Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

MnasNet性能的问题 #4

Open
lqian opened this issue Oct 13, 2018 · 1 comment
Open

MnasNet性能的问题 #4

lqian opened this issue Oct 13, 2018 · 1 comment

Comments

@lqian
Copy link

lqian commented Oct 13, 2018

在cifar10数据上做了个小测验, base_lr=0.1训练60000轮后,测试精度只有58.74%, 日志显示train loss过大,应该上训练未充分, base_lr=0.0001训练60000轮后,只有28.17%的精度。
`
I1013 11:38:29.757405 3189 caffe.cpp:330] Softmax1 = 1.43176 (* 1 = 1.43176 loss)
I1013 11:38:29.757411 3189 caffe.cpp:330] accuracy = 0.5842

.... base_lr=0.001
I1013 16:11:04.564793 4153 solver.cpp:447] Snapshotting to binary proto file examples/cifar10/cifar10_MnasNet_iter_60000.caffemodel
I1013 16:11:04.612725 4153 sgd_solver.cpp:273] Snapshotting solver state to binary proto file examples/cifar10/cifar10_MnasNet_iter_60000.solverstate
I1013 16:11:04.629349 4153 solver.cpp:330] Iteration 60000, Testing net (#0)
I1013 16:11:09.132675 4173 data_layer.cpp:73] Restarting data prefetching from start.
I1013 16:11:09.322088 4153 solver.cpp:397] Test net output #0: Softmax1 = 2.14012 (* 1 = 2.14012 loss)
I1013 16:11:09.322113 4153 solver.cpp:397] Test net output #1: accuracy = 0.2817

`
caffe time命令输出MnasNet的gpu耗时在14ms以上,

`
./build/tools/caffe time -iterations=100 -gpu=0 -model=examples/cifar10/train_MnasNet.prototxt
....

I1013 12:00:47.575592 3703 caffe.cpp:409] Pooling1 forward: 0.0136704 ms.
I1013 12:00:47.575600 3703 caffe.cpp:412] Pooling1 backward: 0.014039 ms.
I1013 12:00:47.575608 3703 caffe.cpp:409] fc1 forward: 0.038953 ms.
I1013 12:00:47.575616 3703 caffe.cpp:412] fc1 backward: 0.0232038 ms.
I1013 12:00:47.575623 3703 caffe.cpp:409] Softmax1 forward: 0.101257 ms.
I1013 12:00:47.575630 3703 caffe.cpp:412] Softmax1 backward: 0.0176986 ms.
I1013 12:00:47.575664 3703 caffe.cpp:417] Average Forward pass: 14.2767 ms.
I1013 12:00:47.575672 3703 caffe.cpp:419] Average Backward pass: 36.3857 ms.
I1013 12:00:47.575690 3703 caffe.cpp:421] Average Forward-Backward: 50.905 ms.
I1013 12:00:47.575698 3703 caffe.cpp:423] Total Time: 5090.5 ms.
I1013 12:00:47.575704 3703 caffe.cpp:424] *** Benchmark ends ***

`
这个性能比darknet-19差多了, 大神能否提供一些测试的性能数据作为参考。

训练用的solver文件
`

net: "examples/cifar10/train_MnasNet.prototxt"
test_iter: 100
test_interval: 1000
base_lr: 0.0001
momentum: 0.9
weight_decay: 0.005
lr_policy: "step"
gamma: 1
stepsize: 5000
display: 100
max_iter: 160000
snapshot: 10000
snapshot_prefix: "examples/cifar10/cifar10_MnasNet"
solver_mode: GPU
`
@LiJianfei06

@LiJianfei06
Copy link
Owner

@lqian
我上传了一个之前在猫狗分类是训练的模型,你可以试一下(数据集划分了20000张训练图,5000张测试图,初步训练了一下精度96.3%以上吧)
cifar10你是怎么训练的?这个网络文件下采样总共是32。

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

2 participants