-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmatrix.h
272 lines (235 loc) · 4.04 KB
/
matrix.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
#ifndef MATRIX_HPP
#define MATRIX_HPP 1
#include <iostream>
#include <random>
#include <cmath>
#include <vector>
#define GAUSS 1
#define UNIFORM 0
#define EMPTY -1
#define M_PI 3.14159265358979323846
#define M_PI_2 1.57079632679489661923
#define M_PI_4 0.78539816339744830962
#define M_1_PI 0.31830988618379067154
#define M_2_PI 0.63661977236758134308
#define M_2_SQRTPI 1.12837916709551257390
#define M_SQRT2 1.41421356237309504880
typedef long long ll;
typedef long double ld;
ll qpow(ll a,ll n,ll mod)
{
if(n==0LL)
{
return 1LL;
}
else if(n==1LL)
{
return a;
}
else
{
ll ans=qpow(a,n/2LL,mod);
if(n%2LL==1LL)
{
return ans*ans%mod*a%mod;
}
else
{
return ans*ans%mod;
}
}
}
ll rev(ll a,ll n)
{
if(a==0LL)
{
return 0;
}
else
{
return qpow(a,n-2,n);
}
}
//template// <int n,int m>
class matrix //(const int& n,int m,int q=998244353,int rd=UNIFORM,double sig=0.0)
{
public:
int n,m;
matrix(int n=0,int m=1,int q=998244353,int rd=EMPTY,double sig=0.0);
matrix(const matrix& m);
std::vector<ll>& operator[](int i);
const std::vector<ll>& operator[](int i) const;
matrix& operator=(matrix a);
matrix operator~(void);
friend matrix operator+(matrix a,matrix b);
friend matrix operator-(matrix a,matrix b);
friend matrix operator*(matrix a,matrix b);
friend matrix f(matrix mx,int q_,int t_);
private:
int q,rd;
double sig;
int mod;
std::vector<std::vector<ll> > v;
};
//friend matrix matrix::operator~(matrix a)
matrix::matrix(int _n,int _m,int _q,int _rd,double _sig): n(_n),m(_m),q(_q),rd(_rd),sig(_sig),v(_n,std::vector<ll>(_m))
{
if(rd==GAUSS)
{
std::random_device seed;
std::default_random_engine gen{rand()};
std::normal_distribution<double> rd(0.0,sig);
for(int i=0;i<n;i++)
{
for(int j=0;j<m;j++)
{
v[i][j]=(ll(round(rd(gen)))%q+q)%q;
}
}
}
else if(rd==UNIFORM)
{
std::random_device seed;
std::default_random_engine gen{rand()};
std::uniform_int_distribution<int> rd(0,q-1);
for(int i=0;i<n;i++)
{
for(int j=0;j<m;j++)
{
v[i][j]=ll(rd(gen));
}
}
}
else
{
for(int i=0;i<n;i++)
{
for(int j=0;j<m;j++)
{
v[i][j]=0LL;
}
}
}
}
matrix::matrix(const matrix& b): n(b.n),m(b.m),q(b.q),rd(b.rd),sig(b.sig),v(b.v) {}
std::vector<ll>& matrix::operator[](int i)
{
return v[i];
}
const std::vector<ll>& matrix::operator[](int i) const
{
return v[i];
}
matrix& matrix::operator=(matrix a)
{
n=a.n;
m=a.m;
q=a.q;
rd=a.rd;
sig=a.sig;
v.resize(n);
for(int i=0;i<n;i++)
{
v[i].resize(m);
for(int j=0;j<m;j++)
{
v[i][j]=a[i][j];
}
}
return *this;
}
matrix matrix::operator~(void)
{
matrix tmp(m,n,q,rd,sig);
for(int i=0;i<n;i++)
{
for(int j=0;j<m;j++)
{
tmp[j][i]=v[i][j];
}
}
return tmp;
}
matrix operator+(matrix a,matrix b)
{
matrix tmp(a);
for(int i=0;i<a.n;i++)
{
for(int j=0;j<a.m;j++)
{
tmp[i][j]=((a[i][j]+b[i][j])%tmp.q+tmp.q)%tmp.q;
}
}
return tmp;
}
matrix operator-(matrix a,matrix b)
{
matrix tmp(a);
for(int i=0;i<a.n;i++)
{
for(int j=0;j<a.m;j++)
{
tmp[i][j]=((a[i][j]-b[i][j])%tmp.q+tmp.q)%tmp.q;
}
}
return tmp;
}
matrix operator*(matrix a,matrix b)
{
matrix tmp(a.n,b.m,a.q);
for(int i=0;i<a.n;i++)
{
for(int j=0;j<b.m;j++)
{
for(int k=0;k<a.m;k++)
{
tmp[i][j]+=((a[i][k]*b[k][j])%tmp.q+tmp.q)%tmp.q;
tmp[i][j]%=tmp.q;
}
}
}
return tmp;
}
matrix f(matrix mx,int q_)
{
matrix tmp(mx);//std::cout<<t_<<"adsf";
for(int i=0;i<tmp.n;i++)
{
for(int j=0;j<tmp.m;j++)
{
if(tmp[i][j]==1)
{
tmp[i][j]=q_/2;
}
//tmp[i][j]=ll(round(ld(tmp[i][j])*ld(q_)/2.0));
}
}
return tmp;
}
matrix f_rev(matrix mx,int q_)
{
matrix tmp(mx);//std::cout<<t_<<"adsf";
for(int i=0;i<tmp.n;i++)
{
for(int j=0;j<tmp.m;j++)
{
int temp=(tmp[i][j]%q_+q_)%q_;
//std::cout<<temp<<"a";
if(abs(temp-q_/2)<=abs(temp) && abs(temp-q_/2)<=abs(q_-temp))
{
tmp[i][j]=1;
}
else
{
tmp[i][j]=0;
}/*
tmp[i][j]=ll(round(ld(tmp[i][j])*2.0/ld(q_)));
if(tmp[i][j]==2)
{
tmp[i][j]=0;
}*/
}
}
return tmp;
}
#endif