This repository was archived by the owner on Oct 3, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 39
/
Copy pathstable_diffusion_serve.py
175 lines (137 loc) · 6.32 KB
/
stable_diffusion_serve.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
import base64
import os
import os.path
import tarfile
import time
import urllib.request
from concurrent.futures import ThreadPoolExecutor, TimeoutError
from dataclasses import dataclass
from io import BytesIO
from pathlib import Path
from typing import List, Optional
os.environ["PYTORCH_ENABLE_MPS_FALLBACK"] = "1"
import lightning as L # noqa: E402
import torch # noqa: E402
from lightning.app.storage import Drive # noqa: E402
from PIL import Image # noqa: E402
from muse.CONST import IMAGE_SIZE, INFERENCE_REQUEST_TIMEOUT, KEEP_ALIVE_TIMEOUT # noqa: E402
from muse.utility.data_io import Data, DataBatch, TimeoutException # noqa: E402
class SafetyChecker:
def __init__(self, embeddings_path):
import clip as openai_clip
self.model, self.preprocess = openai_clip.load("ViT-B/32", device="cpu")
self.text_embeddings = torch.load(embeddings_path)
def __call__(self, images: List[Image.Image]):
images = torch.stack([self.preprocess(img) for img in images])
encoded_images = self.model.encode_image(images)
encoded_images = torch.nn.functional.normalize(encoded_images, p=2, dim=1)
similarity = torch.mm(encoded_images, self.text_embeddings.transpose(0, 1))
return torch.any(similarity > 0.3, dim=1).tolist()
@dataclass
class DiffusionBuildConfig(L.BuildConfig):
def build_commands(self):
return [
"python -m pip install https://github.com/aniketmaurya/stable_diffusion_inference/archive/refs/tags/v0.0.2.tar.gz", # noqa: E501
"pip install -e git+https://github.com/CompVis/taming-transformers.git@master#egg=taming-transformers -q",
"pip install -U 'clip@ git+https://github.com/openai/CLIP.git@main' -q",
]
class StableDiffusionServe(L.LightningWork):
"""The StableDiffusionServer handles the prediction.
It initializes a model and expose an API to handle incoming requests and generate predictions.
"""
def __init__(
self, safety_embeddings_drive: Optional[Drive] = None, safety_embeddings_filename: str = None, **kwargs
):
super().__init__(cloud_build_config=DiffusionBuildConfig(), **kwargs)
self.safety_embeddings_drive = safety_embeddings_drive
self.safety_embeddings_filename = safety_embeddings_filename
self._model = None
self._trainer = None
@staticmethod
def download_weights(url: str, target_folder: Path):
dest = target_folder / f"{os.path.basename(url)}"
if not os.path.exists(dest):
print("Downloading weights...")
urllib.request.urlretrieve(url, dest)
file = tarfile.open(dest)
# extracting file
file.extractall(target_folder)
def build_pipeline(self):
"""The `build_pipeline(...)` method builds a model and trainer."""
from stable_diffusion_inference import create_text2image
print("loading model...")
# model url is loaded from stable_diffusion_inference library
# url: https://pl-public-data.s3.amazonaws.com/dream_stable_diffusion/v1-5-pruned-emaonly.ckpt
self._model = create_text2image(sd_variant=os.environ.get("SD_VARIANT", "sd1"))
self.safety_embeddings_drive.get(self.safety_embeddings_filename)
self._safety_checker = SafetyChecker(self.safety_embeddings_filename)
print("model loaded")
def predict(self, dreams: List[Data], entry_time: int):
if time.time() - entry_time > INFERENCE_REQUEST_TIMEOUT:
raise TimeoutException()
inference_steps = 50 if dreams[0].high_quality else 25
prompts: List[str] = [dream.prompt for dream in dreams]
print(prompts)
predictions = self._model(prompts, image_size=IMAGE_SIZE, inference_steps=inference_steps)
pil_results: List[Image.Image] = [predictions] if isinstance(predictions, Image.Image) else predictions
nsfw_content = self._safety_checker(pil_results)
for i, nsfw in enumerate(nsfw_content):
if nsfw:
pil_results[i] = Image.open("assets/nsfw-warning.png")
results = []
for image in pil_results:
buffered = BytesIO()
image.save(buffered, format="PNG")
img_str = base64.b64encode(buffered.getvalue()).decode("utf-8")
# make sure pil_results is a single item array or it'll rewrite image
results.append({"image": f"data:image/png;base64,{img_str}"})
return results
def run(self):
if False and self.safety_embeddings_filename not in self.safety_embeddings_drive.list("."):
return
import subprocess
import uvicorn
from fastapi import FastAPI
from fastapi.middleware.cors import CORSMiddleware
if torch.cuda.is_available():
subprocess.run("nvidia-smi", shell=True)
if self._model is None:
self.build_pipeline()
self._fastapi_app = app = FastAPI()
app.POOL: ThreadPoolExecutor = None
@app.on_event("startup")
def startup_event():
app.POOL = ThreadPoolExecutor(max_workers=1)
@app.on_event("shutdown")
def shutdown_event():
app.POOL.shutdown(wait=False)
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
@app.get("/api/health")
def health():
return True
@app.post("/api/predict")
def predict_api(data: DataBatch):
"""Dream a muse. Defines the REST API which takes the text prompt, number of images and image size in the
request body.
This API returns an image generated by the model in base64 format.
"""
try:
entry_time = time.time()
print(f"batch size: {len(data.batch)}")
result = app.POOL.submit(
self.predict,
data.batch,
entry_time=entry_time,
).result(timeout=INFERENCE_REQUEST_TIMEOUT)
return result
except (TimeoutError, TimeoutException):
raise TimeoutException()
uvicorn.run(
app, host=self.host, port=self.port, timeout_keep_alive=KEEP_ALIVE_TIMEOUT, access_log=False, loop="uvloop"
)