-
Notifications
You must be signed in to change notification settings - Fork 415
/
Copy pathdice.py
236 lines (196 loc) · 10.4 KB
/
dice.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Any, Callable, Optional, Tuple, no_type_check
import torch
from torch import Tensor
from typing_extensions import Literal
from torchmetrics.functional.classification.dice import _dice_compute
from torchmetrics.functional.classification.stat_scores import _stat_scores_update
from torchmetrics.metric import Metric
from torchmetrics.utilities.enums import AverageMethod, MDMCAverageMethod
class Dice(Metric):
r"""Computes `Dice`_:
.. math:: \text{Dice} = \frac{\text{2 * TP}}{\text{2 * TP} + \text{FP} + \text{FN}}
Where :math:`\text{TP}` and :math:`\text{FP}` represent the number of true positives and
false positives respecitively.
It is recommend set `ignore_index` to index of background class.
The reduction method (how the precision scores are aggregated) is controlled by the
``average`` parameter, and additionally by the ``mdmc_average`` parameter in the
multi-dimensional multi-class case.
As input to 'update' the metric accepts the following input:
- ``preds``: Predictions from model (probabilities, logits or labels)
- ``target``: Ground truth values
As output of 'compute' the metric returns the dice score based on inputs passed in to ``update`` previously.
The shape of the returned tensor, depending on the ``average`` parameter:
- If ``average in ['micro', 'macro', 'weighted', 'samples']``, a one-element tensor will be returned
- If ``average in ['none', None]``, the shape will be ``(C,)``, where ``C`` stands for the number of classes
Args:
num_classes:
Number of classes. Necessary for ``'macro'``, ``'weighted'`` and ``None`` average methods.
threshold:
Threshold for transforming probability or logit predictions to binary (0,1) predictions, in the case
of binary or multi-label inputs. Default value of 0.5 corresponds to input being probabilities.
zero_division:
The value to use for the score if denominator equals zero.
average:
Defines the reduction that is applied. Should be one of the following:
- ``'micro'`` [default]: Calculate the metric globally, across all samples and classes.
- ``'macro'``: Calculate the metric for each class separately, and average the
metrics across classes (with equal weights for each class).
- ``'weighted'``: Calculate the metric for each class separately, and average the
metrics across classes, weighting each class by its support (``tp + fn``).
- ``'none'`` or ``None``: Calculate the metric for each class separately, and return
the metric for every class.
- ``'samples'``: Calculate the metric for each sample, and average the metrics
across samples (with equal weights for each sample).
.. note:: What is considered a sample in the multi-dimensional multi-class case
depends on the value of ``mdmc_average``.
mdmc_average:
Defines how averaging is done for multi-dimensional multi-class inputs (on top of the
``average`` parameter). Should be one of the following:
- ``None`` [default]: Should be left unchanged if your data is not multi-dimensional
multi-class.
- ``'samplewise'``: In this case, the statistics are computed separately for each
sample on the ``N`` axis, and then averaged over samples.
The computation for each sample is done by treating the flattened extra axes ``...``
as the ``N`` dimension within the sample,
and computing the metric for the sample based on that.
- ``'global'``: In this case the ``N`` and ``...`` dimensions of the inputs
are flattened into a new ``N_X`` sample axis, i.e.
the inputs are treated as if they were ``(N_X, C)``.
From here on the ``average`` parameter applies as usual.
ignore_index:
Integer specifying a target class to ignore. If given, this class index does not contribute
to the returned score, regardless of reduction method. If an index is ignored, and ``average=None``
or ``'none'``, the score for the ignored class will be returned as ``nan``.
top_k:
Number of the highest probability or logit score predictions considered finding the correct label,
relevant only for (multi-dimensional) multi-class inputs. The
default value (``None``) will be interpreted as 1 for these inputs.
Should be left at default (``None``) for all other types of inputs.
multiclass:
Used only in certain special cases, where you want to treat inputs as a different type
than what they appear to be.
kwargs: Additional keyword arguments, see :ref:`Metric kwargs` for more info.
Raises:
ValueError:
If ``average`` is none of ``"micro"``, ``"macro"``, ``"weighted"``, ``"samples"``, ``"none"``, ``None``.
ValueError:
If ``mdmc_average`` is not one of ``None``, ``"samplewise"``, ``"global"``.
ValueError:
If ``average`` is set but ``num_classes`` is not provided.
