-
Notifications
You must be signed in to change notification settings - Fork 412
/
metric.py
966 lines (775 loc) · 38.8 KB
/
metric.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import functools
import inspect
from abc import ABC, abstractmethod
from contextlib import contextmanager
from copy import deepcopy
from typing import Any, Callable, Dict, Generator, List, Optional, Sequence, Tuple, Union
import torch
from torch import Tensor
from torch.nn import Module
from torchmetrics.utilities import apply_to_collection, rank_zero_warn
from torchmetrics.utilities.data import (
_flatten,
_squeeze_if_scalar,
dim_zero_cat,
dim_zero_max,
dim_zero_mean,
dim_zero_min,
dim_zero_sum,
)
from torchmetrics.utilities.distributed import gather_all_tensors
from torchmetrics.utilities.exceptions import TorchMetricsUserError
def jit_distributed_available() -> bool:
return torch.distributed.is_available() and torch.distributed.is_initialized()
class Metric(Module, ABC):
"""Base class for all metrics present in the Metrics API.
Implements ``add_state()``, ``forward()``, ``reset()`` and a few other things to
handle distributed synchronization and per-step metric computation.
Override ``update()`` and ``compute()`` functions to implement your own metric. Use
``add_state()`` to register metric state variables which keep track of state on each
call of ``update()`` and are synchronized across processes when ``compute()`` is called.
Note:
Metric state variables can either be ``torch.Tensors`` or an empty list which can we used
to store `torch.Tensors``.
Note:
Different metrics only override ``update()`` and not ``forward()``. A call to ``update()``
is valid, but it won't return the metric value at the current step. A call to ``forward()``
automatically calls ``update()`` and also returns the metric value at the current step.
Args:
kwargs: additional keyword arguments, see :ref:`Metric kwargs` for more info.
- compute_on_cpu: If metric state should be stored on CPU during computations. Only works
for list states.
- dist_sync_on_step: If metric state should synchronize on ``forward()``. Default is ``False``
- process_group: The process group on which the synchronization is called. Default is the world.
- dist_sync_fn: function that performs the allgather option on the metric state. Default is an
custom implementation that calls ``torch.distributed.all_gather`` internally.
- distributed_available_fn: function that checks if the distributed backend is available.
Defaults to a check of ``torch.distributed.is_available()`` and ``torch.distributed.is_initialized()``.
- sync_on_compute: If metric state should synchronize when ``compute`` is called. Default is ``True``-
"""
__jit_ignored_attributes__ = ["device"]
__jit_unused_properties__ = ["is_differentiable"]
is_differentiable: Optional[bool] = None
higher_is_better: Optional[bool] = None
full_state_update: Optional[bool] = None
def __init__(
self,
**kwargs: Any,
) -> None:
super().__init__()
# see (https://github.com/pytorch/pytorch/blob/3e6bb5233f9ca2c5aa55d9cda22a7ee85439aa6e/
# torch/nn/modules/module.py#L227)
torch._C._log_api_usage_once(f"torchmetrics.metric.{self.__class__.__name__}")
self._device = torch.device("cpu")
self.compute_on_cpu = kwargs.pop("compute_on_cpu", False)
if not isinstance(self.compute_on_cpu, bool):
raise ValueError(
f"Expected keyword argument `compute_on_cpu` to be an `bool` but got {self.compute_on_cpu}"
)
self.dist_sync_on_step = kwargs.pop("dist_sync_on_step", False)
if not isinstance(self.dist_sync_on_step, bool):
raise ValueError(
f"Expected keyword argument `dist_sync_on_step` to be an `bool` but got {self.dist_sync_on_step}"
)
self.process_group = kwargs.pop("process_group", None)
self.dist_sync_fn = kwargs.pop("dist_sync_fn", None)
if self.dist_sync_fn is not None and not callable(self.dist_sync_fn):
raise ValueError(
f"Expected keyword argument `dist_sync_fn` to be an callable function but got {self.dist_sync_fn}"
)
self.distributed_available_fn = kwargs.pop("distributed_available_fn", jit_distributed_available)
self.sync_on_compute = kwargs.pop("sync_on_compute", True)
