-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathp1897R2_initial_executor_algorithms_for_cpp23.html
1054 lines (1036 loc) · 93.1 KB
/
p1897R2_initial_executor_algorithms_for_cpp23.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml" lang xml:lang>
<head>
<meta charset="utf-8" />
<meta name="generator" content="mpark/wg21" />
<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes" />
<meta name="dcterms.date" content="2020-01-10" />
<title>Towards C++23 executors: A proposal for an initial set of algorithms</title>
<style>
code{white-space: pre-wrap;}
span.smallcaps{font-variant: small-caps;}
span.underline{text-decoration: underline;}
div.column{display: inline-block; vertical-align: top; width: 50%;}
</style>
<style>
code.sourceCode > span { display: inline-block; line-height: 1.25; }
code.sourceCode > span { color: inherit; text-decoration: inherit; }
code.sourceCode > span:empty { height: 1.2em; }
.sourceCode { overflow: visible; }
code.sourceCode { white-space: pre; position: relative; }
div.sourceCode { margin: 1em 0; }
pre.sourceCode { margin: 0; }
@media screen {
div.sourceCode { overflow: auto; }
}
@media print {
code.sourceCode { white-space: pre-wrap; }
code.sourceCode > span { text-indent: -5em; padding-left: 5em; }
}
pre.numberSource code
{ counter-reset: source-line 0; }
pre.numberSource code > span
{ position: relative; left: -4em; counter-increment: source-line; }
pre.numberSource code > span > a:first-child::before
{ content: counter(source-line);
position: relative; left: -1em; text-align: right; vertical-align: baseline;
border: none; display: inline-block;
-webkit-touch-callout: none; -webkit-user-select: none;
-khtml-user-select: none; -moz-user-select: none;
-ms-user-select: none; user-select: none;
padding: 0 4px; width: 4em;
color: #aaaaaa;
}
pre.numberSource { margin-left: 3em; border-left: 1px solid #aaaaaa; padding-left: 4px; }
div.sourceCode
{ background-color: #f6f8fa; }
@media screen {
code.sourceCode > span > a:first-child::before { text-decoration: underline; }
}
code span. { } /* Normal */
code span.al { color: #ff0000; } /* Alert */
code span.an { } /* Annotation */
code span.at { } /* Attribute */
code span.bn { color: #9f6807; } /* BaseN */
code span.bu { color: #9f6807; } /* BuiltIn */
code span.cf { color: #00607c; } /* ControlFlow */
code span.ch { color: #9f6807; } /* Char */
code span.cn { } /* Constant */
code span.co { color: #008000; font-style: italic; } /* Comment */
code span.cv { color: #008000; font-style: italic; } /* CommentVar */
code span.do { color: #008000; } /* Documentation */
code span.dt { color: #00607c; } /* DataType */
code span.dv { color: #9f6807; } /* DecVal */
code span.er { color: #ff0000; font-weight: bold; } /* Error */
code span.ex { } /* Extension */
code span.fl { color: #9f6807; } /* Float */
code span.fu { } /* Function */
code span.im { } /* Import */
code span.in { color: #008000; } /* Information */
code span.kw { color: #00607c; } /* Keyword */
code span.op { color: #af1915; } /* Operator */
code span.ot { } /* Other */
code span.pp { color: #6f4e37; } /* Preprocessor */
code span.re { } /* RegionMarker */
code span.sc { color: #9f6807; } /* SpecialChar */
code span.ss { color: #9f6807; } /* SpecialString */
code span.st { color: #9f6807; } /* String */
code span.va { } /* Variable */
code span.vs { color: #9f6807; } /* VerbatimString */
code span.wa { color: #008000; font-weight: bold; } /* Warning */
code.diff {color: #898887}
code.diff span.va {color: #006e28}
code.diff span.st {color: #bf0303}
</style>
<style type="text/css">
body {
margin: 5em;
font-family: serif;
hyphens: auto;
line-height: 1.35;
}
div.wrapper {
max-width: 60em;
margin: auto;
}
ul {
list-style-type: none;
padding-left: 2em;
margin-top: -0.2em;
margin-bottom: -0.2em;
}
a {
text-decoration: none;
color: #4183C4;
}
a.hidden_link {
text-decoration: none;
color: inherit;
}
li {
margin-top: 0.6em;
margin-bottom: 0.6em;
}
h1, h2, h3, h4 {
position: relative;
line-height: 1;
}
a.self-link {
position: absolute;
top: 0;
left: calc(-1 * (3.5rem - 26px));
width: calc(3.5rem - 26px);
height: 2em;
text-align: center;
border: none;
transition: opacity .2s;
opacity: .5;
font-family: sans-serif;
font-weight: normal;
font-size: 83%;
}
a.self-link:hover { opacity: 1; }
a.self-link::before { content: "§"; }
ul > li:before {
content: "\2014";
position: absolute;
margin-left: -1.5em;
}
:target { background-color: #C9FBC9; }
:target .codeblock { background-color: #C9FBC9; }
:target ul { background-color: #C9FBC9; }
.abbr_ref { float: right; }
.folded_abbr_ref { float: right; }
:target .folded_abbr_ref { display: none; }
:target .unfolded_abbr_ref { float: right; display: inherit; }
.unfolded_abbr_ref { display: none; }
.secnum { display: inline-block; min-width: 35pt; }
.header-section-number { display: inline-block; min-width: 35pt; }
.annexnum { display: block; }
div.sourceLinkParent {
float: right;
}
a.sourceLink {
position: absolute;
opacity: 0;
margin-left: 10pt;
}
a.sourceLink:hover {
opacity: 1;
}
a.itemDeclLink {
position: absolute;
font-size: 75%;
text-align: right;
width: 5em;
opacity: 0;
}
a.itemDeclLink:hover { opacity: 1; }
span.marginalizedparent {
position: relative;
left: -5em;
}
li span.marginalizedparent { left: -7em; }
li ul > li span.marginalizedparent { left: -9em; }
li ul > li ul > li span.marginalizedparent { left: -11em; }
li ul > li ul > li ul > li span.marginalizedparent { left: -13em; }
div.footnoteNumberParent {
position: relative;
left: -4.7em;
}
a.marginalized {
position: absolute;
font-size: 75%;
text-align: right;
width: 5em;
}
a.enumerated_item_num {
position: relative;
left: -3.5em;
display: inline-block;
margin-right: -3em;
text-align: right;
width: 3em;
}
div.para { margin-bottom: 0.6em; margin-top: 0.6em; text-align: justify; }
div.section { text-align: justify; }
div.sentence { display: inline; }
span.indexparent {
display: inline;
position: relative;
float: right;
right: -1em;
}
a.index {
position: absolute;
display: none;
}
a.index:before { content: "⟵"; }
a.index:target {
display: inline;
}
.indexitems {
margin-left: 2em;
text-indent: -2em;
}
div.itemdescr {
margin-left: 3em;
}
.bnf {
font-family: serif;
margin-left: 40pt;
margin-top: 0.5em;
margin-bottom: 0.5em;
}
.ncbnf {
font-family: serif;
margin-top: 0.5em;
margin-bottom: 0.5em;
margin-left: 40pt;
}
.ncsimplebnf {
font-family: serif;
font-style: italic;
margin-top: 0.5em;
margin-bottom: 0.5em;
margin-left: 40pt;
background: inherit;
}
span.textnormal {
font-style: normal;
font-family: serif;
white-space: normal;
display: inline-block;
}
span.rlap {
display: inline-block;
width: 0px;
}
span.descr { font-style: normal; font-family: serif; }
span.grammarterm { font-style: italic; }
