diff --git a/examples/app_multi_node/train_fabric.py b/examples/app_multi_node/train_fabric.py index 4fd7bee094697..335e1e73db6e0 100644 --- a/examples/app_multi_node/train_fabric.py +++ b/examples/app_multi_node/train_fabric.py @@ -15,7 +15,7 @@ def run(self): ) # 2. Create Fabric. - fabric = Fabric(strategy="ddp", precision='16-mixed') + fabric = Fabric(strategy="ddp", precision="16-mixed") model, optimizer = fabric.setup(model, torch.optim.SGD(model.parameters(), lr=0.01)) criterion = torch.nn.MSELoss() diff --git a/examples/pl_hpu/mnist_sample.py b/examples/pl_hpu/mnist_sample.py index 09613e295f47a..0ed24ad75403b 100644 --- a/examples/pl_hpu/mnist_sample.py +++ b/examples/pl_hpu/mnist_sample.py @@ -63,7 +63,7 @@ def configure_optimizers(self): "accelerator": "hpu", "devices": 1, "max_epochs": 1, - "plugins": lazy_instance(HPUPrecisionPlugin, precision='16-mixed'), + "plugins": lazy_instance(HPUPrecisionPlugin, precision="16-mixed"), }, run=False, save_config_kwargs={"overwrite": True}, diff --git a/src/lightning/pytorch/plugins/precision/amp.py b/src/lightning/pytorch/plugins/precision/amp.py index bddcf2b480a75..1ac94415e33dc 100644 --- a/src/lightning/pytorch/plugins/precision/amp.py +++ b/src/lightning/pytorch/plugins/precision/amp.py @@ -34,7 +34,10 @@ class MixedPrecisionPlugin(PrecisionPlugin): """ def __init__( - self, precision: Literal["16-mixed", "bf16-mixed"], device: str, scaler: Optional[torch.cuda.amp.GradScaler] = None + self, + precision: Literal["16-mixed", "bf16-mixed"], + device: str, + scaler: Optional[torch.cuda.amp.GradScaler] = None, ) -> None: self.precision = cast(Literal["16-mixed", "bf16-mixed"], str(precision)) if scaler is None and self.precision == "16-mixed": diff --git a/src/lightning/pytorch/plugins/precision/deepspeed.py b/src/lightning/pytorch/plugins/precision/deepspeed.py index 99f8d06173fa8..627026214eaf4 100644 --- a/src/lightning/pytorch/plugins/precision/deepspeed.py +++ b/src/lightning/pytorch/plugins/precision/deepspeed.py @@ -34,7 +34,6 @@ _PRECISION_INPUT = Literal["32-true", "16-mixed", "bf16-mixed"] - class DeepSpeedPrecisionPlugin(PrecisionPlugin): """Precision plugin for DeepSpeed integration. diff --git a/src/lightning/pytorch/plugins/precision/hpu.py b/src/lightning/pytorch/plugins/precision/hpu.py index 65863e9f77d22..47a145807bcff 100644 --- a/src/lightning/pytorch/plugins/precision/hpu.py +++ b/src/lightning/pytorch/plugins/precision/hpu.py @@ -11,7 +11,7 @@ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. -from typing import cast, Literal, Optional, Union +from typing import cast, Literal, Optional from typing_extensions import get_args diff --git a/src/lightning/pytorch/plugins/precision/ipu.py b/src/lightning/pytorch/plugins/precision/ipu.py index 95737fb996d49..e414bc693163e 100644 --- a/src/lightning/pytorch/plugins/precision/ipu.py +++ b/src/lightning/pytorch/plugins/precision/ipu.py @@ -29,6 +29,7 @@ _PRECISION_INPUT = Literal["32-true", "16-mixed"] + class IPUPrecisionPlugin(PrecisionPlugin): """Precision plugin for IPU integration. diff --git a/src/lightning/pytorch/trainer/connectors/accelerator_connector.py b/src/lightning/pytorch/trainer/connectors/accelerator_connector.py index 4185efe87407c..f98535050324a 100644 --- a/src/lightning/pytorch/trainer/connectors/accelerator_connector.py +++ b/src/lightning/pytorch/trainer/connectors/accelerator_connector.py @@ -20,6 +20,13 @@ import torch from typing_extensions import get_args +from lightning.fabric.connector import ( + _PRECISION_INPUT, + _PRECISION_INPUT_INT, + _PRECISION_INPUT_STR, + _PRECISION_INPUT_STR_LEGACY, + _PRECISION_INPUT_STR_LEGACY_CONVERSION, +) from lightning.fabric.plugins.environments import ( ClusterEnvironment, KubeflowEnvironment, @@ -71,7 +78,6 @@ from lightning.pytorch.utilities.exceptions import MisconfigurationException from lightning.pytorch.utilities.imports import _LIGHTNING_COLOSSALAI_AVAILABLE from lightning.pytorch.utilities.rank_zero import rank_zero_info, rank_zero_warn -from lightning.fabric.connector import _PRECISION_INPUT, _PRECISION_INPUT_STR_LEGACY, _PRECISION_INPUT_STR_LEGACY_CONVERSION, _PRECISION_INPUT_STR, _PRECISION_INPUT_INT log = logging.getLogger(__name__) @@ -241,7 +247,9 @@ def _check_config_and_set_final_flags( self._accelerator_flag = accelerator - supported_precision = get_args(_PRECISION_INPUT_STR) + get_args(_PRECISION_INPUT_INT) + get_args(_PRECISION_INPUT_STR_LEGACY) + supported_precision = ( + get_args(_PRECISION_INPUT_STR) + get_args(_PRECISION_INPUT_INT) + get_args(_PRECISION_INPUT_STR_LEGACY) + ) if precision not in supported_precision: raise MisconfigurationException( f"Precision {repr(precision)} is invalid. Allowed precision values: {supported_precision}" @@ -250,7 +258,7 @@ def _check_config_and_set_final_flags( precision = str(precision) # convert int flags to str here to enable the legacy-conversion below if precision in get_args(_PRECISION_INPUT_STR_LEGACY): - if not str(precision)[:2] in ('32', '64'): + if str(precision)[:2] not in ("32", "64"): rank_zero_warn( f"{precision} is supported for historical reasons but its usage is discouraged. " f"Please set your precision to {_PRECISION_INPUT_STR_LEGACY_CONVERSION[precision]} instead!" diff --git a/src/lightning/pytorch/trainer/trainer.py b/src/lightning/pytorch/trainer/trainer.py index cf5f33c0d89d3..0f033641fe07e 100644 --- a/src/lightning/pytorch/trainer/trainer.py +++ b/src/lightning/pytorch/trainer/trainer.py @@ -122,7 +122,7 @@ def __init__( accelerator: Optional[Union[str, Accelerator]] = None, strategy: Optional[Union[str, Strategy]] = None, sync_batchnorm: bool = False, - precision: _PRECISION_INPUT = '32-true', + precision: _PRECISION_INPUT = "32-true", enable_model_summary: bool = True, num_sanity_val_steps: int = 2, profiler: Optional[Union[Profiler, str]] = None, diff --git a/tests/tests_pytorch/accelerators/test_hpu.py b/tests/tests_pytorch/accelerators/test_hpu.py index fc08b1ee069fa..b8ba801e7ede4 100644 --- a/tests/tests_pytorch/accelerators/test_hpu.py +++ b/tests/tests_pytorch/accelerators/test_hpu.py @@ -61,7 +61,7 @@ def test_all_stages(tmpdir, hpus): fast_dev_run=True, accelerator="hpu", devices=hpus, - precision='16-mixed', + precision="16-mixed", ) trainer.fit(model) trainer.validate(model) diff --git a/tests/tests_pytorch/accelerators/test_ipu.py b/tests/tests_pytorch/accelerators/test_ipu.py index ab4d44f579491..650b4c56ec1f3 100644 --- a/tests/tests_pytorch/accelerators/test_ipu.py +++ b/tests/tests_pytorch/accelerators/test_ipu.py @@ -183,7 +183,12 @@ def setup(self, trainer: Trainer, pl_module: LightningModule, stage: str) -> Non model = IPUModel() trainer = Trainer( - default_root_dir=tmpdir, fast_dev_run=True, accelerator="ipu", devices=1, precision='16-mixed', callbacks=TestCallback() + default_root_dir=tmpdir, + fast_dev_run=True, + accelerator="ipu", + devices=1, + precision="16-mixed", + callbacks=TestCallback(), ) assert isinstance(trainer.strategy.precision_plugin, IPUPrecisionPlugin) assert trainer.strategy.precision_plugin.precision == "16-mixed" @@ -203,7 +208,12 @@ def on_train_start(self, trainer: Trainer, pl_module: LightningModule) -> None: model = IPUModel() model = model.half() trainer = Trainer( - default_root_dir=tmpdir, fast_dev_run=True, accelerator="ipu", devices=1, precision='16-mixed', callbacks=TestCallback() + default_root_dir=tmpdir, + fast_dev_run=True, + accelerator="ipu", + devices=1, + precision="16-mixed", + callbacks=TestCallback(), ) assert isinstance(trainer.strategy, IPUStrategy) @@ -534,7 +544,7 @@ def configure_optimizers(self): def test_precision_plugin(): """Ensure precision plugin value is set correctly.""" - plugin = IPUPrecisionPlugin(precision='16-mixed') + plugin = IPUPrecisionPlugin(precision="16-mixed") assert plugin.precision == "16-mixed" diff --git a/tests/tests_pytorch/checkpointing/test_legacy_checkpoints.py b/tests/tests_pytorch/checkpointing/test_legacy_checkpoints.py index 4ede1b8baacd6..86dd5c6cfe9b7 100644 --- a/tests/tests_pytorch/checkpointing/test_legacy_checkpoints.py +++ b/tests/tests_pytorch/checkpointing/test_legacy_checkpoints.py @@ -103,7 +103,7 @@ def test_resume_legacy_checkpoints(tmpdir, pl_version: str): default_root_dir=str(tmpdir), accelerator="auto", devices=1, - precision=('16-mixed' if torch.cuda.is_available() else '32-true'), + precision=("16-mixed" if torch.cuda.is_available() else "32-true"), callbacks=[stop], max_epochs=21, accumulate_grad_batches=2, diff --git a/tests/tests_pytorch/models/test_amp.py b/tests/tests_pytorch/models/test_amp.py index 0bcffcd49c28e..372cb10db349a 100644 --- a/tests/tests_pytorch/models/test_amp.py +++ b/tests/tests_pytorch/models/test_amp.py @@ -52,9 +52,9 @@ def _assert_autocast_enabled(self): @pytest.mark.parametrize( ("strategy", "precision", "devices"), ( - ("single_device", '16-mixed', 1), + ("single_device", "16-mixed", 1), ("single_device", "bf16-mixed'", 1), - ("ddp_spawn", '16-mixed', 2), + ("ddp_spawn", "16-mixed", 2), ("ddp_spawn", "bf16-mixed", 2), ), ) @@ -83,7 +83,7 @@ def