if not isinstance(self.sync_on_compute, bool):
raise ValueError(
f"Expected keyword argument `sync_on_compute` to be a `bool` but got {self.sync_on_compute}"
)
# initialize
self._update_signature = inspect.signature(self.update)
self.update: Callable = self._wrap_update(self.update) # type: ignore
self.compute: Callable = self._wrap_compute(self.compute) # type: ignore
self._computed = None
self._forward_cache = None
self._update_count = 0
self._to_sync = self.sync_on_compute
self._should_unsync = True
self._enable_grad = False
# initialize state
self._defaults: Dict[str, Union[List, Tensor]] = {}
self._persistent: Dict[str, bool] = {}
self._reductions: Dict[str, Union[str, Callable[..., Any], None]] = {}
# state management
self._is_synced = False
self._cache: Optional[Dict[str, Union[List[Tensor], Tensor]]] = None
@property
def _update_called(self) -> bool:
# Needed for lightning integration
return self._update_count > 0
def add_state(
self,
name: str,
default: Union[list, Tensor],
dist_reduce_fx: Optional[Union[str, Callable]] = None,
persistent: bool = False,
) -> None:
"""Adds metric state variable. Only used by subclasses.
Args:
name: The name of the state variable. The variable will then be accessible at ``self.name``.
default: Default value of the state; can either be a ``torch.Tensor`` or an empty list. The state will be
reset to this value when ``self.reset()`` is called.
dist_reduce_fx (Optional): Function to reduce state across multiple processes in distributed mode.
If value is ``"sum"``, ``"mean"``, ``"cat"``, ``"min"`` or ``"max"`` we will use ``torch.sum``,
``torch.mean``, ``torch.cat``, ``torch.min`` and ``torch.max``` respectively, each with argument
``dim=0``. Note that the ``"cat"`` reduction only makes sense if the state is a list, and not
a tensor. The user can also pass a custom function in this parameter.
persistent (Optional): whether the state will be saved as part of the modules ``state_dict``.
Default is ``False``.
Note:
Setting ``dist_reduce_fx`` to None will return the metric state synchronized across different processes.
However, there won't be any reduction function applied to the synchronized metric state.
The metric states would be synced as follows
- If the metric state is ``torch.Tensor``, the synced value will be a stacked ``torch.Tensor`` across
the process dimension if the metric state was a ``torch.Tensor``. The original ``torch.Tensor`` metric
state retains dimension and hence the synchronized output will be of shape ``(num_process, ...)``.
- If the metric state is a ``list``, the synced value will be a ``list`` containing the
combined elements from all processes.
Note:
When passing a custom function to ``dist_reduce_fx``, expect the synchronized metric state to follow
the format discussed in the above note.
Raises:
ValueError:
If ``default`` is not a ``tensor`` or an ``empty list``.
ValueError:
If ``dist_reduce_fx`` is not callable or one of ``"mean"``, ``"sum"``, ``"cat"``, ``None``.
"""
if not isinstance(default, (Tensor, list)) or (isinstance(default, list) and default):
raise ValueError("state variable must be a tensor or any empty list (where you can append tensors)")
if dist_reduce_fx == "sum":
dist_reduce_fx = dim_zero_sum
elif dist_reduce_fx == "mean":
dist_reduce_fx = dim_zero_mean
elif dist_reduce_fx == "max":
dist_reduce_fx = dim_zero_max
elif dist_reduce_fx == "min":
dist_reduce_fx = dim_zero_min
elif dist_reduce_fx == "cat":
dist_reduce_fx = dim_zero_cat
elif dist_reduce_fx is not None and not callable(dist_reduce_fx):
raise ValueError("`dist_reduce_fx` must be callable or one of ['mean', 'sum', 'cat', None]")
if isinstance(default, Tensor):
default = default.contiguous()
setattr(self, name, default)
self._defaults[name] = deepcopy(default)
self._persistent[name] = persistent
self._reductions[name] = dist_reduce_fx
@torch.jit.unused
def forward(self, *args: Any, **kwargs: Any) -> Any:
"""``forward`` serves the dual purpose of both computing the metric on the current batch of inputs but also
add the batch statistics to the overall accumululating metric state.