span.term { font-style: italic; }
span.terminal { font-family: monospace; font-style: normal; }
span.nonterminal { font-style: italic; }
span.tcode { font-family: monospace; font-style: normal; }
span.textbf { font-weight: bold; }
span.textsc { font-variant: small-caps; }
a.nontermdef { font-style: italic; font-family: serif; }
span.emph { font-style: italic; }
span.techterm { font-style: italic; }
span.mathit { font-style: italic; }
span.mathsf { font-family: sans-serif; }
span.mathrm { font-family: serif; font-style: normal; }
span.textrm { font-family: serif; }
span.textsl { font-style: italic; }
span.mathtt { font-family: monospace; font-style: normal; }
span.mbox { font-family: serif; font-style: normal; }
span.ungap { display: inline-block; width: 2pt; }
span.textit { font-style: italic; }
span.texttt { font-family: monospace; }
span.tcode_in_codeblock { font-family: monospace; font-style: normal; }
span.phantom { color: white; }
span.math { font-style: normal; }
span.mathblock {
display: block;
margin-left: auto;
margin-right: auto;
margin-top: 1.2em;
margin-bottom: 1.2em;
text-align: center;
}
span.mathalpha {
font-style: italic;
}
span.synopsis {
font-weight: bold;
margin-top: 0.5em;
display: block;
}
span.definition {
font-weight: bold;
display: block;
}
.codeblock {
margin-left: 1.2em;
line-height: 127%;
}
.outputblock {
margin-left: 1.2em;
line-height: 127%;
}
div.itemdecl {
margin-top: 2ex;
}
code.itemdeclcode {
white-space: pre;
display: block;
}
span.textsuperscript {
vertical-align: super;
font-size: smaller;
line-height: 0;
}
.footnotenum { vertical-align: super; font-size: smaller; line-height: 0; }
.footnote {
font-size: small;
margin-left: 2em;
margin-right: 2em;
margin-top: 0.6em;
margin-bottom: 0.6em;
}
div.minipage {
display: inline-block;
margin-right: 3em;
}
div.numberedTable {
text-align: center;
margin: 2em;
}
div.figure {
text-align: center;
margin: 2em;
}
table {
border: 1px solid black;
border-collapse: collapse;
margin-left: auto;
margin-right: auto;
margin-top: 0.8em;
text-align: left;
hyphens: none;
}
td, th {
padding-left: 1em;
padding-right: 1em;
vertical-align: top;
}
td.empty {
padding: 0px;
padding-left: 1px;
}
td.left {
text-align: left;
}
td.right {
text-align: right;
}
td.center {
text-align: center;
}
td.justify {
text-align: justify;
}
td.border {
border-left: 1px solid black;
}
tr.rowsep, td.cline {
border-top: 1px solid black;
}
tr.even, tr.odd {
border-bottom: 1px solid black;
}
tr.capsep {
border-top: 3px solid black;
border-top-style: double;
}
tr.header {
border-bottom: 3px solid black;
border-bottom-style: double;
}
th {
border-bottom: 1px solid black;
}
span.centry {
font-weight: bold;
}
div.table {
display: block;
margin-left: auto;
margin-right: auto;
text-align: center;
width: 90%;
}
span.indented {
display: block;
margin-left: 2em;
margin-bottom: 1em;
margin-top: 1em;
}
ol.enumeratea { list-style-type: none; background: inherit; }
ol.enumerate { list-style-type: none; background: inherit; }
code.sourceCode > span { display: inline; }
div#refs p { padding-left: 32px; text-indent: -32px; }
</style>
<link href="" rel="icon" />
<!--[if lt IE 9]>
<script src="//cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.3/html5shiv-printshiv.min.js"></script>
<![endif]-->
</head>
<body>
<div class="wrapper">
<header id="title-block-header">
<h1 class="title" style="text-align:center">Towards C++23 executors: A proposal for an initial set of algorithms</h1>
<table style="border:none;float:right">
<tr>
<td>Document #: </td>
<td>P1897R2</td>
</tr>
<tr>
<td>Date: </td>
<td>2020-01-10</td>
</tr>
<tr>
<td style="vertical-align:top">Project: </td>
<td>Programming Language C++<br>
SG1<br>
</td>
</tr>
<tr>
<td style="vertical-align:top">Reply-to: </td>
<td>
Lee Howes<br><<a href="mailto:[email protected]" class="email">[email protected]</a>><br>
</td>
</tr>
</table>
</header>
<div style="clear:both">
<h1 id="changelog"><span class="header-section-number">1</span> Changelog<a href="#changelog" class="self-link"></a></h1>
<h2 id="differences-between-r1-and-r2"><span class="header-section-number">1.1</span> Differences between R1 and R2<a href="#differences-between-r1-and-r2" class="self-link"></a></h2>
<ul>
<li>Add <code>just_via</code> algorithm to allow type customization at the head of a work chain.</li>
<li>Add <code>when_all</code> to fill missing gap in the ability to join sender chains.</li>
<li>Add <code>indexed_for</code> based on feedback during the Belfast meeting to have a side-effecting algorithm.</li>
<li>Propose question on replacing <code>bulk_execute</code> with <code>indexed_for</code> for the Prague meeting.</li>
</ul>
<h2 id="differences-between-r0-and-r1"><span class="header-section-number">1.2</span> Differences between R0 and R1<a href="#differences-between-r0-and-r1" class="self-link"></a></h2>
<ul>
<li>Improve examples to be clearer, and fully expanded into function call form.</li>
<li>Add reference to range.adapter.</li>
<li>Remove <code>is_noexcept_sender</code>.</li>
<li>Remove <code>just_error</code>.</li>
<li>Clarified use of parameter packs of values and errors.</li>
<li>Removed confusing use of <code>on</code> in addition to <code>via</code> in the final example.</li>
</ul>
<h1 id="introduction"><span class="header-section-number">2</span> Introduction<a href="#introduction" class="self-link"></a></h1>
<p>In <span class="citation" data-cites="P0443R11">[<a href="#ref-P0443R11" role="doc-biblioref">P0443R11</a>]</span> we have included the fundamental principles described in <span class="citation" data-cites="P1660R0">[<a href="#ref-P1660R0" role="doc-biblioref">P1660R0</a>]</span>, and the fundamental requirement to customize algorithms. In recent discussions we have converged to an understanding of the <code>submit</code> operation on a <code>sender</code> acting as a fundamental interoperation primitive, and algorithm customization giving us full flexibility to optimize, to offload and to avoid synchronization in chains of mutually compatible algorithm customizations.</p>
<p>As a starting point, in <span class="citation" data-cites="P0443R11">[<a href="#ref-P0443R11" role="doc-biblioref">P0443R11</a>]</span> we only include a <code>bulk_execute</code> algorithm, that satisfies the core requirement we planned with <span class="citation" data-cites="P0443R11">[<a href="#ref-P0443R11" role="doc-biblioref">P0443R11</a>]</span> to provide scalar and bulk execution. To make the C++23 solution completely practical, we should extend the set of algorithms, however. This paper suggests an expanded initial set that enables early useful work chains. This set is intended to act as a discussion focus for us to discuss one by one, and to analyze the finer constraints of the wording to make sure we do not over-constrain the design.</p>
