-
Notifications
You must be signed in to change notification settings - Fork 13
/
motionblur.py
419 lines (312 loc) · 12.8 KB
/
motionblur.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
import numpy as np
from PIL import Image, ImageDraw, ImageFilter
from numpy.random import uniform, triangular, beta
from math import pi
from pathlib import Path
from scipy.signal import convolve
# tiny error used for nummerical stability
eps = 0.1
def softmax(x):
"""Compute softmax values for each sets of scores in x."""
e_x = np.exp(x - np.max(x))
return e_x / e_x.sum()
def norm(lst: list) -> float:
"""[summary]
L^2 norm of a list
[description]
Used for internals
Arguments:
lst {list} -- vector
"""
if not isinstance(lst, list):
raise ValueError("Norm takes a list as its argument")
if lst == []:
return 0
return (sum((i**2 for i in lst)))**0.5
def polar2z(r: np.ndarray, θ: np.ndarray) -> np.ndarray:
"""[summary]
Takes a list of radii and angles (radians) and
converts them into a corresponding list of complex
numbers x + yi.
[description]
Arguments:
r {np.ndarray} -- radius
θ {np.ndarray} -- angle
Returns:
[np.ndarray] -- list of complex numbers r e^(i theta) as x + iy
"""
return r * np.exp(1j * θ)
class Kernel(object):
"""[summary]
Class representing a motion blur kernel of a given intensity.
[description]
Keyword Arguments:
size {tuple} -- Size of the kernel in px times px
(default: {(100, 100)})
intensity {float} -- Float between 0 and 1.
Intensity of the motion blur.
: 0 means linear motion blur and 1 is a highly non linear
and often convex motion blur path. (default: {0})
Attribute:
kernelMatrix -- Numpy matrix of the kernel of given intensity
Properties:
applyTo -- Applies kernel to image
(pass as path, pillow image or np array)
Raises:
ValueError
"""
def __init__(self, size: tuple = (100, 100), intensity: float=0):
# checking if size is correctly given
if not isinstance(size, tuple):
raise ValueError("Size must be TUPLE of 2 positive integers")
elif len(size) != 2 or type(size[0]) != type(size[1]) != int:
raise ValueError("Size must be tuple of 2 positive INTEGERS")
elif size[0] < 0 or size[1] < 0:
raise ValueError("Size must be tuple of 2 POSITIVE integers")
# check if intensity is float (int) between 0 and 1
if type(intensity) not in [int, float, np.float32, np.float64]:
raise ValueError("Intensity must be a number between 0 and 1")
elif intensity < 0 or intensity > 1:
raise ValueError("Intensity must be a number between 0 and 1")
# saving args
self.SIZE = size
self.INTENSITY = intensity
# deriving quantities
# we super size first and then downscale at the end for better
# anti-aliasing
self.SIZEx2 = tuple([2 * i for i in size])
self.x, self.y = self.SIZEx2
# getting length of kernel diagonal
self.DIAGONAL = (self.x**2 + self.y**2)**0.5
# flag to see if kernel has been calculated already
self.kernel_is_generated = False
def _createPath(self):
"""[summary]
creates a motion blur path with the given intensity.
[description]
Proceede in 5 steps
1. Get a random number of random step sizes
2. For each step get a random angle
3. combine steps and angles into a sequence of increments
4. create path out of increments
5. translate path to fit the kernel dimensions
NOTE: "random" means random but might depend on the given intensity
"""
# first we find the lengths of the motion blur steps
def getSteps():
"""[summary]
Here we calculate the length of the steps taken by
the motion blur
[description]
We want a higher intensity lead to a longer total motion
blur path and more different steps along the way.
Hence we sample
MAX_PATH_LEN =[U(0,1) + U(0, intensity^2)] * diagonal * 0.75
and each step: beta(1, 30) * (1 - self.INTENSITY + eps) * diagonal)
"""
# getting max length of blur motion
self.MAX_PATH_LEN = 0.75 * self.DIAGONAL * \
(uniform() + uniform(0, self.INTENSITY**2))
# getting step
steps = []
while sum(steps) < self.MAX_PATH_LEN:
# sample next step
step = beta(1, 30) * (1 - self.INTENSITY + eps) * self.DIAGONAL
if step < self.MAX_PATH_LEN:
steps.append(step)
# note the steps and the total number of steps
self.NUM_STEPS = len(steps)
self.STEPS = np.asarray(steps)
def getAngles():
"""[summary]
Gets an angle for each step
[description]
The maximal angle should be larger the more
intense the motion is. So we sample it from a
U(0, intensity * pi)
We sample "jitter" from a beta(2,20) which is the probability
that the next angle has a different sign than the previous one.