Input arguments are the exact same as corresponding ``update`` method. The returned output is the exact same as
the output of ``compute``.
"""
# check if states are already synced
if self._is_synced:
raise TorchMetricsUserError(
"The Metric shouldn't be synced when performing ``forward``. "
"HINT: Did you forget to call ``unsync`` ?."
)
if self.full_state_update or self.full_state_update is None or self.dist_sync_on_step:
self._forward_cache = self._forward_full_state_update(*args, **kwargs)
else:
self._forward_cache = self._forward_reduce_state_update(*args, **kwargs)
return self._forward_cache
def _forward_full_state_update(self, *args: Any, **kwargs: Any) -> Any:
"""forward computation using two calls to `update` to calculate the metric value on the current batch and
accumulate global state.
Doing this secures that metrics that need access to the full metric state during `update` works as expected.
"""
# global accumulation
self.update(*args, **kwargs)
_update_count = self._update_count
self._to_sync = self.dist_sync_on_step
# skip restore cache operation from compute as cache is stored below.
self._should_unsync = False
# skip computing on cpu for the batch
_temp_compute_on_cpu = self.compute_on_cpu
self.compute_on_cpu = False
# save context before switch
cache = {attr: getattr(self, attr) for attr in self._defaults}
# call reset, update, compute, on single batch
self._enable_grad = True # allow grads for batch computation
self.reset()
self.update(*args, **kwargs)
batch_val = self.compute()
# restore context
for attr, val in cache.items():
setattr(self, attr, val)
self._update_count = _update_count
# restore context
self._is_synced = False
self._should_unsync = True
self._to_sync = self.sync_on_compute
self._computed = None
self._enable_grad = False
self.compute_on_cpu = _temp_compute_on_cpu
if self.compute_on_cpu:
self._move_list_states_to_cpu()
return batch_val
def _forward_reduce_state_update(self, *args: Any, **kwargs: Any) -> Any:
"""forward computation using single call to `update` to calculate the metric value on the current batch and
accumulate global state.
This can be done when the global metric state is a sinple reduction of batch states.
"""
# store global state and reset to default
global_state = {attr: getattr(self, attr) for attr in self._defaults.keys()}
_update_count = self._update_count
self.reset()
# local syncronization settings
self._to_sync = self.dist_sync_on_step
self._should_unsync = False
_temp_compute_on_cpu = self.compute_on_cpu
self.compute_on_cpu = False
self._enable_grad = True # allow grads for batch computation
# calculate batch state and compute batch value
self.update(*args, **kwargs)
batch_val = self.compute()
# reduce batch and global state
self._update_count = _update_count + 1
with torch.no_grad():
self._reduce_states(global_state)
# restore context
self._is_synced = False
self._should_unsync = True
self._to_sync = self.sync_on_compute
self._computed = None
self._enable_grad = False
self.compute_on_cpu = _temp_compute_on_cpu
if self.compute_on_cpu:
self._move_list_states_to_cpu()
return batch_val
def _reduce_states(self, incoming_state: Dict[str, Any]) -> None:
"""Adds an incoming metric state to the current state of the metric.