<p>In the long run we expect to have a much wider set of algorithms, potentially covering the full set in the current C++20 parallel algorithms. The precise customization of these algorithms is open to discussion: they may be individually customized and individually defaulted, or they may be optionally individually customized but defaulted in a tree such that customizing one is known to accelerate dependencies. It is open to discussion how we achieve this and that is an independent topic, beyond the scope of this paper.</p>
<h2 id="summary"><span class="header-section-number">2.1</span> Summary<a href="#summary" class="self-link"></a></h2>
<p>Starting with <span class="citation" data-cites="P0443R11">[<a href="#ref-P0443R11" role="doc-biblioref">P0443R11</a>]</span> as a baseline we have the following customization points:</p>
<ul>
<li><code>execute(executor, invocable) -> void</code></li>
<li><code>submit(sender, receiver) -> void</code></li>
<li><code>schedule(scheduler) -> sender</code></li>
<li><code>set_done</code></li>
<li><code>set_error</code></li>
<li><code>set_value</code></li>
</ul>
<p>and the following Concepts:</p>
<ul>
<li><code>executor</code></li>
<li><code>scheduler</code></li>
<li><code>callback_signal</code></li>
<li><code>callback</code></li>
<li><code>sender</code></li>
</ul>
<p>We propose immediately discussing the addition of the following algorithms:</p>
<ul>
<li><code>just(v)</code>
<ul>
<li>returns a <code>sender</code> of the value <code>v</code></li>
</ul></li>
<li><code>just_via(sch, v)</code>
<ul>
<li>a variant of the above that embeds the <code>via</code> algorithm</li>
</ul></li>
<li><code>via(s, sch)</code>
<ul>
<li>returns a sender that propagates the value or error from <code>s</code> on <code>sch</code>’s execution context</li>
</ul></li>
<li><code>sync_wait(s)</code>
<ul>
<li>blocks and returns the value type of the sender, throwing on error</li>
</ul></li>
<li><code>when_all(s...)</code>
<ul>
<li>returns a sender that completes when all Senders <code>s...</code> complete, propagating all values</li>
</ul></li>
<li><code>indexed_for(s, policy, rng, f)</code>
<ul>
<li>returns a sender that applies <code>f</code> for each element of <code>rng</code> passing that element and the values from the incoming sender, completes when all <code>f</code>s complete propagating s’s values onwards</li>
</ul></li>
<li><code>transform(s, f)</code>
<ul>
<li>returns a sender that applies <code>f</code> to the value passed by <code>s</code>, or propagates errors or cancellation</li>
</ul></li>
<li><code>bulk_transform(s, f)</code>
<ul>
<li>returns a sender that applies <code>f</code> to each element in a range sent by <code>s</code>, or propagates errors or cancellation</li>
</ul></li>
<li><code>handle_error(s, f)</code>
<ul>
<li>returns a sender that applies <code>f</code> to an error passed by <code>s</code>, ignoring the values or cancellation</li>
</ul></li>
</ul>
<h2 id="examples"><span class="header-section-number">2.2</span> Examples<a href="#examples" class="self-link"></a></h2>
<h4 id="simple-example"><span class="header-section-number">2.2.0.1</span> Simple example<a href="#simple-example" class="self-link"></a></h4>
<p>A very simple example of applying a function to a propagated value and waiting for it.</p>
<div class="sourceCode" id="cb1"><pre class="sourceCode cpp"><code class="sourceCode cpp"><span id="cb1-1"><a href="#cb1-1"></a><span class="kw">auto</span> just_sender <span class="op">=</span> <span class="co">// sender_to<int></span></span>
<span id="cb1-2"><a href="#cb1-2"></a> just<span class="op">(</span><span class="dv">3</span><span class="op">)</span>;</span>
<span id="cb1-3"><a href="#cb1-3"></a></span>
<span id="cb1-4"><a href="#cb1-4"></a><span class="kw">auto</span> transform_sender <span class="op">=</span> <span class="co">// sender_to<float></span></span>
<span id="cb1-5"><a href="#cb1-5"></a> transform<span class="op">(</span></span>
<span id="cb1-6"><a href="#cb1-6"></a> std<span class="op">::</span>move<span class="op">(</span>just_sender<span class="op">)</span>,</span>
<span id="cb1-7"><a href="#cb1-7"></a> <span class="op">[](</span><span class="dt">int</span> a<span class="op">){</span><span class="cf">return</span> a<span class="op">+</span><span class="fl">0.5</span><span class="bu">f</span>;<span class="op">})</span>;</span>
<span id="cb1-8"><a href="#cb1-8"></a></span>
<span id="cb1-9"><a href="#cb1-9"></a><span class="dt">int</span> result <span class="op">=</span> <span class="co">// value: 3.5</span></span>
<span id="cb1-10"><a href="#cb1-10"></a> sync_wait<span class="op">(</span>std<span class="op">::</span>move<span class="op">(</span>transform_sender<span class="op">))</span>;</span></code></pre></div>
<p>In this very simple example we:</p>
<ul>
<li>start a chain with the value three</li>
<li>apply a function to the incoming value, adding 0.5 and returning a sender of a float.</li>
<li>block for the resulting value and assign the <code>float</code> value <code>3.5</code> to <code>result</code>.</li>
</ul>
<p>Using <code>operator|</code> as in ranges to remove the need to pass arguments around, we can represent this as:</p>
<div class="sourceCode" id="cb2"><pre class="sourceCode cpp"><code class="sourceCode cpp"><span id="cb2-1"><a href="#cb2-1"></a><span class="dt">float</span> f <span class="op">=</span> sync_wait<span class="op">(</span></span>
<span id="cb2-2"><a href="#cb2-2"></a> just<span class="op">(</span><span class="dv">3</span><span class="op">)</span> <span class="op">|</span> transform<span class="op">([](</span><span class="dt">int</span> a<span class="op">){</span><span class="cf">return</span> a<span class="op">+</span><span class="fl">0.5</span><span class="bu">f</span>;<span class="op">}))</span>;</span></code></pre></div>
<h4 id="using-indexed_for"><span class="header-section-number">2.2.0.2</span> Using indexed_for<a href="#using-indexed_for" class="self-link"></a></h4>
<p>We propose that indexed_for be the cleaned up version of bulk_execute, this shows how it fits into a work chain, with a parameter pack of inputs</p>
<div class="sourceCode" id="cb3"><pre class="sourceCode cpp"><code class="sourceCode cpp"><span id="cb3-1"><a href="#cb3-1"></a><span class="kw">auto</span> just_sender <span class="op">=</span> <span class="co">// sender_to<int></span></span>
<span id="cb3-2"><a href="#cb3-2"></a> just<span class="op">(</span>std<span class="op">::</span>vector<span class="op"><</span><span class="dt">int</span><span class="op">>{</span><span class="dv">3</span>, <span class="dv">4</span>, <span class="dv">5</span><span class="op">}</span>, <span class="dv">10</span><span class="op">)</span>;</span>
