Skip to content

Commit

Permalink
[bug] Fix Pytorch profiler with emit_nvtx (#6260)
Browse files Browse the repository at this point in the history
* resolve bug

* update changelog

* Update tests/trainer/test_trainer.py

* Update pytorch_lightning/profiler/profilers.py

Co-authored-by: Jirka Borovec <[email protected]>

* resolve comments

* resolve flake8

Co-authored-by: Carlos Mocholí <[email protected]>
Co-authored-by: Jirka Borovec <[email protected]>
  • Loading branch information
3 people committed Mar 9, 2021
1 parent 2c99d70 commit efcd761
Show file tree
Hide file tree
Showing 5 changed files with 337 additions and 6 deletions.
6 changes: 6 additions & 0 deletions CHANGELOG.md
Original file line number Diff line number Diff line change
Expand Up @@ -25,6 +25,12 @@ The format is based on [Keep a Changelog](http://keepachangelog.com/en/1.0.0/).



- Fixed PyTorch Profiler with `emit_nvtx` ([#6260](https://github.com/PyTorchLightning/pytorch-lightning/pull/6260))


- Fixed `trainer.test` from `best_path` hangs after calling `trainer.fit` ([#6272](https://github.com/PyTorchLightning/pytorch-lightning/pull/6272))


## [1.2.2] - 2021-03-02

### Added
Expand Down
1 change: 0 additions & 1 deletion pytorch_lightning/profiler/profilers.py
Original file line number Diff line number Diff line change
Expand Up @@ -12,7 +12,6 @@
# See the License for the specific language governing permissions and
# limitations under the License.
"""Profiler to check if there are any bottlenecks in your code."""

import cProfile
import inspect
import io
Expand Down
303 changes: 303 additions & 0 deletions pytorch_lightning/profiler/pytorch.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,303 @@
# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Profiler to check if there are any bottlenecks in your code."""

import inspect
import logging
import os
from typing import List, Optional

import torch

from pytorch_lightning.profiler.profilers import BaseProfiler
from pytorch_lightning.utilities import rank_zero_only
from pytorch_lightning.utilities.cloud_io import get_filesystem
from pytorch_lightning.utilities.distributed import rank_zero_warn
from pytorch_lightning.utilities.exceptions import MisconfigurationException

log = logging.getLogger(__name__)


class PyTorchProfiler(BaseProfiler):

PROFILED_FUNCTIONS = ("training_step_and_backward", "validation_step", "test_step")
AVAILABLE_SORT_KEYS = (
"cpu_time",
"cuda_time",
"cpu_time_total",
"cuda_time_total",
"cpu_memory_usage",
"cuda_memory_usage",
"self_cpu_memory_usage",
"self_cuda_memory_usage",
"count",
)

def __init__(
self,
output_filename: Optional[str] = None,
enabled: bool = True,
use_cuda: bool = False,
record_shapes: bool = False,
profile_memory: bool = False,
group_by_input_shapes: bool = False,
with_stack: bool = False,
use_kineto: bool = False,
use_cpu: bool = True,
emit_nvtx: bool = False,
export_to_chrome: bool = False,
path_to_export_trace: str = None,
row_limit: int = 20,
sort_by_key: Optional[str] = None,
profiled_functions: Optional[List] = None,
local_rank: Optional[int] = None,
):
"""
This profiler uses PyTorch's Autograd Profiler and lets you inspect the cost of
different operators inside your model - both on the CPU and GPU
Args:
output_filename: optionally save profile results to file instead of printing
to std out when training is finished. When using ``ddp``,
each rank will stream the profiled operation to their own file
with the extension ``_{rank}.txt``
enabled: Setting this to False makes this context manager a no-op.
use_cuda: Enables timing of CUDA events as well using the cudaEvent API.
Adds approximately 4us of overhead to each tensor operation.
record_shapes: If shapes recording is set, information about input dimensions will be collected.
profile_memory: Whether to report memory usage, default: True (Introduced in PyTorch 1.6.0)
group_by_input_shapes: Include operator input shapes and group calls by shape.
with_stack: record source information (file and line number) for the ops (Introduced in PyTorch 1.7.0)
use_kineto: experimental support for Kineto profiler (Introduced in PyTorch 1.8.0)
use_cpu: use_kineto=True and can be used to lower the overhead
for GPU-only profiling (Introduced in PyTorch 1.8.0)
emit_nvtx: Context manager that makes every autograd operation emit an NVTX range
Run::
nvprof --profile-from-start off -o trace_name.prof -- <regular command here>
To visualize, you can either use::
nvvp trace_name.prof
torch.autograd.profiler.load_nvprof(path)
export_to_chrome: Wether to export the sequence of profiled operators for Chrome.
It will generate a ``.json`` file which can be read by Chrome.
path_to_export_trace: Directory path to export ``.json`` traces when using ``export_to_chrome=True``.
By default, it will be save where the file being is being run.
row_limit: Limit the number of rows in a table, `0` is a special value that
removes the limit completely.
sort_by_key: Keys to sort out profiled table
profiled_functions: list of profiled functions which will create a context manager on.
Any other will be pass through.
local_rank: When running in distributed setting, local_rank is used for each process
to write to their own file if `output_fname` is provided.
Raises:
MisconfigurationException:
If arg ``sort_by_key`` is not present in ``AVAILABLE_SORT_KEYS``, or
if log file is not a ``.txt`` file.
ValueError:
If you attempt to stop recording an action which was never started.
"""