Args:
incoming_state: a dict containing a metric state similar metric itself
"""
for attr in self._defaults.keys():
local_state = getattr(self, attr)
global_state = incoming_state[attr]
reduce_fn = self._reductions[attr]
if reduce_fn == dim_zero_sum:
reduced = global_state + local_state
elif reduce_fn == dim_zero_mean:
reduced = ((self._update_count - 1) * global_state + local_state).float() / self._update_count
elif reduce_fn == dim_zero_max:
reduced = torch.max(global_state, local_state)
elif reduce_fn == dim_zero_min:
reduced = torch.min(global_state, local_state)
elif reduce_fn == dim_zero_cat:
reduced = global_state + local_state
elif reduce_fn is None and isinstance(global_state, Tensor):
reduced = torch.stack([global_state, local_state])
elif reduce_fn is None and isinstance(global_state, list):
reduced = _flatten([global_state, local_state])
else:
reduced = reduce_fn(torch.stack([global_state, local_state])) # type: ignore
setattr(self, attr, reduced)
def _sync_dist(self, dist_sync_fn: Callable = gather_all_tensors, process_group: Optional[Any] = None) -> None:
input_dict = {attr: getattr(self, attr) for attr in self._reductions}
for attr, reduction_fn in self._reductions.items():
# pre-concatenate metric states that are lists to reduce number of all_gather operations
if reduction_fn == dim_zero_cat and isinstance(input_dict[attr], list) and len(input_dict[attr]) > 1:
input_dict[attr] = [dim_zero_cat(input_dict[attr])]
output_dict = apply_to_collection(
input_dict,
Tensor,
dist_sync_fn,
group=process_group or self.process_group,
)
for attr, reduction_fn in self._reductions.items():
# pre-processing ops (stack or flatten for inputs)
if isinstance(output_dict[attr], list) and len(output_dict[attr]) == 0:
setattr(self, attr, [])
continue
if isinstance(output_dict[attr][0], Tensor):
output_dict[attr] = torch.stack(output_dict[attr])
elif isinstance(output_dict[attr][0], list):
output_dict[attr] = _flatten(output_dict[attr])
if not (callable(reduction_fn) or reduction_fn is None):
raise TypeError("reduction_fn must be callable or None")
reduced = reduction_fn(output_dict[attr]) if reduction_fn is not None else output_dict[attr]
setattr(self, attr, reduced)
def _wrap_update(self, update: Callable) -> Callable:
@functools.wraps(update)
def wrapped_func(*args: Any, **kwargs: Any) -> None:
self._computed = None
self._update_count += 1
with torch.set_grad_enabled(self._enable_grad):
try:
update(*args, **kwargs)
except RuntimeError as err:
if "Expected all tensors to be on" in str(err):
raise RuntimeError(
"Encountered different devices in metric calculation (see stacktrace for details)."
" This could be due to the metric class not being on the same device as input."
f" Instead of `metric={self.__class__.__name__}(...)` try to do"
f" `metric={self.__class__.__name__}(...).to(device)` where"
" device corresponds to the device of the input."
) from err
raise err
if self.compute_on_cpu:
self._move_list_states_to_cpu()
return wrapped_func
def _move_list_states_to_cpu(self) -> None:
"""Move list states to cpu to save GPU memory."""
for key in self._defaults.keys():
current_val = getattr(self, key)
if isinstance(current_val, Sequence):
setattr(self, key, [cur_v.to("cpu") for cur_v in current_val])
def sync(
self,
dist_sync_fn: Optional[Callable] = None,
process_group: Optional[Any] = None,
should_sync: bool = True,
distributed_available: Optional[Callable] = None,
) -> None:
"""Sync function for manually controlling when metrics states should be synced across processes.
Args:
dist_sync_fn: Function to be used to perform states synchronization
process_group:
Specify the process group on which synchronization is called.
default: `None` (which selects the entire world)
should_sync: Whether to apply to state synchronization. This will have an impact
only when running in a distributed setting.
distributed_available: Function to determine if we are running inside a distributed setting
"""
if self._is_synced and should_sync:
raise TorchMetricsUserError("The Metric has already been synced.")
if distributed_available is None and self.distributed_available_fn is not None:
distributed_available = self.distributed_available_fn
is_distributed = distributed_available() if callable(distributed_available) else None
if not should_sync or not is_distributed:
return
if dist_sync_fn is None:
dist_sync_fn = gather_all_tensors
# cache prior to syncing
self._cache = {attr: getattr(self, attr) for attr in self._defaults}
# sync
self._sync_dist(dist_sync_fn, process_group=process_group)
self._is_synced = True
def unsync(self, should_unsync: bool = True) -> None:
"""Unsync function for manually controlling when metrics states should be reverted back to their local
states.
Args:
should_unsync: Whether to perform unsync
"""
if not should_unsync:
return
if not self._is_synced:
raise TorchMetricsUserError("The Metric has already been un-synced.")
if self._cache is None:
raise TorchMetricsUserError("The internal cache should exist to unsync the Metric.")
