diff --git a/docs/source/common/optimizers.rst b/docs/source/common/optimizers.rst index 3f7cd7f224a97..f1b9d3623278a 100644 --- a/docs/source/common/optimizers.rst +++ b/docs/source/common/optimizers.rst @@ -300,8 +300,6 @@ override the :meth:`optimizer_step` function. For example, here step optimizer A every 2 batches and optimizer B every 4 batches -.. note:: When using Trainer(enable_pl_optimizer=True), there is no need to call `.zero_grad()`. - .. testcode:: def optimizer_zero_grad(self, current_epoch, batch_idx, optimizer, opt_idx): diff --git a/pytorch_lightning/core/lightning.py b/pytorch_lightning/core/lightning.py index 57aa264244a68..c4d63cff4637b 100644 --- a/pytorch_lightning/core/lightning.py +++ b/pytorch_lightning/core/lightning.py @@ -1324,9 +1324,6 @@ def optimizer_step( By default, Lightning calls ``step()`` and ``zero_grad()`` as shown in the example once per optimizer. - .. tip:: With ``Trainer(enable_pl_optimizer=True)``, you can use ``optimizer.step()`` directly - and it will handle zero_grad, accumulated gradients, AMP, TPU and more automatically for you. - Warning: If you are overriding this method, make sure that you pass the ``optimizer_closure`` parameter to ``optimizer.step()`` function as shown in the examples. This ensures that