Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Option to normalize latent interpolation images #438

Merged
merged 3 commits into from
Dec 8, 2020
Merged

Conversation

teddykoker
Copy link
Contributor

What does this PR do?

Adds normalize option to the LatentInterpolator callback; useful if decoder
generates 0-centered images instead of (0, 1) images.

@codecov
Copy link

codecov bot commented Dec 8, 2020

Codecov Report

Merging #438 (2e3199b) into master (dd31a45) will decrease coverage by 0.14%.
The diff coverage is 100.00%.

Impacted file tree graph

@@            Coverage Diff             @@
##           master     #438      +/-   ##
==========================================
- Coverage   80.89%   80.74%   -0.15%     
==========================================
  Files         100      100              
  Lines        5704     5707       +3     
==========================================
- Hits         4614     4608       -6     
- Misses       1090     1099       +9     
Flag Coverage Δ
cpu 25.23% <16.66%> (+<0.01%) ⬆️
pytest 25.23% <16.66%> (+<0.01%) ⬆️
unittests 80.11% <100.00%> (-0.15%) ⬇️

Flags with carried forward coverage won't be shown. Click here to find out more.

Impacted Files Coverage Δ
pl_bolts/callbacks/variational.py 97.67% <100.00%> (+0.17%) ⬆️
pl_bolts/models/vision/image_gpt/igpt_module.py 84.61% <0.00%> (-11.54%) ⬇️

Continue to review full report at Codecov.

Legend - Click here to learn more
Δ = absolute <relative> (impact), ø = not affected, ? = missing data
Powered by Codecov. Last update dd31a45...2e3199b. Read the comment docs.

@ananyahjha93 ananyahjha93 self-requested a review December 8, 2020 17:26
@teddykoker teddykoker merged commit 9503df5 into master Dec 8, 2020
@teddykoker teddykoker deleted the rgbinterpolator branch December 8, 2020 21:49
chris-clem pushed a commit to chris-clem/pytorch-lightning-bolts that referenced this pull request Dec 9, 2020
* add option to normalize latent interpolation images

* linspace

* update

Co-authored-by: ananyahjha93 <[email protected]>
chris-clem pushed a commit to chris-clem/pytorch-lightning-bolts that referenced this pull request Dec 16, 2020
* add option to normalize latent interpolation images

* linspace

* update

Co-authored-by: ananyahjha93 <[email protected]>
chris-clem pushed a commit to chris-clem/pytorch-lightning-bolts that referenced this pull request Dec 17, 2020
* add option to normalize latent interpolation images

* linspace

* update

Co-authored-by: ananyahjha93 <[email protected]>
Borda added a commit that referenced this pull request Jan 18, 2021
* Add DCGAN module

* Undo black on conf.py

* Add tests for DCGAN

* Fix flake8 and codefactor

* Add types and small refactoring

* Make image sampler callback work

* Upgrade DQN to use .log (#404)

* Upgrade DQN to use .log

* remove unused

* pep8

* fixed other dqn

* fix loss test case for batch size variation (#402)

* Decouple DataModules from Models - CPCV2 (#386)

* Decouple dms from CPCV2

* Update tests

* Add docstrings, fix import, and update changelog

* Update transforms

* bugfix: batch_size parameter for DataModules remaining (#344)

* bugfix: batch_size for DataModules remaining

* Update sklearn datamodule tests

* Fix default_transforms. Keep internal for every data module

* fix typo on binary_mnist_datamodule

thanks @akihironitta

Co-authored-by: Akihiro Nitta <[email protected]>

Co-authored-by: Akihiro Nitta <[email protected]>

* Fix a typo/copy paste error (#415)

* Just a Typo (#413)

missing a ' at the end of dataset='stl10

* Remove unused arguments (#418)

* tests: Use cached datasets in LitMNIST and the doctests (#414)

* Use cached datasets

* Use cached datasets in doctests

* clear replay buffer after trajectory (#425)

* stale: update label

* bugfix: Add missing imports to pl_bolts/__init__.py (#430)

* Add missing imports

* Add missing imports

* Apply isort

* Fix CIFAR num_samples (#432)

* Add static type checker mypy to the tests and pre-commit hooks (#433)

* Add mypy check to GitHub Actions

* Run mypy on pl_bolts only

* Add mypy check to pre-commit

* Add an empty line at the end of files

* Update mypy config

* Update mypy config

* Update mypy config

* show

Co-authored-by: Jirka Borovec <[email protected]>

* missing logo

* Add type annotations to pl_bolts/__init__.py (#435)

* Run mypy on pl_bolts only

* Update mypy config

* Add type hints to pl_bolts/__init__.py

* mypy

Co-authored-by: Jirka Borovec <[email protected]>

* skip hanging (#437)

* Option to normalize latent interpolation images (#438)

* add option to normalize latent interpolation images

* linspace

* update

Co-authored-by: ananyahjha93 <[email protected]>

* 0.2.6rc1

* Warnings fix (#449)

* Revert "Merge pull request #1 from ganprad/warnings_fix"

This reverts commit 7c5aaf0.