# if we synced, restore to cache so that we can continue to accumulate un-synced state
for attr, val in self._cache.items():
setattr(self, attr, val)
self._is_synced = False
self._cache = None
@contextmanager
def sync_context(
self,
dist_sync_fn: Optional[Callable] = None,
process_group: Optional[Any] = None,
should_sync: bool = True,
should_unsync: bool = True,
distributed_available: Optional[Callable] = None,
) -> Generator:
"""Context manager to synchronize the states between processes when running in a distributed setting and
restore the local cache states after yielding.
Args:
dist_sync_fn: Function to be used to perform states synchronization
process_group:
Specify the process group on which synchronization is called.
default: `None` (which selects the entire world)
should_sync: Whether to apply to state synchronization. This will have an impact
only when running in a distributed setting.
should_unsync: Whether to restore the cache state so that the metrics can
continue to be accumulated.
distributed_available: Function to determine if we are running inside a distributed setting
"""
self.sync(
dist_sync_fn=dist_sync_fn,
process_group=process_group,
should_sync=should_sync,
distributed_available=distributed_available,
)
yield
self.unsync(should_unsync=self._is_synced and should_unsync)
def _wrap_compute(self, compute: Callable) -> Callable:
@functools.wraps(compute)
def wrapped_func(*args: Any, **kwargs: Any) -> Any:
if self._update_count == 0:
rank_zero_warn(
f"The ``compute`` method of metric {self.__class__.__name__}"
" was called before the ``update`` method which may lead to errors,"
" as metric states have not yet been updated.",
UserWarning,
)
# return cached value
if self._computed is not None:
return self._computed
# compute relies on the sync context manager to gather the states across processes and apply reduction
# if synchronization happened, the current rank accumulated states will be restored to keep
# accumulation going if ``should_unsync=True``,
with self.sync_context(
dist_sync_fn=self.dist_sync_fn,
should_sync=self._to_sync,
should_unsync=self._should_unsync,
):
value = compute(*args, **kwargs)
self._computed = _squeeze_if_scalar(value)
return self._computed
return wrapped_func
@abstractmethod
def update(self, *_: Any, **__: Any) -> None:
"""Override this method to update the state variables of your metric class."""
@abstractmethod
def compute(self) -> Any:
"""Override this method to compute the final metric value from state variables synchronized across the
distributed backend."""
def reset(self) -> None:
"""This method automatically resets the metric state variables to their default value."""
self._update_count = 0
self._forward_cache = None
self._computed = None
for attr, default in self._defaults.items():
current_val = getattr(self, attr)
if isinstance(default, Tensor):
setattr(self, attr, default.detach().clone().to(current_val.device))
else:
setattr(self, attr, [])
# reset internal states
self._cache = None
self._is_synced = False
def clone(self) -> "Metric":
"""Make a copy of the metric."""
return deepcopy(self)
def __getstate__(self) -> Dict[str, Any]:
# ignore update and compute functions for pickling
return {k: v for k, v in self.__dict__.items() if k not in ["update", "compute", "_update_signature"]}
def __setstate__(self, state: Dict[str, Any]) -> None:
# manually restore update and compute functions for pickling
self.__dict__.update(state)
self._update_signature = inspect.signature(self.update)
self.update: Callable = self._wrap_update(self.update) # type: ignore
self.compute: Callable = self._wrap_compute(self.compute) # type: ignore
def __setattr__(self, name: str, value: Any) -> None:
if name in ("higher_is_better", "is_differentiable", "full_state_update"):
raise RuntimeError(f"Can't change const `{name}`.")
super().__setattr__(name, value)
@property
def device(self) -> "torch.device":
"""Return the device of the metric."""
return self._device
def type(self, dst_type: Union[str, torch.dtype]) -> "Metric":
"""Method override default and prevent dtype casting.
Please use `metric.set_dtype(dtype)` instead.
"""
return self
def float(self) -> "Metric":
"""Method override default and prevent dtype casting.
Please use `metric.set_dtype(dtype)` instead.
"""
return self
def double(self) -> "Metric":
"""Method override default and prevent dtype casting.