test_amp_cpus(tmpdir, strategy, precision, devices): @pytest.mark.parametrize("strategy", [None, "ddp_spawn"]) -@pytest.mark.parametrize("precision", ['16-mixed', pytest.param("bf16-mixed", marks=RunIf(bf16_cuda=True))]) +@pytest.mark.parametrize("precision", ["16-mixed", pytest.param("bf16-mixed", marks=RunIf(bf16_cuda=True))]) @pytest.mark.parametrize( "devices", (pytest.param(1, marks=RunIf(min_cuda_gpus=1)), pytest.param(2, marks=RunIf(min_cuda_gpus=2))) ) @@ -135,7 +135,7 @@ def test_amp_gpu_ddp_slurm_managed(tmpdir): accelerator="gpu", devices=[0], strategy="ddp_spawn", - precision='16-mixed', + precision="16-mixed", callbacks=[checkpoint], logger=logger, ) @@ -153,7 +153,7 @@ def test_precision_16_clip_gradients(mock_clip_grad_norm, clip_val, tmpdir): enable_progress_bar=False, max_epochs=1, devices=1, - precision='16-mixed', + precision="16-mixed", limit_train_batches=4, limit_val_batches=0, gradient_clip_val=clip_val, diff --git a/tests/tests_pytorch/models/test_ddp_fork_amp.py b/tests/tests_pytorch/models/test_ddp_fork_amp.py index 7fba705e507bf..13434dcab69bf 100644 --- a/tests/tests_pytorch/models/test_ddp_fork_amp.py +++ b/tests/tests_pytorch/models/test_ddp_fork_amp.py @@ -24,7 +24,7 @@ def test_amp_gpus_ddp_fork(): """Ensure the use of AMP with `ddp_fork` (or associated alias strategies) does not generate CUDA initialization errors.""" - _ = MixedPrecisionPlugin(precision='16-mixed', device="cuda") + _ = MixedPrecisionPlugin(precision="16-mixed", device="cuda") with multiprocessing.get_context("fork").Pool(1) as pool: in_bad_fork = pool.apply(torch.cuda._is_in_bad_fork) assert not in_bad_fork diff --git a/tests/tests_pytorch/models/test_hooks.py b/tests/tests_pytorch/models/test_hooks.py index 41e715db3fcf7..50f6f36a0811d 100644 --- a/tests/tests_pytorch/models/test_hooks.py +++ b/tests/tests_pytorch/models/test_hooks.py @@ -401,9 +401,9 @@ def _predict_batch(trainer, model, batches): [ {}, # these precision plugins modify the optimization flow, so testing them explicitly - pytest.param(dict(accelerator="gpu", devices=1, precision='16-mixed'), marks=RunIf(min_cuda_gpus=1)), + pytest.param(dict(accelerator="gpu", devices=1, precision="16-mixed"), marks=RunIf(min_cuda_gpus=1)), pytest.param( - dict(accelerator="gpu", devices=1, precision='16-mixed', strategy="deepspeed"), + dict(accelerator="gpu", devices=1, precision="16-mixed", strategy="deepspeed"), marks=RunIf(min_cuda_gpus=1, standalone=True, deepspeed=True), ), ], @@ -453,7 +453,7 @@ def training_step(self, batch, batch_idx): "loops": ANY, } using_deepspeed = kwargs.get("strategy") == "deepspeed" - if kwargs.get("precision") == '16-mixed' and not using_deepspeed: + if kwargs.get("precision") == "16-mixed" and not using_deepspeed: saved_ckpt[trainer.precision_plugin.__class__.__qualname__] = ANY device = torch.device("cuda:0" if "accelerator" in kwargs and kwargs["accelerator"] == "gpu" else "cpu") expected = [ diff --git a/tests/tests_pytorch/models/test_tpu.py b/tests/tests_pytorch/models/test_tpu.py index ce6db19248f3d..031fef8e72ce8 100644 --- a/tests/tests_pytorch/models/test_tpu.py +++ b/tests/tests_pytorch/models/test_tpu.py @@ -104,7 +104,7 @@ def test_model_16bit_tpu_devices_1(tmpdir): """Make sure model trains on TPU.""" trainer_options = dict( default_root_dir=tmpdir, - precision='16-mixed', + precision="16-mixed", enable_progress_bar=False, max_epochs=2, accelerator="tpu", @@ -124,7 +124,7 @@ def test_model_16bit_tpu_index(tmpdir, tpu_core): """Make sure model trains on TPU.""" trainer_options = dict( default_root_dir=tmpdir, - precision='16-mixed', + precision="16-mixed", enable_progress_bar=False, max_epochs=2, accelerator="tpu", @@ -146,7 +146,7 @@ def test_model_16bit_tpu_devices_8(tmpdir): """Make sure model trains on TPU.""" trainer_options = dict( default_root_dir=tmpdir, - precision='16-mixed', + precision="16-mixed", enable_progress_bar=False, max_epochs=1, accelerator="tpu", diff --git a/tests/tests_pytorch/plugins/precision/hpu/test_hpu.py b/tests/tests_pytorch/plugins/precision/hpu/test_hpu.py index 5ddb295aa548b..54599f58448c0 100644 --- a/tests/tests_pytorch/plugins/precision/hpu/test_hpu.py +++ b/tests/tests_pytorch/plugins/precision/hpu/test_hpu.py @@ -77,7 +77,7 @@ def on_train_start(self, trainer: Trainer, pl_module: LightningModule) -> None: fast_dev_run=True, accelerator="hpu", devices=1, - plugins=[HPUPrecisionPlugin(precision='16-mixed', **hmp_params)], + plugins=[HPUPrecisionPlugin(precision="16-mixed", **hmp_params)], callbacks=TestCallback(), ) diff --git a/tests/tests_pytorch/plugins/precision/test_amp.py b/tests/tests_pytorch/plugins/precision/test_amp.py index fed890e471175..4c86f02986894 100644 --- a/tests/tests_pytorch/plugins/precision/test_amp.py +++ b/tests/tests_pytorch/plugins/precision/test_amp.py @@ -23,7 +23,7 @@ def test_clip_gradients(): """Test that `.clip_gradients()` is a no-op when clipping is disabled.""" optimizer = Mock(spec=Optimizer) - precision = MixedPrecisionPlugin(precision='16-mixed', device="cuda:0", scaler=Mock()) + precision = MixedPrecisionPlugin(precision="16-mixed", device="cuda:0", scaler=Mock()) precision.clip_grad_by_value = Mock() precision.clip_grad_by_norm = Mock() precision.clip_gradients(optimizer) @@ -47,7 +47,7 @@ def test_optimizer_amp_scaling_support_in_step_method(): gradient clipping (example: fused Adam).""" optimizer = Mock(_step_supports_amp_scaling=True) - precision = MixedPrecisionPlugin(precision='16-mixed', device="cuda:0", scaler=Mock()) + precision = MixedPrecisionPlugin(precision="16-mixed", device="cuda:0", scaler=Mock()) with pytest.raises(RuntimeError, match="The current optimizer.*does not allow for gradient clipping"): precision.clip_gradients(optimizer, clip_val=1.0) diff --git a/tests/tests_pytorch/plugins/precision/test_amp_integration.py b/tests/tests_pytorch/plugins/precision/test_amp_integration.py index 895a67c6fecc2..8a64169e9f1fe 100644 --- a/tests/tests_pytorch/plugins/precision/test_amp_integration.py +++ b/tests/tests_pytorch/plugins/precision/test_amp_integration.py @@ -38,7 +38,7 @@ def run(fused=False): default_root_dir=tmpdir, accelerator="cuda", devices=1, - precision='16-mixed', + precision="16-mixed", max_steps=5, logger=False, enable_checkpointing=False, diff --git a/tests/tests_pytorch/plugins/precision/test_deepspeed_precision.py b/tests/tests_pytorch/plugins/precision/test_deepspeed_precision.py index 2b31972cc88d4..b0ef260309639 100644 --- a/tests/tests_pytorch/plugins/precision/test_deepspeed_precision.py +++ b/tests/tests_pytorch/plugins/precision/test_deepspeed_precision.py @@ -19,4 +19,4 @@ def test_invalid_precision_with_deepspeed_precision(): with pytest.raises(ValueError, match="is not supported. `precision` must be one of"): - DeepSpeedPrecisionPlugin(precision='64-true') + DeepSpeedPrecisionPlugin(precision="64-true") diff --git a/tests/tests_pytorch/plugins/test_amp_plugins.py b/tests/tests_pytorch/plugins/test_amp_plugins.py index c20656f8c3a96..5cca3a93aa518 100644 --- a/tests/tests_pytorch/plugins/test_amp_plugins.py +++ b/tests/tests_pytorch/plugins/test_amp_plugins.py @@ -54,10 +54,10 @@ class MyAMP(MixedPrecisionPlugin): def test_amp_ddp(cuda_count_2, strategy, devices, custom_plugin, plugin_cls): plugin = None if custom_plugin: - plugin = plugin_cls('16-mixed', "cpu") + plugin = plugin_cls("16-mixed", "cpu") trainer = Trainer( fast_dev_run=True, - precision='16-mixed', + precision="16-mixed", accelerator="gpu", devices=devices, strategy=strategy, @@ -137,7 +137,7 @@ def test_amp_gradient_unscale(tmpdir, accum: int): strategy="ddp_spawn", accelerator="gpu", devices=2, - precision='16-mixed', + precision="16-mixed", # use a tiny value to make sure it works gradient_clip_val=1e-3, gradient_clip_algorithm="value", @@ -179,7 +179,7 @@ def configure_optimizers(self): torch.optim.SGD(self.layer2.parameters(), lr=0.1), ] - trainer = Trainer(default_root_dir=tmpdir, accelerator="gpu", devices=1, fast_dev_run=1, precision='16-mixed') + trainer = Trainer(default_root_dir=tmpdir, accelerator="gpu", devices=1, fast_dev_run=1, precision="16-mixed") model = CustomBoringModel() trainer.fit(model) diff --git a/tests/tests_pytorch/plugins/test_double_plugin.py b/tests/tests_pytorch/plugins/test_double_plugin.py index b03a660b962b0..8d801d6eaf7eb 100644 --- a/tests/tests_pytorch/plugins/test_double_plugin.py +++ b/tests/tests_pytorch/plugins/test_double_plugin.py @@ -135,7 +135,7 @@ def on_fit_start(self): def test_double_precision(tmpdir, boring_model): model = boring_model() - trainer = Trainer(max_epochs=2, default_root_dir=tmpdir, fast_dev_run=2, precision='64-true', log_every_n_steps=1) + trainer = Trainer(max_epochs=2, default_root_dir=tmpdir, fast_dev_run=2, precision="64-true", log_every_n_steps=1) trainer.fit(model) trainer.test(model) trainer.predict(model) @@ -152,7 +152,7 @@ def test_double_precision_ddp(tmpdir): accelerator="gpu", devices=2, fast_dev_run=2, - precision='64-true', + precision="64-true", log_every_n_steps=1, ) trainer.fit(model) diff --git a/tests/tests_pytorch/strategies/test_ddp.py b/tests/tests_pytorch/strategies/test_ddp.py index 833a53f8e799d..f6470764d9016 100644 --- a/tests/tests_pytorch/strategies/test_ddp.py +++ b/tests/tests_pytorch/strategies/test_ddp.py @@ -96,7 +96,7 @@ def setup(self, stage: str) -> None: @RunIf(min_cuda_gpus=2, standalone=True) -@pytest.mark.parametrize("precision", ('16-mixed', '32-true')) +@pytest.mark.parametrize("precision", ("16-mixed", "32-true")) def test_ddp_wrapper(tmpdir, precision): """Test parameters to ignore are carried over for DDP.""" diff --git a/tests/tests_pytorch/strategies/test_deepspeed_strategy.py b/tests/tests_pytorch/strategies/test_deepspeed_strategy.py index c5b67c0bcb6bb..76f248bb5264e 100644 --- a/tests/tests_pytorch/strategies/test_deepspeed_strategy.py +++ b/tests/tests_pytorch/strategies/test_deepspeed_strategy.py @@ -139,7 +139,7 @@ def test_deepspeed_precision_choice(cuda_count_1, tmpdir): default_root_dir=tmpdir, accelerator="gpu", strategy="deepspeed", - precision='16-mixed', + precision="16-mixed", ) assert isinstance(trainer.strategy, DeepSpeedStrategy) @@ -189,7 +189,7 @@ def backward(self, loss: Tensor, *args, **kwargs) -> None: strategy=DeepSpeedStrategy(), accelerator="gpu", devices=1, - precision='16-mixed', + precision="16-mixed", enable_progress_bar=False, enable_model_summary=False, ) @@ -264,7 +264,7 @@ def configure_optimizers(self): accelerator="gpu", devices=1, fast_dev_run=True, - precision='16-mixed', + precision="16-mixed", callbacks=[TestCB(), lr_monitor], logger=CSVLogger(tmpdir), enable_progress_bar=False, @@ -303,7 +303,7 @@ def on_train_start(self, trainer, pl_module) -> None: limit_val_batches=4, limit_test_batches=4, max_epochs=2, - precision='16-mixed', + precision="16-mixed", callbacks=[TestCB(), lr_monitor], logger=CSVLogger(tmpdir), enable_progress_bar=False, @@ -337,7 +337,7 @@ def on_train_start(self, trainer, pl_module) -> None: trainer = Trainer( default_root_dir=tmpdir, strategy=ds, - precision='16-mixed', + precision="16-mixed", accelerator="gpu", devices=1, callbacks=[TestCB()], @@ -380,7 +380,7 @@ def test_deepspeed_custom_activation_checkpointing_params_forwarded(tmpdir): default_root_dir=tmpdir, fast_dev_run=1, strategy=ds, - precision='16-mixed', + precision="16-mixed", accelerator="gpu", devices=1, enable_progress_bar=False, @@ -413,7 +413,7 @@ def setup(self, trainer, pl_module, stage=None) -> None: enable_progress_bar=False, max_epochs=1, strategy=DeepSpeedStrategy(config=deepspeed_zero_config), - precision='16-mixed', + precision="16-mixed", accelerator="gpu", devices=1, callbacks=[TestCallback()], @@ -433,7 +433,7 @@ def test_deepspeed_multigpu(tmpdir): accelerator="gpu", devices=2, fast_dev_run=True, - precision='16-mixed', + precision="16-mixed", enable_progress_bar=False, enable_model_summary=False, ) @@ -476,7 +476,7 @@ def test_deepspeed_stage_3_save_warning(tmpdir): accelerator="gpu", devices=2, fast_dev_run=True, - precision='16-mixed', + precision="16-mixed", enable_progress_bar=False, enable_model_summary=False, ) @@ -508,7 +508,7 @@ def test_deepspeed_multigpu_single_file(tmpdir): accelerator="gpu", devices=1, fast_dev_run=True, - precision='16-mixed', + precision="16-mixed", enable_progress_bar=False, enable_model_summary=False, ) @@ -524,7 +524,7 @@ def test_deepspeed_multigpu_single_file(tmpdir): accelerator="gpu", devices=1, fast_dev_run=True, - precision='16-mixed', + precision="16-mixed", enable_progress_bar=False, enable_model_summary=False, ) @@ -626,7 +626,7 @@ def test_deepspeed_multigpu_stage_3(tmpdir): accelerator="gpu", devices=2, fast_dev_run=True, - precision='16-mixed', + precision="16-mixed", enable_progress_bar=False, enable_model_summary=False, ) @@ -646,7 +646,7 @@ def test_deepspeed_multigpu_stage_3_manual_optimization(tmpdir, deepspeed_config accelerator="gpu", devices=2, fast_dev_run=True, - precision='16-mixed', + precision="16-mixed", enable_progress_bar=False, enable_model_summary=False, ) @@ -672,7 +672,7 @@ def test_deepspeed_multigpu_stage_3_checkpointing(tmpdir, automatic_optimization strategy=DeepSpeedStrategy(stage=3), accelerator="gpu", devices=2, - precision='16-mixed', + precision="16-mixed", accumulate_grad_batches=accumulate_grad_batches, callbacks=[ck], enable_progress_bar=False, @@ -693,7 +693,7 @@ def test_deepspeed_multigpu_stage_3_checkpointing(tmpdir, automatic_optimization accelerator="gpu", devices=2, strategy=DeepSpeedStrategy(stage=3), - precision='16-mixed', + precision="16-mixed", enable_progress_bar=False, enable_model_summary=False, ) @@ -722,7 +722,7 @@ def test_deepspeed_multigpu_stage_3_warns_resume_training(tmpdir): strategy=DeepSpeedStrategy(stage=3, load_full_weights=True), accelerator="gpu", devices=1, - precision='16-mixed', + precision="16-mixed", enable_progress_bar=False, enable_model_summary=False, ) @@ -751,7 +751,7 @@ def