<span id="cb3-3"><a href="#cb3-3"></a></span>
<span id="cb3-4"><a href="#cb3-4"></a><span class="kw">auto</span> indexed_for_sender <span class="op">=</span> <span class="co">// sender_to<float></span></span>
<span id="cb3-5"><a href="#cb3-5"></a> indexed_for<span class="op">(</span></span>
<span id="cb3-6"><a href="#cb3-6"></a> std<span class="op">::</span>move<span class="op">(</span>just_sender<span class="op">)</span>,</span>
<span id="cb3-7"><a href="#cb3-7"></a> std<span class="op">::</span>execution<span class="op">::</span>par,</span>
<span id="cb3-8"><a href="#cb3-8"></a> ranges<span class="op">::</span>iota_view<span class="op">{</span><span class="dv">3</span><span class="op">}</span>,</span>
<span id="cb3-9"><a href="#cb3-9"></a> <span class="op">[](</span><span class="dt">size_t</span> idx, std<span class="op">::</span>vector<span class="op"><</span><span class="dt">int</span><span class="op">>&</span> vec, <span class="kw">const</span> <span class="dt">int</span><span class="op">&</span> i<span class="op">){</span></span>
<span id="cb3-10"><a href="#cb3-10"></a> vec<span class="op">[</span>idx<span class="op">]</span> <span class="op">=</span> vec<span class="op">[</span>idx<span class="op">]</span> <span class="op">+</span> i;</span>
<span id="cb3-11"><a href="#cb3-11"></a> <span class="op">})</span>;</span>
<span id="cb3-12"><a href="#cb3-12"></a></span>
<span id="cb3-13"><a href="#cb3-13"></a><span class="kw">auto</span> transform_sender <span class="op">=</span> transform<span class="op">(</span></span>
<span id="cb3-14"><a href="#cb3-14"></a> std<span class="op">::</span>move<span class="op">(</span>indexed_for_sender<span class="op">)</span>, <span class="op">[](</span>vector<span class="op"><</span><span class="dt">int</span><span class="op">></span> vec, <span class="dt">int</span> <span class="co">/*i*/</span><span class="op">){</span><span class="cf">return</span> vec;<span class="op">})</span>;</span>
<span id="cb3-15"><a href="#cb3-15"></a></span>
<span id="cb3-16"><a href="#cb3-16"></a>vector<span class="op"><</span><span class="dt">int</span><span class="op">></span> result <span class="op">=</span> <span class="co">// value: {13, 14, 15}</span></span>
<span id="cb3-17"><a href="#cb3-17"></a> sync_wait<span class="op">(</span>std<span class="op">::</span>move<span class="op">(</span>transform_sender<span class="op">))</span>;</span></code></pre></div>
<p>In this less simple example we:</p>
<ul>
<li>start a chain with a vector of three ints and an int</li>
<li>apply a function for each element in an index space, that receives the vector and int by reference and modifies the vector</li>
<li>specifies the most relaxed execution policy on which we guarantee the invocable and range access function to be safe to call</li>
<li>applies a transform to filter out the int result, demonstrating how indexed_for does not change the structure of the data</li>
<li>block for the resulting value and assign vector {13, 14, 15} to <code>result</code></li>
</ul>
<p>Using <code>operator|</code> as in ranges to remove the need to pass arguments around, we can represent this as:</p>
<div class="sourceCode" id="cb4"><pre class="sourceCode cpp"><code class="sourceCode cpp"><span id="cb4-1"><a href="#cb4-1"></a>vector<span class="op"><</span><span class="dt">int</span><span class="op">></span> result_vec <span class="op">=</span> sync_wait<span class="op">(</span></span>
<span id="cb4-2"><a href="#cb4-2"></a> just<span class="op">(</span>std<span class="op">::</span>vector<span class="op"><</span><span class="dt">int</span><span class="op">>{</span><span class="dv">3</span>, <span class="dv">4</span>, <span class="dv">5</span><span class="op">}</span>, <span class="dv">10</span><span class="op">)</span> <span class="op">|</span></span>
<span id="cb4-3"><a href="#cb4-3"></a> indexed_for<span class="op">(</span></span>
<span id="cb4-4"><a href="#cb4-4"></a> std<span class="op">::</span>execution<span class="op">::</span>par,</span>
<span id="cb4-5"><a href="#cb4-5"></a> ranges<span class="op">::</span>iota_view<span class="op">{</span><span class="dv">3</span><span class="op">}</span>,</span>
<span id="cb4-6"><a href="#cb4-6"></a> <span class="op">[](</span><span class="dt">size_t</span> idx, vector<span class="op"><</span><span class="dt">int</span><span class="op">>&</span>vec, <span class="kw">const</span> <span class="dt">int</span><span class="op">&</span> i<span class="op">){</span>vec<span class="op">[</span>idx<span class="op">]</span> <span class="op">=</span> vec<span class="op">[</span>idx<span class="op">]</span> <span class="op">+</span> i;<span class="op">})</span> <span class="op">|</span></span>
<span id="cb4-7"><a href="#cb4-7"></a> transform<span class="op">([](</span>vector<span class="op"><</span><span class="dt">int</span><span class="op">></span> vec, <span class="dt">int</span> <span class="co">/*i*/</span><span class="op">){</span><span class="cf">return</span> vec;<span class="op">}))</span>;</span></code></pre></div>
<h4 id="using-when_all"><span class="header-section-number">2.2.0.3</span> Using when_all<a href="#using-when_all" class="self-link"></a></h4>
<p>when_all joins a list of incoming senders, propagating their values.</p>
<div class="sourceCode" id="cb5"><pre class="sourceCode cpp"><code class="sourceCode cpp"><span id="cb5-1"><a href="#cb5-1"></a><span class="kw">auto</span> just_sender <span class="op">=</span> <span class="co">// sender_to<int></span></span>
<span id="cb5-2"><a href="#cb5-2"></a> just<span class="op">(</span>std<span class="op">::</span>vector<span class="op"><</span><span class="dt">int</span><span class="op">>{</span><span class="dv">3</span>, <span class="dv">4</span>, <span class="dv">5</span><span class="op">}</span>, <span class="dv">10</span><span class="op">)</span>;</span>
<span id="cb5-3"><a href="#cb5-3"></a><span class="kw">auto</span> just_float_sender <span class="op">=</span> <span class="co">// sender_to<int></span></span>
<span id="cb5-4"><a href="#cb5-4"></a> just<span class="op">(</span><span class="fl">20.0</span><span class="bu">f</span><span class="op">)</span>;</span>
<span id="cb5-5"><a href="#cb5-5"></a></span>
<span id="cb5-6"><a href="#cb5-6"></a><span class="kw">auto</span> when_all_sender <span class="op">=</span> when_all<span class="op">(</span></span>
<span id="cb5-7"><a href="#cb5-7"></a> std<span class="op">::</span>move<span class="op">(</span>just_sender<span class="op">)</span>, std<span class="op">::</span>move<span class="op">(</span>just_float_sender<span class="op">))</span>;</span>
<span id="cb5-8"><a href="#cb5-8"></a></span>