Please use `metric.set_dtype(dtype)` instead.
"""
return self
def half(self) -> "Metric":
"""Method override default and prevent dtype casting.
Please use `metric.set_dtype(dtype)` instead.
"""
return self
def set_dtype(self, dst_type: Union[str, torch.dtype]) -> "Metric":
"""Special version of `type` for transferring all metric states to specific dtype
Arguments:
dst_type (type or string): the desired type
"""
return super().type(dst_type)
def _apply(self, fn: Callable) -> Module:
"""Overwrite _apply function such that we can also move metric states to the correct device when `.to`,
`.cuda`, etc methods are called."""
this = super()._apply(fn)
# Also apply fn to metric states and defaults
for key, value in this._defaults.items():
if isinstance(value, Tensor):
this._defaults[key] = fn(value)
elif isinstance(value, Sequence):
this._defaults[key] = [fn(v) for v in value]
current_val = getattr(this, key)
if isinstance(current_val, Tensor):
setattr(this, key, fn(current_val))
elif isinstance(current_val, Sequence):
setattr(this, key, [fn(cur_v) for cur_v in current_val])
else:
raise TypeError(
"Expected metric state to be either a Tensor" f"or a list of Tensor, but encountered {current_val}"
)
# make sure to update the device attribute
# if the dummy tensor moves device by fn function we should also update the attribute
self._device = fn(torch.zeros(1, device=self.device)).device
# Additional apply to forward cache and computed attributes (may be nested)
if this._computed is not None:
this._computed = apply_to_collection(this._computed, Tensor, fn)
if this._forward_cache is not None:
this._forward_cache = apply_to_collection(this._forward_cache, Tensor, fn)
return this
def persistent(self, mode: bool = False) -> None:
"""Method for post-init to change if metric states should be saved to its state_dict."""
for key in self._persistent:
self._persistent[key] = mode
def state_dict(
self,
destination: Dict[str, Any] = None,
prefix: str = "",
keep_vars: bool = False,
) -> Optional[Dict[str, Any]]:
destination = super().state_dict(destination=destination, prefix=prefix, keep_vars=keep_vars)
# Register metric states to be part of the state_dict
for key in self._defaults:
if not self._persistent[key]:
continue
current_val = getattr(self, key)
if not keep_vars:
if isinstance(current_val, Tensor):
current_val = current_val.detach()
elif isinstance(current_val, list):
current_val = [cur_v.detach() if isinstance(cur_v, Tensor) else cur_v for cur_v in current_val]
destination[prefix + key] = deepcopy(current_val) # type: ignore
return destination
def _load_from_state_dict(
self,
state_dict: dict,
prefix: str,
local_metadata: dict,
strict: bool,
missing_keys: List[str],
unexpected_keys: List[str],
error_msgs: List[str],
) -> None:
"""Loads metric states from state_dict."""
for key in self._defaults:
name = prefix + key
if name in state_dict:
setattr(self, key, state_dict.pop(name))
super()._load_from_state_dict(
state_dict, prefix, local_metadata, True, missing_keys, unexpected_keys, error_msgs
)
def _filter_kwargs(self, **kwargs: Any) -> Dict[str, Any]:
"""filter kwargs such that they match the update signature of the metric."""
# filter all parameters based on update signature except those of
# type VAR_POSITIONAL (*args) and VAR_KEYWORD (**kwargs)
_params = (inspect.Parameter.VAR_POSITIONAL, inspect.Parameter.VAR_KEYWORD)
_sign_params = self._update_signature.parameters
filtered_kwargs = {
k: v for k, v in kwargs.items() if (k in _sign_params.keys() and _sign_params[k].kind not in _params)
}
exists_var_keyword = any(v.kind == inspect.Parameter.VAR_KEYWORD for v in _sign_params.values())
# if no kwargs filtered, return all kwargs as default
if not filtered_kwargs and not exists_var_keyword:
# no kwargs in update signature -> don't return any kwargs
filtered_kwargs = {}
elif exists_var_keyword:
# kwargs found in update signature -> return all kwargs to be sure to not omit any.
# filtering logic is likely implemented within the update call.
filtered_kwargs = kwargs
return filtered_kwargs
def __hash__(self) -> int:
# we need to add the id here, since PyTorch requires a module hash to be unique.
# Internally, PyTorch nn.Module relies on that for children discovery
# (see https://github.com/pytorch/pytorch/blob/v1.9.0/torch/nn/modules/module.py#L1544)
# For metrics that include tensors it is not a problem,
# since their hash is unique based on the memory location but we cannot rely on that for every metric.
hash_vals = [self.__class__.__name__, id(self)]
for key in self._defaults:
val = getattr(self, key)
# Special case: allow list values, so long
# as their elements are hashable
if hasattr(val, "__iter__") and not isinstance(val, Tensor):
hash_vals.extend(val)
else:
hash_vals.append(val)
return hash(tuple(hash_vals))
def __add__(self, other: "Metric") -> "Metric":
return CompositionalMetric(torch.add, self, other)
def __and__(self, other: "Metric") -> "Metric":
return CompositionalMetric(torch.bitwise_and, self, other)
# Fixme: this shall return bool instead of Metric
def __eq__(self, other: "Metric") -> "Metric": # type: ignore
return CompositionalMetric(torch.eq, self, other)
def __floordiv__(self, other: "Metric") -> "Metric":
return CompositionalMetric(torch.floor_divide, self, other)
def __ge__(self, other: "Metric") -> "Metric":
return CompositionalMetric(torch.ge, self, other)
def __gt__(self, other: "Metric") -> "Metric":
return CompositionalMetric(torch.gt, self, other)
def __le__(self, other: "Metric") -> "Metric":
return CompositionalMetric(torch.le, self, other)
def __lt__(self, other: "Metric") -> "Metric":
return CompositionalMetric(torch.lt, self, other)
def __matmul__(self, other: "Metric") -> "Metric":
return CompositionalMetric(torch.matmul, self, other)
def __mod__(self, other: "Metric") -> "Metric":
return CompositionalMetric(torch.fmod, self, other)
def __mul__(self, other: "Metric") -> "Metric":
return CompositionalMetric(torch.mul, self, other)
# Fixme: this shall return bool instead of Metric
def __ne__(self, other: "Metric") -> "Metric": # type: ignore
return CompositionalMetric(torch.ne, self, other)
def __or__(self, other: "Metric") -> "Metric":
return CompositionalMetric(torch.bitwise_or, self, other)
def __pow__(self, other: "Metric") -> "Metric":
return CompositionalMetric(torch.pow, self, other)
def __radd__(self, other: "Metric") -> "Metric":
return CompositionalMetric(torch.add, other, self)
def __rand__(self, other: "Metric") -> "Metric":
# swap them since bitwise_and only supports that way and it's commutative
return CompositionalMetric(torch.bitwise_and, self, other)
def __rfloordiv__(self, other: "Metric") -> "Metric":
return CompositionalMetric(torch.floor_divide, other, self)
def __rmatmul__(self, other: "Metric") -> "Metric":
return CompositionalMetric(torch.matmul, other, self)
def __rmod__(self, other: "Metric") -> "Metric":
return CompositionalMetric(torch.fmod, other, self)
def __rmul__(self, other: "Metric") -> "Metric":
return CompositionalMetric(torch.mul, other, self)
def __ror__(self, other: "Metric") -> "Metric":
return CompositionalMetric(torch.bitwise_or, other, self)
def __rpow__(self, other: "Metric") -> "Metric":
return CompositionalMetric(torch.pow, other, self)
def __rsub__(self, other: "Metric") -> "Metric":
return CompositionalMetric(torch.sub, other, self)
def __rtruediv__(self, other: "Metric") -> "Metric":
return CompositionalMetric(torch.true_divide, other, self)
def __rxor__(self, other: "Metric") -> "Metric":
return CompositionalMetric(torch.bitwise_xor, other, self)
def __sub__(self, other: "Metric") -> "Metric":
return CompositionalMetric(torch.sub, self, other)
def __truediv__(self, other: "Metric") -> "Metric":
return CompositionalMetric(torch.true_divide, self, other)
def __xor__(self, other: "Metric") -> "Metric":
return CompositionalMetric(torch.bitwise_xor, self, other)
def __abs__(self) -> "Metric":
return CompositionalMetric(torch.abs, self, None)
def __inv__(self) -> "Metric":
return CompositionalMetric(torch.bitwise_not, self, None)
def __invert__(self) -> "Metric":
return self.__inv__()
def __neg__(self) -> "Metric":
return CompositionalMetric(_neg, self, None)
def __pos__(self) -> "Metric":
return CompositionalMetric(torch.abs, self, None)
def __getitem__(self, idx: int) -> "Metric":
return CompositionalMetric(lambda x: x[idx], self, None)
def __getnewargs__(self) -> Tuple:
return (Metric.__str__(self),)
def __iter__(self):
raise NotImplementedError("Metrics does not support iteration.")