"""
# same as with the steps
# first we get the max angle in radians
self.MAX_ANGLE = uniform(0, self.INTENSITY * pi)
# now we sample "jitter" which is the probability that the
# next angle has a different sign than the previous one
self.JITTER = beta(2, 20)
# initialising angles (and sign of angle)
angles = [uniform(low=-self.MAX_ANGLE, high=self.MAX_ANGLE)]
while len(angles) < self.NUM_STEPS:
# sample next angle (absolute value)
angle = triangular(0, self.INTENSITY *
self.MAX_ANGLE, self.MAX_ANGLE + eps)
# with jitter probability change sign wrt previous angle
if uniform() < self.JITTER:
angle *= - np.sign(angles[-1])
else:
angle *= np.sign(angles[-1])
angles.append(angle)
# save angles
self.ANGLES = np.asarray(angles)
# Get steps and angles
getSteps()
getAngles()
# Turn them into a path
####
# we turn angles and steps into complex numbers
complex_increments = polar2z(self.STEPS, self.ANGLES)
# generate path as the cumsum of these increments
self.path_complex = np.cumsum(complex_increments)
# find center of mass of path
self.com_complex = sum(self.path_complex) / self.NUM_STEPS
# Shift path s.t. center of mass lies in the middle of
# the kernel and a apply a random rotation
###
# center it on COM
center_of_kernel = (self.x + 1j * self.y) / 2
self.path_complex -= self.com_complex
# randomly rotate path by an angle a in (0, pi)
self.path_complex *= np.exp(1j * uniform(0, pi))
# center COM on center of kernel
self.path_complex += center_of_kernel
# convert complex path to final list of coordinate tuples
self.path = [(i.real, i.imag) for i in self.path_complex]
def _createKernel(self, save_to: Path=None, show: bool=False):
"""[summary]
Finds a kernel (psf) of given intensity.
[description]
use displayKernel to actually see the kernel.
Keyword Arguments:
save_to {Path} -- Image file to save the kernel to. {None}
show {bool} -- shows kernel if true
"""
# check if we haven't already generated a kernel
if self.kernel_is_generated:
return None
# get the path
self._createPath()
# Initialise an image with super-sized dimensions
# (pillow Image object)
self.kernel_image = Image.new("RGB", self.SIZEx2)
# ImageDraw instance that is linked to the kernel image that
# we can use to draw on our kernel_image
self.painter = ImageDraw.Draw(self.kernel_image)
# draw the path
self.painter.line(xy=self.path, width=int(self.DIAGONAL / 150))
# applying gaussian blur for realism
self.kernel_image = self.kernel_image.filter(
ImageFilter.GaussianBlur(radius=int(self.DIAGONAL * 0.01)))
# Resize to actual size
self.kernel_image = self.kernel_image.resize(
self.SIZE, resample=Image.LANCZOS)
# convert to gray scale
self.kernel_image = self.kernel_image.convert("L")
# flag that we have generated a kernel
self.kernel_is_generated = True
def displayKernel(self, save_to: Path=None, show: bool=True):
"""[summary]
Finds a kernel (psf) of given intensity.
[description]
Saves the kernel to save_to if needed or shows it
is show true
Keyword Arguments:
save_to {Path} -- Image file to save the kernel to. {None}
show {bool} -- shows kernel if true
"""
# generate kernel if needed
self._createKernel()
# save if needed
if save_to is not None:
save_to_file = Path(save_to)
# save Kernel image
self.kernel_image.save(save_to_file)
else:
# Show kernel
self.kernel_image.show()
@property
def kernelMatrix(self) -> np.ndarray:
"""[summary]
Kernel matrix of motion blur of given intensity.
[description]
Once generated, it stays the same.
Returns:
numpy ndarray
"""
# generate kernel if needed
self._createKernel()
kernel = np.asarray(self.kernel_image, dtype=np.float32)
kernel /= np.sum(kernel)
return kernel
@kernelMatrix.setter
def kernelMatrix(self, *kargs):
raise NotImplementedError("Can't manually set kernel matrix yet")
def applyTo(self, image, keep_image_dim: bool = False) -> Image:
"""[summary]
Applies kernel to one of the following:
1. Path to image file
2. Pillow image object
3. (H,W,3)-shaped numpy array
[description]
Arguments:
image {[str, Path, Image, np.ndarray]}
keep_image_dim {bool} -- If true, then we will
conserve the image dimension after blurring
by using "same" convolution instead of "valid"
convolution inside the scipy convolve function.
Returns:
Image -- [description]
"""
# calculate kernel if haven't already
self._createKernel()
def applyToPIL(image: Image, keep_image_dim: bool = False) -> Image:
"""[summary]
Applies the kernel to an PIL.Image instance
[description]
converts to RGB and applies the kernel to each
band before recombining them.
Arguments:
image {Image} -- Image to convolve
keep_image_dim {bool} -- If true, then we will
conserve the image dimension after blurring
by using "same" convolution instead of "valid"
convolution inside the scipy convolve function.
Returns:
Image -- blurred image
"""
# convert to RGB
image = image.convert(mode="RGB")
conv_mode = "valid"
if keep_image_dim:
conv_mode = "same"
result_bands = ()
for band in image.split():
# convolve each band individually with kernel
result_band = convolve(
band, self.kernelMatrix, mode=conv_mode).astype("uint8")
# collect bands
result_bands += result_band,
# stack bands back together
result = np.dstack(result_bands)
# Get image
return Image.fromarray(result)
# If image is Path
if isinstance(image, str) or isinstance(image, Path):
# open image as Image class
image_path = Path(image)
image = Image.open(image_path)
return applyToPIL(image, keep_image_dim)
elif isinstance(image, Image.Image):
# apply kernel
return applyToPIL(image, keep_image_dim)
elif isinstance(image, np.ndarray):
# ASSUMES we have an array of the form (H, W, 3)
###
# initiate Image object from array
image = Image.fromarray(image)
return applyToPIL(image, keep_image_dim)
else:
raise ValueError("Cannot apply kernel to this type.")
if __name__ == '__main__':
image = Image.open("./images/moon.png")
image.show()
k = Kernel()
k.applyTo(image, keep_image_dim=True).show()