ValueError:
If ``num_classes`` is set and ``ignore_index`` is not in the range ``[0, num_classes)``.
Example:
>>> import torch
>>> from torchmetrics import Dice
>>> preds = torch.tensor([2, 0, 2, 1])
>>> target = torch.tensor([1, 1, 2, 0])
>>> dice = Dice(average='micro')
>>> dice(preds, target)
tensor(0.2500)
"""
is_differentiable: bool = False
higher_is_better: bool = True
full_state_update: bool = False
@no_type_check
def __init__(
self,
zero_division: int = 0,
num_classes: Optional[int] = None,
threshold: float = 0.5,
average: Optional[Literal["micro", "macro", "weighted", "none"]] = "micro",
mdmc_average: Optional[str] = "global",
ignore_index: Optional[int] = None,
top_k: Optional[int] = None,
multiclass: Optional[bool] = None,
**kwargs: Any,
) -> None:
super().__init__(**kwargs)
allowed_average = ("micro", "macro", "weighted", "samples", "none", None)
if average not in allowed_average:
raise ValueError(f"The `average` has to be one of {allowed_average}, got {average}.")
_reduce_options = (AverageMethod.WEIGHTED, AverageMethod.NONE, None)
if "reduce" not in kwargs:
kwargs["reduce"] = AverageMethod.MACRO if average in _reduce_options else average
if "mdmc_reduce" not in kwargs:
kwargs["mdmc_reduce"] = mdmc_average
self.reduce = average
self.mdmc_reduce = mdmc_average
self.num_classes = num_classes
self.threshold = threshold
self.multiclass = multiclass
self.ignore_index = ignore_index
self.top_k = top_k
if average not in ["micro", "macro", "samples"]:
raise ValueError(f"The `reduce` {average} is not valid.")
if mdmc_average not in [None, "samplewise", "global"]:
raise ValueError(f"The `mdmc_reduce` {mdmc_average} is not valid.")
if average == "macro" and (not num_classes or num_classes < 1):
raise ValueError("When you set `average` as 'macro', you have to provide the number of classes.")
if num_classes and ignore_index is not None and (not ignore_index < num_classes or num_classes == 1):
raise ValueError(f"The `ignore_index` {ignore_index} is not valid for inputs with {num_classes} classes")
default: Callable = lambda: []
reduce_fn: Optional[str] = "cat"
if mdmc_average != "samplewise" and average != "samples":
if average == "micro":
zeros_shape = []
elif average == "macro":
zeros_shape = [num_classes]
else:
raise ValueError(f'Wrong reduce="{average}"')
default = lambda: torch.zeros(zeros_shape, dtype=torch.long)
reduce_fn = "sum"
for s in ("tp", "fp", "tn", "fn"):
self.add_state(s, default=default(), dist_reduce_fx=reduce_fn)
self.average = average
self.zero_division = zero_division
@no_type_check
def update(self, preds: Tensor, target: Tensor) -> None:
"""Update state with predictions and targets."""
tp, fp, tn, fn = _stat_scores_update(
preds,
target,
reduce=self.reduce,
mdmc_reduce=self.mdmc_reduce,
threshold=self.threshold,
num_classes=self.num_classes,
top_k=self.top_k,
multiclass=self.multiclass,
ignore_index=self.ignore_index,
)
# Update states
if self.reduce != AverageMethod.SAMPLES and self.mdmc_reduce != MDMCAverageMethod.SAMPLEWISE:
self.tp += tp
self.fp += fp
self.tn += tn
self.fn += fn
else:
self.tp.append(tp)
self.fp.append(fp)
self.tn.append(tn)
self.fn.append(fn)
@no_type_check
def _get_final_stats(self) -> Tuple[Tensor, Tensor, Tensor, Tensor]:
"""Performs concatenation on the stat scores if neccesary, before passing them to a compute function."""
tp = torch.cat(self.tp) if isinstance(self.tp, list) else self.tp
fp = torch.cat(self.fp) if isinstance(self.fp, list) else self.fp
tn = torch.cat(self.tn) if isinstance(self.tn, list) else self.tn
fn = torch.cat(self.fn) if isinstance(self.fn, list) else self.fn
return tp, fp, tn, fn
@no_type_check
def compute(self) -> Tensor:
"""Computes metric."""
tp, fp, _, fn = self._get_final_stats()
return _dice_compute(tp, fp, fn, self.average, self.mdmc_reduce, self.zero_division)