss=0.0797, v_num=26, val_accuracy=0.641, val_cross_entropy=1.500, train_accuracy_step=1.000, train_cross_entropy_step=0.0154, train_accuracy_epoch=0.938, train_cross_entropy_epoch=0.210]\n", - "Epoch 5: 100%|██████████| 256/256 [00:00<00:00, 284.90it/s, loss=0.0797, v_num=26, val_accuracy=0.586, val_cross_entropy=2.010, train_accuracy_step=1.000, train_cross_entropy_step=0.00443, train_accuracy_epoch=0.953, train_cross_entropy_epoch=0.119]\n", - "Epoch 6: 50%|█████ | 128/256 [00:00<00:00, 178.55it/s, loss=0.0912, v_num=26, val_accuracy=0.586, val_cross_entropy=2.010, train_accuracy_step=1.000, train_cross_entropy_step=0.0729, train_accuracy_epoch=0.953, train_cross_entropy_epoch=0.119]\n", - "Validating: 0it [00:00, ?it/s]\u001b[A\n", - "Epoch 6: 57%|█████▋ | 146/256 [00:00<00:00, 191.48it/s, loss=0.0912, v_num=26, val_accuracy=0.586, val_cross_entropy=2.010, train_accuracy_step=1.000, train_cross_entropy_step=0.0729, train_accuracy_epoch=0.953, train_cross_entropy_epoch=0.119]\n", - "Epoch 6: 100%|██████████| 256/256 [00:00<00:00, 274.04it/s, loss=0.0912, v_num=26, val_accuracy=0.594, val_cross_entropy=2.020, train_accuracy_step=1.000, train_cross_entropy_step=0.129, train_accuracy_epoch=0.945, train_cross_entropy_epoch=0.146] \n", - "Epoch 7: 50%|█████ | 128/256 [00:00<00:00, 169.42it/s, loss=0.106, v_num=26, val_accuracy=0.594, val_cross_entropy=2.020, train_accuracy_step=1.000, train_cross_entropy_step=0.051, train_accuracy_epoch=0.945, train_cross_entropy_epoch=0.146] \n", - "Validating: 0it [00:00, ?it/s]\u001b[A\n", - "Epoch 7: 57%|█████▋ | 146/256 [00:00<00:00, 182.27it/s, loss=0.106, v_num=26, val_accuracy=0.594, val_cross_entropy=2.020, train_accuracy_step=1.000, train_cross_entropy_step=0.051, train_accuracy_epoch=0.945, train_cross_entropy_epoch=0.146]\n", - "Epoch 7: 86%|████████▌ | 219/256 [00:00<00:00, 237.78it/s, loss=0.106, v_num=26, val_accuracy=0.594, val_cross_entropy=2.020, train_accuracy_step=1.000, train_cross_entropy_step=0.051, train_accuracy_epoch=0.945, train_cross_entropy_epoch=0.146]\n", - "Epoch 7: 100%|██████████| 256/256 [00:00<00:00, 259.69it/s, loss=0.106, v_num=26, val_accuracy=0.586, val_cross_entropy=2.420, train_accuracy_step=1.000, train_cross_entropy_step=8.46e-6, train_accuracy_epoch=0.945, train_cross_entropy_epoch=0.178]\n", - "Epoch 8: 50%|█████ | 128/256 [00:00<00:00, 170.78it/s, loss=0.068, v_num=26, val_accuracy=0.586, val_cross_entropy=2.420, train_accuracy_step=1.000, train_cross_entropy_step=0.00895, train_accuracy_epoch=0.945, train_cross_entropy_epoch=0.178]\n", - "Validating: 0it [00:00, ?it/s]\u001b[A\n", - "Epoch 8: 57%|█████▋ | 146/256 [00:00<00:00, 183.98it/s, loss=0.068, v_num=26, val_accuracy=0.586, val_cross_entropy=2.420, train_accuracy_step=1.000, train_cross_entropy_step=0.00895, train_accuracy_epoch=0.945, train_cross_entropy_epoch=0.178]\n", - "Epoch 8: 86%|████████▌ | 219/256 [00:00<00:00, 240.22it/s, loss=0.068, v_num=26, val_accuracy=0.586, val_cross_entropy=2.420, train_accuracy_step=1.000, train_cross_entropy_step=0.00895, train_accuracy_epoch=0.945, train_cross_entropy_epoch=0.178]\n", - "Epoch 8: 100%|██████████| 256/256 [00:00<00:00, 