def _neg(x: Tensor) -> Tensor:
return -torch.abs(x)
class CompositionalMetric(Metric):
"""Composition of two metrics with a specific operator which will be executed upon metrics compute."""
def __init__(
self,
operator: Callable,
metric_a: Union[Metric, int, float, Tensor],
metric_b: Union[Metric, int, float, Tensor, None],
) -> None:
"""
Args:
operator: the operator taking in one (if metric_b is None)
or two arguments. Will be applied to outputs of metric_a.compute()
and (optionally if metric_b is not None) metric_b.compute()
metric_a: first metric whose compute() result is the first argument of operator
metric_b: second metric whose compute() result is the second argument of operator.
For operators taking in only one input, this should be None
"""
super().__init__()
self.op = operator
if isinstance(metric_a, Tensor):
self.register_buffer("metric_a", metric_a)
else:
self.metric_a = metric_a
if isinstance(metric_b, Tensor):
self.register_buffer("metric_b", metric_b)
else:
self.metric_b = metric_b
def _sync_dist(self, dist_sync_fn: Optional[Callable] = None, process_group: Optional[Any] = None) -> None:
# No syncing required here. syncing will be done in metric_a and metric_b
pass
def update(self, *args: Any, **kwargs: Any) -> None:
if isinstance(self.metric_a, Metric):
self.metric_a.update(*args, **self.metric_a._filter_kwargs(**kwargs))
if isinstance(self.metric_b, Metric):
self.metric_b.update(*args, **self.metric_b._filter_kwargs(**kwargs))
def compute(self) -> Any:
# also some parsing for kwargs?
if isinstance(self.metric_a, Metric):
val_a = self.metric_a.compute()
else:
val_a = self.metric_a
if isinstance(self.metric_b, Metric):
val_b = self.metric_b.compute()
else:
val_b = self.metric_b
if val_b is None:
return self.op(val_a)
return self.op(val_a, val_b)
@torch.jit.unused
def forward(self, *args: Any, **kwargs: Any) -> Any:
val_a = (
self.metric_a(*args, **self.metric_a._filter_kwargs(**kwargs))
if isinstance(self.metric_a, Metric)
else self.metric_a
)
val_b = (
self.metric_b(*args, **self.metric_b._filter_kwargs(**kwargs))
if isinstance(self.metric_b, Metric)
else self.metric_b
)
if val_a is None:
return None
if val_b is None:
if isinstance(self.metric_b, Metric):
return None
# Unary op
return self.op(val_a)
# Binary op
return self.op(val_a, val_b)
def reset(self) -> None:
if isinstance(self.metric_a, Metric):
self.metric_a.reset()
if isinstance(self.metric_b, Metric):
self.metric_b.reset()
def persistent(self, mode: bool = False) -> None:
if isinstance(self.metric_a, Metric):
self.metric_a.persistent(mode=mode)
if isinstance(self.metric_b, Metric):
self.metric_b.persistent(mode=mode)
def __repr__(self) -> str:
_op_metrics = f"(\n {self.op.__name__}(\n {repr(self.metric_a)},\n {repr(self.metric_b)}\n )\n)"
repr_str = self.__class__.__name__ + _op_metrics
return repr_str
def _wrap_compute(self, compute: Callable) -> Callable:
return compute