self.profiled_actions = {}
self.enabled = enabled
self.profiled_functions = profiled_functions or self.PROFILED_FUNCTIONS
self.use_cuda = use_cuda
self.record_shapes = record_shapes
self.profile_memory = profile_memory
self.sort_by_key = sort_by_key or ("cuda_time_total" if self.use_cuda else "cpu_time_total")
self.with_stack = with_stack
self.group_by_input_shapes = group_by_input_shapes and record_shapes
self.use_kineto = use_kineto
self.use_cpu = use_cpu
self.row_limit = row_limit
self.emit_nvtx = emit_nvtx
self.export_to_chrome = export_to_chrome
self.path_to_export_trace = path_to_export_trace

if export_to_chrome and path_to_export_trace is None:
rank_zero_warn(
"The exported trace would be save locally as `path_to_export_trace` is empty."
" Note: Each functions will generate its own traced file."
)

if self.sort_by_key not in self.AVAILABLE_SORT_KEYS:
raise MisconfigurationException(
f"Found sort_by_key: {sort_by_key}. Should be within {self.AVAILABLE_SORT_KEYS}. "
)

self.profiled_actions = {}
self.context_names = {}
self.running_stack = []
self.profiler = None

self.output_fname = output_filename
self.output_file = None
if local_rank is not None:
self.on_train_start(local_rank=local_rank)
self.on_train_start = super().on_train_start

def on_train_start(self, local_rank: Optional[str] = None):
self.local_rank = local_rank

# when logging to `log.info`, only perform profiling on rank 0
if local_rank != 0 and self.output_fname is None:
self.wrap_functions_into_rank_zero_only()

if self.output_fname:
if local_rank is not None:
if '.txt' not in self.output_fname:
raise MisconfigurationException("Log file should be .txt file.")

self.output_fname = self.output_fname.replace(".txt", f"_{self.local_rank}.txt")

fs = get_filesystem(self.output_fname)
self.output_file = fs.open(self.output_fname, "w")

streaming_out = [self.output_file.write] if self.output_file else [log.info]
super().__init__(output_streams=streaming_out)

def wrap_functions_into_rank_zero_only(self):
self.start = rank_zero_only(self.start)
self.stop = rank_zero_only(self.stop)
self.summary = rank_zero_only(self.summary)
self.describe = rank_zero_only(self.describe)

def start(self, action_name: str) -> None:
if action_name not in self.profiled_functions:
return

if len(self.running_stack) > 0:
self._stop(self.running_stack[-1])
self.running_stack.append(action_name)

self.context_names[action_name] = "/".join(self.running_stack)

self._start(action_name)

def _start(self, action_name: str) -> None:
if self.emit_nvtx:
self._parent_profiler = self._create_profiler(action_name, torch.cuda.profiler.profile, enter=True)
self._create_profiler(action_name, torch.autograd.profiler.emit_nvtx)
else:
self._create_profiler(action_name, torch.autograd.profiler.profile)

def _create_profiler(self, action_name, profiler, enter=True):
init_args = inspect.signature(profiler.__init__).parameters
profiler_args = {k: v for k, v in vars(self).items() if k in init_args}
pr = profiler(**profiler_args)
if enter:
out_pr = pr.__enter__()
if out_pr is not None:
pr = out_pr
self.profiler = pr
return self.profiler

def _stop(self, action_name: str) -> None:
if self.profiler is None:
return

self.profiler.__exit__(exc_type=None, exc_val=None, exc_tb=None)

if isinstance(self.profiler, torch.autograd.profiler.emit_nvtx):
# when running ``emit_nvtx``, PyTorch requires 2 context manager.
# The parent_profiler is being closed too.
self._parent_profiler.__exit__(None, None, None)
return

function_events = self.profiler.function_events
self.profiler = None
for name in self.running_stack:
if name not in self.profiled_actions:
self.profiled_actions[name] = function_events
else:
self.profiled_actions[name] += function_events

def stop(self, action_name: str) -> None:
if action_name not in self.profiled_functions:
return

if len(self.running_stack) == 0 or self.running_stack[-1] != action_name:
raise ValueError( # pragma: no-cover
f"Attempting to stop recording an action ({action_name}) which was never started."
)
self._stop(action_name)
self.running_stack.pop()
# restore running profiler
if len(self.running_stack) > 0:
self._start(self.running_stack[-1])

def summary(self) -> str:
recorded_stats = {}
output_string = ''
local_rank = '0' if self.local_rank is None else self.local_rank

if not self.enabled:
return output_string

for action_name, function_events in self.profiled_actions.items():