test_deepspeed_multigpu_stage_3_resume_training(tmpdir): strategy=DeepSpeedStrategy(stage=3), accelerator="gpu", devices=1, - precision='16-mixed', + precision="16-mixed", callbacks=[ck], enable_progress_bar=False, enable_model_summary=False, @@ -792,7 +792,7 @@ def on_train_epoch_start(self, trainer: Trainer, pl_module: LightningModule) -> max_epochs=2, limit_train_batches=1, limit_val_batches=0, - precision='16-mixed', + precision="16-mixed", callbacks=TestCallback(), enable_progress_bar=False, enable_model_summary=False, @@ -828,7 +828,7 @@ def on_train_batch_start(self, trainer, pl_module: LightningModule, batch: Any, devices=2, limit_train_batches=5, limit_val_batches=2, - precision='16-mixed', + precision="16-mixed", accumulate_grad_batches=2, callbacks=[verification_callback], enable_progress_bar=False, @@ -849,7 +849,7 @@ def test_deepspeed_multigpu_test(tmpdir): accelerator="gpu", devices=2, fast_dev_run=True, - precision='16-mixed', + precision="16-mixed", enable_progress_bar=False, enable_model_summary=False, ) @@ -885,7 +885,7 @@ def on_train_epoch_start(self) -> None: accelerator="gpu", devices=1, fast_dev_run=True, - precision='16-mixed', + precision="16-mixed", enable_progress_bar=False, enable_model_summary=False, ) @@ -912,7 +912,7 @@ def on_train_epoch_start(self) -> None: accelerator="gpu", devices=1, fast_dev_run=True, - precision='16-mixed', + precision="16-mixed", enable_progress_bar=False, enable_model_summary=False, ) @@ -976,7 +976,7 @@ def test_deepspeed_multigpu_no_schedulers(tmpdir): accelerator="gpu", devices=2, fast_dev_run=True, - precision='16-mixed', + precision="16-mixed", enable_progress_bar=False, enable_model_summary=False, ) @@ -998,7 +998,7 @@ def training_step(self, batch, batch_idx): accelerator="gpu", devices=1, fast_dev_run=True, - precision='16-mixed', + precision="16-mixed", enable_progress_bar=False, enable_model_summary=False, ) @@ -1271,7 +1271,7 @@ def transfer_batch_to_device(self, batch, *args, **kwargs): return super().transfer_batch_to_device(batch, *args, **kwargs) model = CustomBoringModel() - trainer = Trainer(strategy="deepspeed", devices=1, accelerator="cuda", precision='16-mixed') + trainer = Trainer(strategy="deepspeed", devices=1, accelerator="cuda", precision="16-mixed") trainer.strategy.connect(model) batch = torch.zeros((1), dtype=torch.float32) batch = trainer.strategy.batch_to_device(batch) diff --git a/tests/tests_pytorch/strategies/test_fsdp.py b/tests/tests_pytorch/strategies/test_fsdp.py index 9cef1fe13f6f6..05aec225204a4 100644 --- a/tests/tests_pytorch/strategies/test_fsdp.py +++ b/tests/tests_pytorch/strategies/test_fsdp.py @@ -164,7 +164,7 @@ def test_invalid_on_cpu(tmpdir): @RunIf(min_torch="1.12", min_cuda_gpus=1) -@pytest.mark.parametrize("precision, expected", [('16-mixed', torch.float16), ("bf16-mixed", torch.bfloat16)]) +@pytest.mark.parametrize("precision, expected", [("16-mixed", torch.float16), ("bf16-mixed", torch.bfloat16)]) def test_precision_plugin_config(precision, expected): plugin = FSDPMixedPrecisionPlugin(precision=precision, device="cuda") config = plugin.mixed_precision_config @@ -191,7 +191,7 @@ def test_fsdp_strategy_sync_batchnorm(tmpdir): accelerator="gpu", devices=2, strategy="fsdp", - precision='16-mixed', + precision="16-mixed", max_epochs=1, sync_batchnorm=True, ) @@ -199,7 +199,7 @@ def test_fsdp_strategy_sync_batchnorm(tmpdir): @RunIf(min_cuda_gpus=1, skip_windows=True, standalone=True, min_torch="1.12") -@pytest.mark.parametrize("precision", ('16-mixed', pytest.param("bf16-mixed", marks=RunIf(bf16_cuda=True)))) +@pytest.mark.parametrize("precision", ("16-mixed", pytest.param("bf16-mixed", marks=RunIf(bf16_cuda=True)))) def test_fsdp_strategy_checkpoint(tmpdir, precision): """Test to ensure that checkpoint is saved correctly when using a single GPU, and all stages can be run.""" model = TestFSDPModel() @@ -230,7 +230,7 @@ def test_fsdp_checkpoint_multi_gpus(tmpdir, model, strategy): accelerator="gpu", devices=2, strategy=strategy, - precision='16-mixed', + precision="16-mixed", max_epochs=1, limit_train_batches=2, limit_val_batches=2, diff --git a/tests/tests_pytorch/strategies/test_registry.py b/tests/tests_pytorch/strategies/test_registry.py index 9fa2e26f95008..f5e7384ea1f2c 100644 --- a/tests/tests_pytorch/strategies/test_registry.py +++ b/tests/tests_pytorch/strategies/test_registry.py @@ -48,7 +48,7 @@ def test_strategy_registry_with_deepspeed_strategies(strategy_name, init_params) @pytest.mark.parametrize("strategy", ["deepspeed", "deepspeed_stage_2_offload", "deepspeed_stage_3"]) def test_deepspeed_strategy_registry_with_trainer(tmpdir, strategy): - trainer = Trainer(default_root_dir=tmpdir, strategy=strategy, precision='16-mixed') + trainer = Trainer(default_root_dir=tmpdir, strategy=strategy, precision="16-mixed") assert isinstance(trainer.strategy, DeepSpeedStrategy) diff --git a/tests/tests_pytorch/trainer/connectors/test_accelerator_connector.py b/tests/tests_pytorch/trainer/connectors/test_accelerator_connector.py index 35f89bc1d882b..b97fa36d64bac 100644 --- a/tests/tests_pytorch/trainer/connectors/test_accelerator_connector.py +++ b/tests/tests_pytorch/trainer/connectors/test_accelerator_connector.py @@ -596,14 +596,16 @@ def test_check_fsdp_strategy_and_fallback(): def test_unsupported_tpu_choice(tpu_available): - with pytest.raises(MisconfigurationException, match=r"accelerator='tpu', precision='64-true'\)` is not implemented"): - Trainer(accelerator="tpu", precision='64-true') + with pytest.raises( + MisconfigurationException, match=r"accelerator='tpu', precision='64-true'\)` is not implemented" + ): + Trainer(accelerator="tpu", precision="64-true") # if user didn't set strategy, AcceleratorConnector will choose the TPUSingleStrategy or TPUSpawnStrategy with pytest.raises(ValueError, match="TPUAccelerator` can only be used with a `SingleTPUStrategy`"), pytest.warns( UserWarning, match=r"accelerator='tpu', precision=16-mixed\)` but AMP with fp16 is not supported" ): - Trainer(accelerator="tpu", precision='16-mixed', strategy="ddp") + Trainer(accelerator="tpu", precision="16-mixed", strategy="ddp") @mock.patch("lightning.pytorch.accelerators.ipu.IPUAccelerator.is_available", return_value=True) @@ -846,5 +848,5 @@ def test_colossalai_external_strategy(monkeypatch): from lightning_colossalai import ColossalAIStrategy - trainer = Trainer(strategy="colossalai", precision='16-mixed') + trainer = Trainer(strategy="colossalai", precision="16-mixed") assert isinstance(trainer.strategy, ColossalAIStrategy) diff --git a/tests/tests_pytorch/trainer/optimization/test_manual_optimization.py b/tests/tests_pytorch/trainer/optimization/test_manual_optimization.py index d181dfa76067e..ad6e0c69908af 100644 --- a/tests/tests_pytorch/trainer/optimization/test_manual_optimization.py +++ b/tests/tests_pytorch/trainer/optimization/test_manual_optimization.py @@ -72,7 +72,8 @@ def configure_optimizers(self): @pytest.mark.parametrize( - "kwargs", [{}, pytest.param({"accelerator": "gpu", "devices": 1, "precision": '16-mixed'}, marks=RunIf(min_cuda_gpus=1))] + "kwargs", + [{}, pytest.param({"accelerator": "gpu", "devices": 1, "precision": "16-mixed"}, marks=RunIf(min_cuda_gpus=1))], ) def test_multiple_optimizers_manual_call_counts(tmpdir, kwargs): model = ManualOptModel() @@ -87,7 +88,7 @@ def test_multiple_optimizers_manual_call_counts(tmpdir, kwargs): **kwargs, ) - if kwargs.get("precision") == '16-mixed': + if kwargs.get("precision") == "16-mixed": # mock the scaler instead of the optimizer step because it can be skipped with NaNs scaler_step_patch = mock.patch.object( trainer.precision_plugin.scaler, "step", wraps=trainer.precision_plugin.scaler.step @@ -99,7 +100,7 @@ def test_multiple_optimizers_manual_call_counts(tmpdir, kwargs): assert bwd_mock.call_count == limit_train_batches * 3 assert trainer.global_step == limit_train_batches * 2 - if kwargs.get("precision") == '16-mixed': + if kwargs.get("precision") == "16-mixed": scaler_step_patch.stop() assert scaler_step.call_count == len(model.optimizers()) * limit_train_batches @@ -141,7 +142,7 @@ def test_multiple_optimizers_manual_amp(tmpdir, accelerator): max_epochs=1, log_every_n_steps=1, enable_model_summary=False, - precision='16-mixed', + precision="16-mixed", accelerator=accelerator, devices=1, ) @@ -224,7 +225,7 @@ def test_manual_optimization_and_return_tensor(tmpdir): limit_train_batches=10, limit_test_batches=0, limit_val_batches=0, - precision='16-mixed', + precision="16-mixed", strategy="ddp_spawn", accelerator="gpu", devices=2, @@ -309,7 +310,7 @@ def on_train_epoch_end(self, *_, **__): limit_train_batches=20, limit_test_batches=0, limit_val_batches=0, - precision='16-mixed', + precision="16-mixed", accelerator="gpu", devices=1, ) @@ -383,7 +384,7 @@ def on_before_optimizer_step(self, optimizer, *_): max_epochs=1, log_every_n_steps=1, enable_model_summary=False, - precision='16-mixed', + precision="16-mixed", accelerator="gpu", devices=1, ) @@ -848,7 +849,7 @@ def test_lr_scheduler_step_not_called(tmpdir): @RunIf(min_cuda_gpus=1) -@pytest.mark.parametrize("precision", ['16-mixed', '32-true']) +@pytest.mark.parametrize("precision", ["16-mixed", "32-true"]) def test_multiple_optimizers_logging(precision, tmpdir): """Tests that metrics are properly being logged.""" diff --git