diff --git a/tests/data/test_batch.py b/tests/data/test_batch.py new file mode 100644 index 00000000000..1eb142466f4 --- /dev/null +++ b/tests/data/test_batch.py @@ -0,0 +1,54 @@ +# Copyright The PyTorch Lightning team. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +import torch +from torch.tensor import Tensor +from torch.testing import assert_allclose + +from flash.data.batch import default_uncollate + + +class TestDefaultUncollate: + + def test_smoke(self): + batch = torch.rand(2, 1) + assert default_uncollate(batch) is not None + + def test_tensor_zero(self): + batch = torch.tensor(1) + output = default_uncollate(batch) + assert_allclose(batch, output) + + def test_tensor_batch(self): + batch = torch.rand(2, 1) + output = default_uncollate(batch) + assert isinstance(output, list) + assert all([isinstance(x, torch.Tensor) for x in output]) + + def test_sequence(self): + B = 3 # batch_size + + batch = {} + batch['a'] = torch.rand(B, 4) + batch['b'] = torch.rand(B, 2) + batch['c'] = torch.rand(B) + + output = default_uncollate(batch) + assert isinstance(output, list) + assert len(batch) == B + + for sample in output: + list(sample.keys()) == ['a', 'b', 'c'] + assert len(sample['a']) == 4 + assert len(sample['b']) == 2 + assert len(sample['c']) == 1