262.77it/s, loss=0.068, v_num=26, val_accuracy=0.656, val_cross_entropy=1.890, train_accuracy_step=1.000, train_cross_entropy_step=3.76e-5, train_accuracy_epoch=0.953, train_cross_entropy_epoch=0.150]\n", - "Epoch 9: 50%|█████ | 128/256 [00:00<00:00, 195.85it/s, loss=0.0109, v_num=26, val_accuracy=0.656, val_cross_entropy=1.890, train_accuracy_step=1.000, train_cross_entropy_step=0.00395, train_accuracy_epoch=0.953, train_cross_entropy_epoch=0.150]\n", - "Validating: 0it [00:00, ?it/s]\u001b[A\n", - "Epoch 9: 57%|█████▋ | 146/256 [00:00<00:00, 208.94it/s, loss=0.0109, v_num=26, val_accuracy=0.656, val_cross_entropy=1.890, train_accuracy_step=1.000, train_cross_entropy_step=0.00395, train_accuracy_epoch=0.953, train_cross_entropy_epoch=0.150]\n", - "Epoch 9: 100%|██████████| 256/256 [00:00<00:00, 299.16it/s, loss=0.0109, v_num=26, val_accuracy=0.641, val_cross_entropy=2.290, train_accuracy_step=1.000, train_cross_entropy_step=2.74e-5, train_accuracy_epoch=0.992, train_cross_entropy_epoch=0.0366]\n", - "Epoch 9: 100%|██████████| 256/256 [00:00<00:00, 297.26it/s, loss=0.0109, v_num=26, val_accuracy=0.641, val_cross_entropy=2.290, train_accuracy_step=1.000, train_cross_entropy_step=2.74e-5, train_accuracy_epoch=0.992, train_cross_entropy_epoch=0.0366]\n" - ] - }, - { - "output_type": "execute_result", - "data": { - "text/plain": [ - "1" - ] - }, - "metadata": {}, - "execution_count": 8 - } - ], + "outputs": [], "source": [ "trainer.fit(classifier, DataLoader(train), DataLoader(val))" ] @@ -286,24 +200,10 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": null, "id": "ideal-johnson", "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "Testing: 1%| | 58/4975 [00:00<00:08, 575.00it/s]/home/edgar/software/lightning-flash/.venv/lib/python3.8/site-packages/pytorch_lightning/utilities/distributed.py:68: UserWarning: The dataloader, test dataloader 0, does not have many workers which may be a bottleneck. Consider increasing the value of the `num_workers` argument` (try 12 which is the number of cpus on this machine) in the `DataLoader` init to improve performance.\n", - " warnings.warn(*args, **kwargs)\n", - "Testing: 100%|██████████| 4975/4975 [00:06<00:00, 768.58it/s]\n", - "--------------------------------------------------------------------------------\n", - "DATALOADER:0 TEST RESULTS\n", - "{'test_accuracy': 0.72120600938797, 'test_cross_entropy': 1.481386661529541}\n", - "--------------------------------------------------------------------------------\n" - ] - } - ], + "outputs": [], "source": [ "results = trainer.test(classifier, test_dataloaders=DataLoader(test))" ] @@ -350,24 +250,7 @@ ] } ], - "metadata": { - "kernelspec": { - "name": "python385jvsc74a57bd0db7cb6f8b99581485a229201158c5b3d87043825d76fdd729161e90706f71f5a", - "display_name": "Python 3.8.5 64-bit ('.venv')" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.8.5" - } - }, + "metadata": {}, "nbformat": 4, "nbformat_minor": 5 } diff --git a/flash_notebooks/image_classification.ipynb b/flash_notebooks/image_classification.ipynb index 1979cc862f..238596f327 100644 --- a/flash_notebooks/image_classification.ipynb +++ b/flash_notebooks/image_classification.ipynb @@ -355,24 +355,7 @@ ] } ], - "metadata": { - "kernelspec": { - "name": "python385jvsc74a57bd0db7cb6f8b99581485a229201158c5b3d87043825d76fdd729161e90706f71f5a", - "display_name": "Python 3.8.5 64-bit ('.venv')" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.8.5" - } - }, + "metadata": {}, "nbformat": 4, "nbformat_minor": 5 } diff --git a/flash_notebooks/tabular_classification.ipynb b/flash_notebooks/tabular_classification.ipynb index f493f5c57f..a3d5b77a3f 100644 --- a/flash_notebooks/tabular_classification.ipynb +++ b/flash_notebooks/tabular_classification.ipynb @@ -297,25 +297,7 @@ ] } ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.8.5" - } - }, + "metadata": {}, "nbformat": 4, "nbformat_minor": 5 } diff --git a/flash_notebooks/text_classification.ipynb b/flash_notebooks/text_classification.ipynb index 22313135ea..81e0e850e1 100644 --- a/flash_notebooks/text_classification.ipynb +++ b/flash_notebooks/text_classification.ipynb @@ -62,7 +62,7 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": null, "id": "historical-asthma", "metadata": {}, "outputs": [], @@ -83,18 +83,10 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": null, "id": "applied-operation", "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "name": "stderr", - "text": [ - "/home/edgar/software/lightning-flash/.venv/lib/python3.8/site-packages/urllib3/connectionpool.py:981: InsecureRequestWarning: Unverified HTTPS request is being made to host 'pl-flash-data.s3.amazonaws.com'. Adding certificate verification is strongly advised. See: https://urllib3.readthedocs.io/en/latest/advanced-usage.html#ssl-warnings\n warnings.warn(\n" - ] - } - ], + "outputs": [], "source": [ "download_data(\"https://pl-flash-data.s3.amazonaws.com/imdb.zip\", 'data/')" ] @@ -112,32 +104,10 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": null, "id": "flush-prince", "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "name": "stderr", - "text": [ - "Using custom data configuration default\n", - "Downloading and preparing dataset csv/default-b916ce9cf25b9a08 (download: Unknown size, generated: Unknown size, post-processed: Unknown size, total: Unknown size) to /home/edgar/.cache/huggingface/datasets/csv/default-b916ce9cf25b9a08/0.0.0/2960f95a26e85d40ca41a230ac88787f715ee3003edaacb8b1f0891e9f04dda2...\n", - " 12%|█▏ | 2696/22500 [00:00<00:00, 23290.55ex/s]Dataset csv downloaded and prepared to /home/edgar/.cache/huggingface/datasets/csv/default-b916ce9cf25b9a08/0.0.0/2960f95a26e85d40ca41a230ac88787f715ee3003edaacb8b1f0891e9f04dda2. Subsequent calls will reuse this data.\n", - "100%|██████████| 22500/22500 [00:00<00:00, 38709.52ex/s]\n", - "100%|██████████| 23/23 [00:03<00:00, 6.64ba/s]\n", - "Using custom data configuration default\n", - "Downloading and preparing dataset csv/default-7d0ea02c48184824 (download: Unknown size, generated: Unknown size, post-processed: Unknown size, total: Unknown size) to /home/edgar/.cache/huggingface/datasets/csv/default-7d0ea02c48184824/0.0.0/2960f95a26e85d40ca41a230ac88787f715ee3003edaacb8b1f0891e9f04dda2...\n", - "100%|██████████| 2500/2500 [00:00<00:00, 43596.57ex/s]\n", - " 0%| | 0/3 [00:00