<span id="cb5-9"><a href="#cb5-9"></a><span class="kw">auto</span> transform_sender<span class="op">(</span></span>
<span id="cb5-10"><a href="#cb5-10"></a> std<span class="op">::</span>move<span class="op">(</span>when_all_sender<span class="op">)</span>,</span>
<span id="cb5-11"><a href="#cb5-11"></a> <span class="op">[](</span>std<span class="op">::</span>vector<span class="op"><</span><span class="dt">int</span><span class="op">></span> vec, <span class="dt">int</span> <span class="co">/*i*/</span>, <span class="dt">float</span> <span class="co">/*f*/</span><span class="op">)</span> <span class="op">{</span></span>
<span id="cb5-12"><a href="#cb5-12"></a> <span class="cf">return</span> vec;</span>
<span id="cb5-13"><a href="#cb5-13"></a> <span class="op">})</span></span>
<span id="cb5-14"><a href="#cb5-14"></a></span>
<span id="cb5-15"><a href="#cb5-15"></a>vector<span class="op"><</span><span class="dt">int</span><span class="op">></span> result <span class="op">=</span> <span class="co">// value: {3, 4, 5}</span></span>
<span id="cb5-16"><a href="#cb5-16"></a> sync_wait<span class="op">(</span>std<span class="op">::</span>move<span class="op">(</span>transform_sender<span class="op">))</span>;</span></code></pre></div>
<p>This demonstrates simple joining of senders:</p>
<ul>
<li>start a chain with a pack of a vector and an int</li>
<li>start a second chain with a float</li>
<li>join the two to produce a pack of a vector, an int and a float</li>
<li>applies a transform to filter out the vector result</li>
<li>block for the resulting value and assign vector {3, 4, 5} to <code>result</code></li>
</ul>
<p>Using <code>operator|</code> as in ranges to remove the need to pass arguments around, we can represent this as:</p>
<div class="sourceCode" id="cb6"><pre class="sourceCode cpp"><code class="sourceCode cpp"><span id="cb6-1"><a href="#cb6-1"></a>vector<span class="op"><</span><span class="dt">int</span><span class="op">></span> result_vec <span class="op">=</span> sync_wait<span class="op">(</span></span>
<span id="cb6-2"><a href="#cb6-2"></a> when_all<span class="op">(</span>just<span class="op">(</span>std<span class="op">::</span>vector<span class="op"><</span><span class="dt">int</span><span class="op">>{</span><span class="dv">3</span>, <span class="dv">4</span>, <span class="dv">5</span><span class="op">}</span>, <span class="dv">10</span><span class="op">)</span>, just<span class="op">(</span><span class="fl">20.0</span><span class="bu">f</span><span class="op">))</span> <span class="op">|</span></span>
<span id="cb6-3"><a href="#cb6-3"></a> transform<span class="op">([](</span>vector<span class="op"><</span><span class="dt">int</span><span class="op">></span> vec, <span class="dt">int</span> <span class="co">/*i*/</span>, <span class="dt">float</span> <span class="co">/*f*/</span><span class="op">){</span><span class="cf">return</span> vec;<span class="op">}))</span>;</span></code></pre></div>
<h4 id="with-exception"><span class="header-section-number">2.2.0.4</span> With exception<a href="#with-exception" class="self-link"></a></h4>
<p>A simple example showing how an exception that leaks out of a transform may propagate and be thrown from sync_wait.</p>
<div class="sourceCode" id="cb7"><pre class="sourceCode cpp"><code class="sourceCode cpp"><span id="cb7-1"><a href="#cb7-1"></a><span class="dt">int</span> result <span class="op">=</span> <span class="dv">0</span>;</span>
<span id="cb7-2"><a href="#cb7-2"></a><span class="cf">try</span> <span class="op">{</span></span>
<span id="cb7-3"><a href="#cb7-3"></a> <span class="kw">auto</span> just_sender <span class="op">=</span> just<span class="op">(</span><span class="dv">3</span><span class="op">)</span>;</span>
<span id="cb7-4"><a href="#cb7-4"></a> <span class="kw">auto</span> via_sender <span class="op">=</span> via<span class="op">(</span>std<span class="op">::</span>move<span class="op">(</span>just_sender<span class="op">)</span>, scheduler1<span class="op">)</span>;</span>
<span id="cb7-5"><a href="#cb7-5"></a> <span class="kw">auto</span> transform_sender <span class="op">=</span> transform<span class="op">(</span></span>
<span id="cb7-6"><a href="#cb7-6"></a> std<span class="op">::</span>move<span class="op">(</span>via_sender<span class="op">)</span>,</span>
<span id="cb7-7"><a href="#cb7-7"></a> <span class="op">[](</span><span class="dt">int</span> a<span class="op">){</span><span class="cf">throw</span> <span class="dv">2</span>;<span class="op">})</span>;</span>
<span id="cb7-8"><a href="#cb7-8"></a> <span class="kw">auto</span> skipped_transform_sender <span class="op">=</span> transform<span class="op">(</span></span>
<span id="cb7-9"><a href="#cb7-9"></a> std<span class="op">::</span>move<span class="op">(</span>transform_sender<span class="op">).</span></span>
<span id="cb7-10"><a href="#cb7-10"></a> <span class="op">[](){</span><span class="cf">return</span> <span class="dv">3</span>;<span class="op">})</span>;</span>
<span id="cb7-11"><a href="#cb7-11"></a></span>
<span id="cb7-12"><a href="#cb7-12"></a> result <span class="op">=</span> sync_wait<span class="op">(</span>std<span class="op">::</span>move<span class="op">(</span>skipped_transform_sender<span class="op">))</span>;</span>
<span id="cb7-13"><a href="#cb7-13"></a><span class="op">}</span> <span class="cf">catch</span><span class="op">(</span><span class="dt">int</span> a<span class="op">)</span> <span class="op">{</span></span>
<span id="cb7-14"><a href="#cb7-14"></a> result <span class="op">=</span> a; <span class="co">// Assign 2 to result</span></span>
<span id="cb7-15"><a href="#cb7-15"></a><span class="op">}</span></span></code></pre></div>
<p>In this example we:</p>
<ul>
<li>start a chain with an int value <code>3</code></li>
<li>switch the context to one owned by scheduler1</li>
<li>apply a transformation to the value <code>3</code>, but this transform throws an exception rather than returning a transformed value</li>
<li>skip the final transform because there is an error propagating</li>
<li>block for the resulting value, seeing an exception thrown instead of a value returned</li>
<li>handle the exception</li>
</ul>
<p>As before, using <code>operator|</code> as in ranges to remove the need to pass arguments around, we can represent this more cleanly:</p>
<div class="sourceCode" id="cb8"><pre class="sourceCode cpp"><code class="sourceCode cpp"><span id="cb8-1"><a href="#cb8-1"></a><span class="dt">int</span> result <span class="op">=</span> <span class="dv">0</span>;</span>
<span id="cb8-2"><a href="#cb8-2"></a><span class="cf">try</span> <span class="op">{</span></span>
<span id="cb8-3"><a href="#cb8-3"></a> result <span class="op">=</span> sync_wait<span class="op">(</span></span>