* Fixes warning related np.integer in SklearnDataModule

Fixes this warning:
```DeprecationWarning: Converting `np.integer` or `np.signedinteger` to a dtype is deprecated. The current result is `np.dtype(np.int_)` which is not strictly correct. Note that the result depends on the system. To ensure stable results use may want to use `np.int64` or `np.int32````

* Refactor datamodules/datasets (#338)

* Remove try: ... except: ...

* Fix experience_source

* Fix imagenet

* Fix kitti

* Fix sklearn

* Fix vocdetection

* Fix typo

* Remove duplicate

* Fix by flake8

* Add optional packages availability vars

* binary_mnist

* Use pl_bolts._SKLEARN_AVAILABLE

* Apply isort

* cifar10

* mnist

* cityscapes

* fashion mnist

* ssl_imagenet

* stl10

* cifar10

* dummy

* fix city

* fix stl10

* fix mnist

* ssl_amdim

* remove unused DataLoader and fix docs

* use from ... import ...

* fix pragma: no cover

* Fix forward reference in annotations

* binmnist

* Same order as imports

* Move vars from __init__ to utils/__init__

* Remove vars from __init__

* Update vars

* Apply isort

* update min requirements - PL 1.1.1 (#448)

* update min requirements

* rc0

* imports

* isort

* flake8

* 1.1.1

* flake8

* docs

* Add missing optional packages to `requirements/*.txt` (#450)

* Import matplotlib at the top

* Add missing optional packages

* Update wandb

* Add mypy to requirements

* update Isort (#457)

* Adding flags to datamodules (#388)

* Adding flags to datamodules

* Finishing up changes

* Fixing syntax error

* More syntax errors

* More

* Adding drop_last flag to sklearn test

* Adding drop_last flag to sklearn test

* Updating doc for reflect drop_last=False

* Adding flags to datamodules

* Finishing up changes

* Fixing syntax error

* More syntax errors

* More

* Adding drop_last flag to sklearn test

* Adding drop_last flag to sklearn test

* Updating doc for reflect drop_last=False

* Cleaning up parameters and docstring

* Fixing syntax error

* Fixing documentation

* Hardcoding shuffle=False for val and test

* Add DCGAN module

* Small fixes

* Remove DataModules

* Update docs

* Update docs

* Update torchvision import

* Import gym as optional package to build docs successfully (#458)

* Import gym as optional package

* Fix import

* Apply isort

* bugfix: batch_size parameter for DataModules remaining (#344)

* bugfix: batch_size for DataModules remaining

* Update sklearn datamodule tests

* Fix default_transforms. Keep internal for every data module

* fix typo on binary_mnist_datamodule

thanks @akihironitta

Co-authored-by: Akihiro Nitta <[email protected]>

Co-authored-by: Akihiro Nitta <[email protected]>

* Option to normalize latent interpolation images (#438)

* add option to normalize latent interpolation images

* linspace

* update

Co-authored-by: ananyahjha93 <[email protected]>

* update min requirements - PL 1.1.1 (#448)

* update min requirements

* rc0

* imports

* isort

* flake8

* 1.1.1

* flake8

* docs

* Apply suggestions from code review

* Apply suggestions from code review

* Add docs

* Use LSUN instead of CIFAR10

* Update TensorboardGenerativeModelImageSampler

* Update docs with lsun

* Update test

* Revert TensorboardGenerativeModelImageSampler changes

* Remove ModelCheckpoint callback and nrow=5 arg

* Apply suggestions from code review

* Fix test_dcgan

* Apply yapf

* Apply suggestions from code review

Co-authored-by: Teddy Koker <[email protected]>
Co-authored-by: Sidhant Sundrani <[email protected]>
Co-authored-by: Akihiro Nitta <[email protected]>
Co-authored-by: Héctor Laria <[email protected]>
Co-authored-by: Bartol Karuza <[email protected]>
Co-authored-by: Happy Sugar Life <[email protected]>
Co-authored-by: Jirka Borovec <[email protected]>
Co-authored-by: Jirka Borovec <[email protected]>
Co-authored-by: ananyahjha93 <[email protected]>
Co-authored-by: Pradeep Ganesan <[email protected]>
Co-authored-by: Brian Ko <[email protected]>
Co-authored-by: Christoph Clement <[email protected]>
@Borda Borda added this to the v0.3 milestone Jan 18, 2021
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
Projects
None yet
Development

Successfully merging this pull request may close these issues.

5 participants