a/tests/tests_pytorch/trainer/test_trainer.py b/tests/tests_pytorch/trainer/test_trainer.py index d1c42fa3499d0..1e5546d5a288b 100644 --- a/tests/tests_pytorch/trainer/test_trainer.py +++ b/tests/tests_pytorch/trainer/test_trainer.py @@ -1019,7 +1019,7 @@ def on_exception(self, trainer, pl_module, exception): assert isinstance(handle_interrupt_callback.exception, MisconfigurationException) -@pytest.mark.parametrize("precision", ['32-true', pytest.param('16-mixed', marks=RunIf(min_cuda_gpus=1))]) +@pytest.mark.parametrize("precision", ["32-true", pytest.param("16-mixed", marks=RunIf(min_cuda_gpus=1))]) @RunIf(sklearn=True) def test_gradient_clipping_by_norm(tmpdir, precision): """Test gradient clipping by norm.""" @@ -1048,7 +1048,7 @@ def configure_gradient_clipping(self, *args, **kwargs): assert model.assertion_called -@pytest.mark.parametrize("precision", ['32-true', pytest.param('16-mixed', marks=RunIf(min_cuda_gpus=1))]) +@pytest.mark.parametrize("precision", ["32-true", pytest.param("16-mixed", marks=RunIf(min_cuda_gpus=1))]) def test_gradient_clipping_by_value(tmpdir, precision): """Test gradient clipping by value.""" trainer = Trainer( @@ -1444,7 +1444,7 @@ def test_spawn_predict_return_predictions(tmpdir): @pytest.mark.parametrize("return_predictions", [None, False, True]) -@pytest.mark.parametrize("precision", ['32-true', '64-true']) +@pytest.mark.parametrize("precision", ["32-true", "64-true"]) def test_predict_return_predictions_cpu(return_predictions, precision, tmpdir): """Test that `return_predictions=True`.""" seed_everything(42) @@ -1455,7 +1455,7 @@ def test_predict_return_predictions_cpu(return_predictions, precision, tmpdir): if return_predictions or return_predictions is None: assert len(preds) == 1 assert preds[0].shape == torch.Size([1, 2]) - assert preds[0].dtype == (torch.float64 if precision == '64-true' else torch.float32) + assert preds[0].dtype == (torch.float64 if precision == "64-true" else torch.float32) @pytest.mark.parametrize(["max_steps", "max_epochs", "global_step"], [(10, 5, 10), (20, None, 20)]) diff --git a/tests/tests_pytorch/tuner/test_scale_batch_size.py b/tests/tests_pytorch/tuner/test_scale_batch_size.py index ea55b513d1ab4..533669c30f94a 100644 --- a/tests/tests_pytorch/tuner/test_scale_batch_size.py +++ b/tests/tests_pytorch/tuner/test_scale_batch_size.py @@ -254,7 +254,7 @@ def test_error_on_dataloader_passed_to_fit(tmpdir): def test_auto_scale_batch_size_with_amp(tmpdir): before_batch_size = 2 model = BatchSizeModel(batch_size=before_batch_size) - trainer = Trainer(default_root_dir=tmpdir, max_steps=1, accelerator="gpu", devices=1, precision='16-mixed') + trainer = Trainer(default_root_dir=tmpdir, max_steps=1, accelerator="gpu", devices=1, precision="16-mixed") tuner = Tuner(trainer) tuner.scale_batch_size(model) after_batch_size = model.batch_size diff --git a/tests/tests_pytorch/utilities/test_deepspeed_collate_checkpoint.py b/tests/tests_pytorch/utilities/test_deepspeed_collate_checkpoint.py index 314501ef0e8ee..9f4bcef723434 100644 --- a/tests/tests_pytorch/utilities/test_deepspeed_collate_checkpoint.py +++ b/tests/tests_pytorch/utilities/test_deepspeed_collate_checkpoint.py @@ -32,7 +32,7 @@ def test_deepspeed_collate_checkpoint(tmpdir): accelerator="gpu", devices=2, fast_dev_run=True, - precision='16-mixed', + precision="16-mixed", enable_progress_bar=False, enable_model_summary=False, ) diff --git a/tests/tests_pytorch/utilities/test_deepspeed_model_summary.py b/tests/tests_pytorch/utilities/test_deepspeed_model_summary.py index 8d734ad74649f..146ab1aa6601b 100644 --- a/tests/tests_pytorch/utilities/test_deepspeed_model_summary.py +++ b/tests/tests_pytorch/utilities/test_deepspeed_model_summary.py @@ -45,7 +45,7 @@ def on_fit_start(self, trainer: "pl.Trainer", pl_module: "pl.LightningModule") - accelerator="gpu", fast_dev_run=True, devices=2, - precision='16-mixed', + precision="16-mixed", enable_model_summary=True, callbacks=[TestCallback()], ) diff --git a/tests/tests_pytorch/utilities/test_torchdistx.py b/tests/tests_pytorch/utilities/test_torchdistx.py index 1491dc5106443..187a9a5c56084 100644 --- a/tests/tests_pytorch/utilities/test_torchdistx.py +++ b/tests/tests_pytorch/utilities/test_torchdistx.py @@ -55,7 +55,7 @@ def test_deferred_init_with_lightning_module(): ( {"accelerator": "auto", "devices": 1}, pytest.param( - {"strategy": "deepspeed_stage_3", "accelerator": "gpu", "devices": 2, "precision": '16-mixed'}, + {"strategy": "deepspeed_stage_3", "accelerator": "gpu", "devices": 2, "precision": "16-mixed"}, marks=RunIf(min_cuda_gpus=2, deepspeed=True), ), ),