<span id="cb8-4"><a href="#cb8-4"></a> just<span class="op">(</span><span class="dv">3</span><span class="op">)</span> <span class="op">|</span></span>
<span id="cb8-5"><a href="#cb8-5"></a> via<span class="op">(</span>scheduler1<span class="op">)</span> <span class="op">|</span></span>
<span id="cb8-6"><a href="#cb8-6"></a> transform<span class="op">([](</span><span class="dt">int</span> a<span class="op">){</span><span class="cf">throw</span> <span class="dv">2</span>;<span class="op">})</span> <span class="op">|</span></span>
<span id="cb8-7"><a href="#cb8-7"></a> transform<span class="op">([](){</span><span class="cf">return</span> <span class="dv">3</span>;<span class="op">}))</span>;</span>
<span id="cb8-8"><a href="#cb8-8"></a><span class="op">}</span> <span class="cf">catch</span><span class="op">(</span><span class="dt">int</span> a<span class="op">)</span> <span class="op">{</span></span>
<span id="cb8-9"><a href="#cb8-9"></a> result <span class="op">=</span> a; <span class="co">// Assign 2 to result</span></span>
<span id="cb8-10"><a href="#cb8-10"></a><span class="op">}</span></span></code></pre></div>
<h4 id="handle-an-exception"><span class="header-section-number">2.2.0.5</span> Handle an exception<a href="#handle-an-exception" class="self-link"></a></h4>
<p>Very similar to the above, we can handle an error mid-stream</p>
<div class="sourceCode" id="cb9"><pre class="sourceCode cpp"><code class="sourceCode cpp"><span id="cb9-1"><a href="#cb9-1"></a><span class="kw">auto</span> just_sender <span class="op">=</span> just<span class="op">(</span><span class="dv">3</span><span class="op">)</span>;</span>
<span id="cb9-2"><a href="#cb9-2"></a><span class="kw">auto</span> via_sender <span class="op">=</span> via<span class="op">(</span>std<span class="op">::</span>move<span class="op">(</span>just_sender<span class="op">)</span>, scheduler1<span class="op">)</span>;</span>
<span id="cb9-3"><a href="#cb9-3"></a><span class="kw">auto</span> transform_sender <span class="op">=</span> transform<span class="op">(</span></span>
<span id="cb9-4"><a href="#cb9-4"></a> std<span class="op">::</span>move<span class="op">(</span>via_sender<span class="op">)</span>,</span>
<span id="cb9-5"><a href="#cb9-5"></a> <span class="op">[](</span><span class="dt">int</span> a<span class="op">){</span><span class="cf">throw</span> <span class="dv">2</span>;<span class="op">})</span>;</span>
<span id="cb9-6"><a href="#cb9-6"></a><span class="kw">auto</span> skipped_transform_sender <span class="op">=</span> transform<span class="op">(</span></span>
<span id="cb9-7"><a href="#cb9-7"></a> std<span class="op">::</span>move<span class="op">(</span>transform_sender<span class="op">).</span></span>
<span id="cb9-8"><a href="#cb9-8"></a> <span class="op">[](){</span><span class="cf">return</span> <span class="dv">3</span>;<span class="op">})</span>;</span>
<span id="cb9-9"><a href="#cb9-9"></a><span class="kw">auto</span> error_handling_sender <span class="op">=</span> handle_error<span class="op">(</span></span>
<span id="cb9-10"><a href="#cb9-10"></a> std<span class="op">::</span>move<span class="op">(</span>skipped_transform_sender<span class="op">)</span>,</span>
<span id="cb9-11"><a href="#cb9-11"></a> <span class="op">[](</span>exception_ptr e<span class="op">){</span><span class="cf">return</span> just<span class="op">(</span><span class="dv">5</span><span class="op">)</span>;<span class="op">})</span>;</span>
<span id="cb9-12"><a href="#cb9-12"></a></span>
<span id="cb9-13"><a href="#cb9-13"></a><span class="kw">auto</span> result <span class="op">=</span> sync_wait<span class="op">(</span>std<span class="op">::</span>move<span class="op">(</span>error_handling_sender<span class="op">))</span>;</span></code></pre></div>
<p>In this example we:</p>
<ul>
<li>start a chain with an int value <code>3</code></li>
<li>switch the context to one owned by scheduler1</li>
<li>apply a transformation to the value <code>3</code>, but this transform throws an exception rather than returning a transformed value</li>
<li>skip the final transform because there is an error propagating</li>
<li>handle the error channel, applying an operation to an <code>exception_ptr</code> pointing to the value <code>2</code></li>
<li>in handling the error we return a sender that propagates the value <code>5</code>, thus recovering from the error</li>
<li>block for the resulting value, assigning <code>5</code> to <code>result</code></li>
</ul>
<p>As before, using <code>operator|</code> as in ranges to remove the need to pass arguments around, we can represent this more cleanly:</p>
<div class="sourceCode" id="cb10"><pre class="sourceCode cpp"><code class="sourceCode cpp"><span id="cb10-1"><a href="#cb10-1"></a><span class="kw">auto</span> s <span class="op">=</span> ;</span>
<span id="cb10-2"><a href="#cb10-2"></a><span class="dt">int</span> result <span class="op">=</span> sync_wait<span class="op">(</span></span>
<span id="cb10-3"><a href="#cb10-3"></a> just<span class="op">(</span><span class="dv">3</span><span class="op">)</span> <span class="op">|</span></span>
<span id="cb10-4"><a href="#cb10-4"></a> via<span class="op">(</span>scheduler1<span class="op">)</span> <span class="op">|</span></span>
<span id="cb10-5"><a href="#cb10-5"></a> transform<span class="op">([](</span><span class="dt">float</span> a<span class="op">){</span><span class="cf">throw</span> <span class="dv">2</span>;<span class="op">})</span> <span class="op">|</span></span>
<span id="cb10-6"><a href="#cb10-6"></a> transform<span class="op">([](){</span><span class="cf">return</span> <span class="dv">3</span>;<span class="op">})</span> <span class="op">|</span></span>
<span id="cb10-7"><a href="#cb10-7"></a> handle_error<span class="op">([](</span><span class="kw">auto</span> e<span class="op">){</span></span>
<span id="cb10-8"><a href="#cb10-8"></a> <span class="cf">return</span> just<span class="op">(</span><span class="dv">5</span><span class="op">)</span>;<span class="op">}))</span>;</span></code></pre></div>
<h1 id="impact-on-the-standard-library"><span class="header-section-number">3</span> Impact on the standard library<a href="#impact-on-the-standard-library" class="self-link"></a></h1>
<h2 id="sender-adapter-objects"><span class="header-section-number">3.1</span> Sender adapter objects<a href="#sender-adapter-objects" class="self-link"></a></h2>
<p>Taking inspiration from <a href="http://eel.is/c++draft/range.adaptor.object">range adaptors</a> define sender adapters.</p>
<p>Wording to be based on [range.adaptors] with the basic requirement that:</p>
<ul>
<li><code>operator|</code> be overloaded for the purpose of creating pipelines over senders</li>
