From f320720bf298842b693ee65306f6759e3a3bfeee Mon Sep 17 00:00:00 2001 From: Edgar Riba Date: Wed, 12 May 2021 16:39:12 +0200 Subject: [PATCH] add object detection prediction example and fix batch (#283) * add object detection prediction example and fix batch * add tests for default_unciollate * Fix a test Co-authored-by: mergify[bot] <37929162+mergify[bot]@users.noreply.github.com> Co-authored-by: Ethan Harris --- flash/data/batch.py | 2 + flash_examples/predict/image_embedder.py | 2 +- flash_examples/predict/object_detection.py | 31 ++++++++++++ tests/data/test_batch.py | 57 ++++++++++++++++++++++ 4 files changed, 91 insertions(+), 1 deletion(-) create mode 100644 flash_examples/predict/object_detection.py create mode 100644 tests/data/test_batch.py diff --git a/flash/data/batch.py b/flash/data/batch.py index f08be37d02..38929f6079 100644 --- a/flash/data/batch.py +++ b/flash/data/batch.py @@ -243,6 +243,8 @@ def default_uncollate(batch: Any): batch_type = type(batch) if isinstance(batch, Tensor): + if len(batch.shape) == 0: # 0 shape tensors + return batch return list(torch.unbind(batch, 0)) elif isinstance(batch, Mapping): diff --git a/flash_examples/predict/image_embedder.py b/flash_examples/predict/image_embedder.py index 54df44a736..db4042383d 100644 --- a/flash_examples/predict/image_embedder.py +++ b/flash_examples/predict/image_embedder.py @@ -33,7 +33,7 @@ random_image = torch.randn(1, 3, 244, 244) # 6. Generate an embedding from this random image. -embeddings = embedder.predict(random_image, data_source="tensor") +embeddings = embedder.predict(random_image, data_source="tensors") # 7. Print embeddings shape print(embeddings[0].shape) diff --git a/flash_examples/predict/object_detection.py b/flash_examples/predict/object_detection.py new file mode 100644 index 0000000000..dce35f0c3c --- /dev/null +++ b/flash_examples/predict/object_detection.py @@ -0,0 +1,31 @@ +# Copyright The PyTorch Lightning team. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +from flash import Trainer +from flash.data.utils import download_data +from flash.vision import ObjectDetector + +# 1. Download the data +# Dataset Credit: https://www.kaggle.com/ultralytics/coco128 +download_data("https://github.com/zhiqwang/yolov5-rt-stack/releases/download/v0.3.0/coco128.zip", "data/") + +# 2. Load the model from a checkpoint +model = ObjectDetector.load_from_checkpoint("https://flash-weights.s3.amazonaws.com/object_detection_model.pt") + +# 3. Detect the object on the images +predictions = model.predict([ + "data/coco128/images/train2017/000000000025.jpg", + "data/coco128/images/train2017/000000000520.jpg", + "data/coco128/images/train2017/000000000532.jpg", +]) +print(predictions) diff --git a/tests/data/test_batch.py b/tests/data/test_batch.py new file mode 100644 index 0000000000..a57c941045 --- /dev/null +++ b/tests/data/test_batch.py @@ -0,0 +1,57 @@ +# Copyright The PyTorch Lightning team. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +import torch +from torch.tensor import Tensor +from torch.testing import assert_allclose + +from flash.data.batch import default_uncollate + + +class TestDefaultUncollate: + + def test_smoke(self): + batch = torch.rand(2, 1) + assert default_uncollate(batch) is not None + + def test_tensor_zero(self): + batch = torch.tensor(1) + output = default_uncollate(batch) + assert_allclose(batch, output) + + def test_tensor_batch(self): + batch = torch.rand(2, 1) + output = default_uncollate(batch) + assert isinstance(output, list) + assert all([isinstance(x, torch.Tensor) for x in output]) + + def test_sequence(self): + B = 3 # batch_size + + batch = {} + batch['a'] = torch.rand(B, 4) + batch['b'] = torch.rand(B, 2) + batch['c'] = torch.rand(B) + + output = default_uncollate(batch) + assert isinstance(output, list) + assert len(batch) == B + + for sample in output: + assert list(sample.keys()) == ['a', 'b', 'c'] + assert isinstance(sample['a'], list) + assert len(sample['a']) == 4 + assert isinstance(sample['b'], list) + assert len(sample['b']) == 2 + assert isinstance(sample['c'], torch.Tensor) + assert len(sample['c'].shape) == 0