# next line is a workaround for a pytorch issue (fixed on master, still present
# on 1.7). Without it the code fails with `AssertionError: There is already a CPU
# parent event for detach`
function_events.populate_cpu_children = lambda: None

if self.export_to_chrome:
filename = f"{action_name}_{local_rank}_trace.json"
path_to_trace = filename if self.path_to_export_trace is None \
else os.path.join(self.path_to_export_trace, filename)
function_events.export_chrome_trace(path_to_trace)

if self.emit_nvtx:
return output_string

else:
data = function_events.key_averages(group_by_input_shapes=self.group_by_input_shapes)
table = data.table(sort_by=self.sort_by_key, row_limit=self.row_limit)
recorded_stats[action_name] = table

# log to standard out
output_string = f"{os.linesep}Profiler Report{os.linesep}"
for action, stats in recorded_stats.items():
output_string += (f"{os.linesep}Profile stats for: {action} rank: {local_rank} {os.linesep}{stats}")

return output_string

def describe(self):
"""Logs a profile report after the conclusion of the training run."""
super().describe()
if self.output_file:
self.output_file.flush()

def __del__(self):
"""Close profiler's stream."""
if self.output_file:
self.output_file.close()
1 change: 1 addition & 0 deletions tests/special_tests.sh
Original file line number Diff line number Diff line change
Expand Up @@ -35,3 +35,4 @@ python ${DEFAULTS} tests/trainer/test_trainer.py::test_pytorch_profiler_trainer_
python ${DEFAULTS} tests/models/test_hooks.py::test_transfer_batch_hook_ddp
python ${DEFAULTS} tests/trainer/test_data_loading.py::test_replace_distrubuted_sampler_custom_dataloader_custom_batch_sampler
python ${DEFAULTS} tests/trainer/optimization/test_manual_optimization.py::test_step_with_optimizer_closure_with_different_frequencies_ddp_with_toggle_model
nvprof --profile-from-start off -o trace_name.prof -- python ${DEFAULTS} tests/trainer/test_trainer.py::test_pytorch_profiler_nested_emit_nvtx
32 changes: 27 additions & 5 deletions tests/trainer/test_trainer.py
Original file line number Diff line number Diff line change
Expand Up @@ -220,8 +220,14 @@ def test_trainer_accumulate_grad_batches_zero_grad(tmpdir, accumulate_grad_batch
@pytest.mark.parametrize(
["accumulate_grad_batches", "limit_train_batches"],
[
({1: 2, 3: 4}, 1.0),
({1: 2, 3: 4}, 0.5), # not to be divisible by accumulate_grad_batches on purpose
({
1: 2,
3: 4
}, 1.0),
({
1: 2,
3: 4
}, 0.5), # not to be divisible by accumulate_grad_batches on purpose
(3, 1.0),
(3, 0.8), # not to be divisible by accumulate_grad_batches on purpose
(4, 1.0),
Expand All @@ -239,9 +245,7 @@ def on_batch_start(self, *_):
def on_batch_end(self, outputs, batch, batch_idx, *_):
self.on_train_batch_start_end_dict = self.state_dict()
for key in self.on_train_batch_start_end_dict.keys():
equal = torch.equal(
self.on_train_batch_start_state_dict[key], self.on_train_batch_start_end_dict[key]
)
equal = torch.equal(self.on_train_batch_start_state_dict[key], self.on_train_batch_start_end_dict[key])
if (batch_idx + 1) == self.trainer.num_training_batches:
assert equal
else:
Expand Down Expand Up @@ -1587,6 +1591,22 @@ def test_pytorch_profiler_nested(tmpdir):
assert pa[n] == expected_[n]


@RunIf(min_gpus=1, special=True)
def test_pytorch_profiler_nested_emit_nvtx(tmpdir):
"""
This test check emit_nvtx is correctly supported
"""
profiler = PyTorchProfiler(use_cuda=True, emit_nvtx=True)

model = BoringModel()
trainer = Trainer(
fast_dev_run=True,
profiler=profiler,
gpus=1,
)
trainer.fit(model)


@pytest.mark.parametrize(
["limit_train_batches", "global_step", "num_training_batches", "current_epoch", "should_train"],
[(0.2, 0, 0, 0, False), (0.5, 10, 2, 4, True)],
Expand Down Expand Up @@ -1738,6 +1758,7 @@ def test_train_loop_system(tmpdir):
)

class TestOptimizer(SGD):

def step(self, *args, **kwargs):
called_methods.append("step")
return super().step(*args, **kwargs)
Expand All @@ -1747,6 +1768,7 @@ def zero_grad(self, *args, **kwargs):
return super().zero_grad(*args, **kwargs)

class TestModel(BoringModel):

def configure_optimizers(self):
return TestOptimizer(self.parameters(), lr=0.1)

Expand Down

0 comments on commit efcd761

Please sign in to comment.