<li>That the following are equivalent expressions:
<ul>
<li><code>algorithm(sender, args...)</code></li>
<li><code>algorithm(args...)(sender)</code></li>
<li><code>sender | algorithm(args...)</code></li>
</ul></li>
<li>that <code>algorithms(args...)</code> is a <em>sender adaptor closure object</em></li>
<li>TBD where sender adapters are declared</li>
</ul>
<p>Details below are in loosely approximated wording and should be made consistent with <span class="citation" data-cites="P0443R11">[<a href="#ref-P0443R11" role="doc-biblioref">P0443R11</a>]</span> and the standard itself when finalized. We choose this set of algorithms as a basic set to allow a range of realistic, though still limited, compositions to be written against executors.</p>
<!-- ## execution::is_noexcept_sender
### Summary
Queries whether the passed sender will ever propagate an error when treated as an r-value to `submit`.
### Signature
### Wording
The name `execution::is_noexcept_sender` denotes a customization point object.
The expression `execution::is_noexcept_sender(S)` for some subexpression `S` is expression-equivalent to:
* `S.is_noexcept()`, if that expression is valid.
* Otherwise, `is_noexcept_sender(S)`, if that expression is valid, with overload resolution performed in a context that includes the declaration
```
template<class S>
void is_noexcept_sender(S) = delete;
```
and that does not include a declaration of `execution::is_noexcept_sender`.
* Otherwise, `false`.
If possible, `is_noexcept_sender` should be `noexcept`.
If `execution::is_noexcept_sender(s)` returns true for a `sender` `s` then it is guaranteed that `s` will not call `error` on any `callback` `c` passed to `submit(s, c)`. -->
<h2 id="executionjust"><span class="header-section-number">3.2</span> execution::just<a href="#executionjust" class="self-link"></a></h2>
<h3 id="overview"><span class="header-section-number">3.2.1</span> Overview<a href="#overview" class="self-link"></a></h3>
<p><code>just</code> creates a <code>sender</code> that propagates a value inline to a submitted receiver.</p>
<p>Signature:</p>
<div class="sourceCode" id="cb11"><pre class="sourceCode cpp"><code class="sourceCode cpp"><span id="cb11-1"><a href="#cb11-1"></a>S<span class="op"><</span>T<span class="op">...></span> just<span class="op">(</span>T<span class="op">...)</span>;</span></code></pre></div>
<p>where <code>S<T...></code> is an implementation-defined <code>typed_sender</code> that that sends a set of values of type <code>T...</code> in its value channel.</p>
<p><em>[ Example:</em></p>
<div class="sourceCode" id="cb12"><pre class="sourceCode cpp"><code class="sourceCode cpp"><span id="cb12-1"><a href="#cb12-1"></a><span class="dt">int</span> r <span class="op">=</span> sync_wait<span class="op">(</span>just<span class="op">(</span><span class="dv">3</span><span class="op">))</span>;</span>
<span id="cb12-2"><a href="#cb12-2"></a><span class="co">// r==3</span></span></code></pre></div>
<p><em>- end example]</em></p>
<h3 id="wording"><span class="header-section-number">3.2.2</span> Wording<a href="#wording" class="self-link"></a></h3>
<p>The expression <code>execution::just(t...)</code> returns a sender, <code>s</code> wrapping the values <code>t...</code>.</p>
<ul>
<li>If <code>t...</code> are nothrow movable then <code>execution::is_noexcept_sender(s)</code> shall be constexpr and return true.</li>
<li>When <code>execution::submit(s, r)</code> is called for some <code>r</code>, and r-value <code>s</code> will call <code>execution::set_value(r, std::move(t)...)</code>, inline with the caller.</li>
<li>When <code>execution::submit(s, r)</code> is called for some <code>r</code>, and l-value <code>s</code> will call <code>execution::set_value(r, t...)</code>, inline with the caller.</li>
<li>If moving of <code>t</code> throws, then will catch the exception and call <code>execution::set_error(r, e)</code> with the caught <code>exception_ptr</code>.</li>
</ul>
<h2 id="executionjust_via"><span class="header-section-number">3.3</span> execution::just_via<a href="#executionjust_via" class="self-link"></a></h2>
<h3 id="overview-1"><span class="header-section-number">3.3.1</span> Overview<a href="#overview-1" class="self-link"></a></h3>
<p><code>just_via</code> creates a <code>sender</code> that propagates a value to a submitted receiver on the execution context of a passed <code>scheduler</code>. Semantically equivalent to <code>just(t) | via(s)</code> if <code>just_via</code> is not customized on <code>s</code>.</p>
<p>Signature:</p>
<div class="sourceCode" id="cb13"><pre class="sourceCode cpp"><code class="sourceCode cpp"><span id="cb13-1"><a href="#cb13-1"></a>S<span class="op"><</span>T<span class="op">...></span> just_via<span class="op">(</span>Scheduler, T<span class="op">...)</span>;</span></code></pre></div>
<p>where <code>S<T...></code> is an implementation-defined <code>typed_sender</code> that that sends a set of values of type <code>T...</code> in its value channel in the context of the passed <code>Scheduler</code>.</p>
<p><em>[ Example:</em></p>
<div class="sourceCode" id="cb14"><pre class="sourceCode cpp"><code class="sourceCode cpp"><span id="cb14-1"><a href="#cb14-1"></a>MyScheduler s;</span>
<span id="cb14-2"><a href="#cb14-2"></a><span class="dt">int</span> r <span class="op">=</span> sync_wait<span class="op">(</span>just_via<span class="op">(</span>s, <span class="dv">3</span><span class="op">))</span>;</span>
<span id="cb14-3"><a href="#cb14-3"></a><span class="co">// r==3</span></span></code></pre></div>
<p><em>- end example]</em></p>
<h3 id="wording-1"><span class="header-section-number">3.3.2</span> Wording<a href="#wording-1" class="self-link"></a></h3>
<p>The name <code>execution::just_via</code> denotes a customization point object. The expression <code>execution::just_via(sch, t...)</code> for some subexpression <code>S</code> is expression-equivalent to:</p>
<ul>
<li><code>sch.just(t...)</code> if that expression is valid.</li>
<li>Otherwise, <code>just_via(sch, t...)</code>, if that expression is valid with overload resolution performed in a context that includes the declaration</li>
</ul>
<div class="sourceCode" id="cb15"><pre class="sourceCode default"><code class="sourceCode default"><span id="cb15-1"><a href="#cb15-1"></a> template<class Sch, class T...></span>
<span id="cb15-2"><a href="#cb15-2"></a> void just_via(Sch, T...) = delete;</span></code></pre></div>
<p>and that does not include a declaration of <code>execution::just_via</code>.</p>
<ul>
<li>Otherwise returns the result of the expression: <code>via(just(t...), sch)</code></li>
</ul>
<!--
## execution::just_error
### Summary
Returns a sender that propagates the passed error inline when `submit` is called.
This is useful for starting a chain of work.
### Wording
The expression `execution::just_error(e)` returns a sender, `s` wrapping the error `e`.
* If `t` is nothrow movable then `execution::is_noexcept_sender(s)` shall be constexpr and return true.
* When `execution::submit(s, r)` is called for some `r`, and r-value `s` will call `execution::set_error(r, std::move(t))`, inline with the caller.
* When `execution::submit(s, r)` is called for some `r`, and l-value `s` will call `execution::set_error(r, t)`, inline with the caller.
* If moving of `e` throws, then will catch the exception and call `execution::set_error(r, e)` with the caught `exception_ptr`. -->
<h2 id="executionsync_wait"><span class="header-section-number">3.4</span> execution::sync_wait<a href="#executionsync_wait" class="self-link"></a></h2>
<h3 id="overview-2"><span class="header-section-number">3.4.1</span> Overview<a href="#overview-2" class="self-link"></a></h3>
<p>Blocks the calling thread to wait for the passed sender to complete. Returns the value (or void if the sender carries no value), throws if an exception is propagated and throws a TBD exception type on cancellation.<a href="#fn1" class="footnote-ref" id="fnref1" role="doc-noteref"><sup>1</sup></a> On propagation of the <code>set_done()</code> signal, returns an empty optional.</p>
<p><code>T... sync_wait(S<T...>)</code></p>
<p>where <code>S<T...></code> is a sender that sends zero or one values of type <code>T...</code> in its value channel. The existence of, and if existing the type <code>T</code> must be known statically and cannot be part of an overload set.</p>
<p><em>[ Example:</em></p>
<div class="sourceCode" id="cb16"><pre class="sourceCode cpp"><code class="sourceCode cpp"><span id="cb16-1"><a href="#cb16-1"></a><span class="dt">int</span> r <span class="op">=</span> sync_wait<span class="op">(</span>just<span class="op">(</span><span class="dv">3</span><span class="op">))</span>;</span>
<span id="cb16-2"><a href="#cb16-2"></a><span class="co">// r==3</span></span></code></pre></div>
<p><em>- end example]</em></p>
<h3 id="wording-2"><span class="header-section-number">3.4.2</span> Wording<a href="#wording-2" class="self-link"></a></h3>
<p>The name <code>execution::sync_wait</code> denotes a customization point object. The expression <code>execution::sync_wait(S)</code> for some subexpression <code>S</code> is expression-equivalent to:</p>
<ul>
<li><code>S.sync_wait()</code> if that expression is valid.</li>
<li>Otherwise, <code>sync_wait(S)</code>, if that expression is valid with overload resolution performed in a context that includes the declaration</li>
</ul>
<div class="sourceCode" id="cb17"><pre class="sourceCode default"><code class="sourceCode default"><span id="cb17-1"><a href="#cb17-1"></a> template<class S></span>
<span id="cb17-2"><a href="#cb17-2"></a> void sync_wait(S) = delete;</span></code></pre></div>
<p>and that does not include a declaration of <code>execution::sync_wait</code>.</p>
<ul>
<li><p>Otherwise constructs a <code>receiver</code>, <code>r</code> over an implementation-defined synchronization primitive and passes that <code>receiver</code> to <code>execution::submit(S, r)</code>. Waits on the synchronization primitive to block on completion of <code>S</code>.</p>
<ul>
<li>If <code>set_value</code> is called on <code>r</code>, returns the passed value (or simply returns for <code>void</code> sender).</li>
<li>If <code>set_error</code> is called on <code>r</code>, throws the error value as an exception.</li>
<li>If <code>set_done</code> is called on <code>r</code>, throws some TBD cancellation exception type.</li>
</ul></li>
</ul>
<!--
If `execution::is_noexcept_sender(S)` returns true at compile-time, and the return type `T` is nothrow movable, then `sync_wait` is noexcept.
Note that `sync_wait` requires `S` to propagate a single value type.
-->
<h2 id="executionvia"><span class="header-section-number">3.5</span> execution::via<a href="#executionvia" class="self-link"></a></h2>
<h3 id="overview-3"><span class="header-section-number">3.5.1</span> Overview<a href="#overview-3" class="self-link"></a></h3>
<p><code>via</code> is a sender adapter that takes a <code>sender</code> and a <code>scheduler</code> and returns a <code>sender</code> that propagates the same value as the original, but does so on the <code>scheduler</code>’s execution context.</p>
<p>Signature:</p>
<div class="sourceCode" id="cb18"><pre class="sourceCode cpp"><code class="sourceCode cpp"><span id="cb18-1"><a href="#cb18-1"></a>S<span class="op"><</span>T<span class="op">...></span> via<span class="op">(</span>S<span class="op"><</span>T<span class="op">...></span>, Scheduler<span class="op">)</span>;</span></code></pre></div>
<p>where <code>S<T></code> is an implementation-defined type that is a sender that sends a value of type <code>T</code> in its value channel.</p>
<p><em>[ Example:</em></p>
<div class="sourceCode" id="cb19"><pre class="sourceCode cpp"><code class="sourceCode cpp"><span id="cb19-1"><a href="#cb19-1"></a>static_thread_pool t<span class="op">{</span><span class="dv">1</span><span class="op">}</span>;</span>
<span id="cb19-2"><a href="#cb19-2"></a><span class="dt">int</span> r <span class="op">=</span> sync_wait<span class="op">(</span>just<span class="op">(</span><span class="dv">3</span><span class="op">)</span> <span class="op">|</span> via<span class="op">(</span>t<span class="op">.</span>scheduler<span class="op">()))</span>;</span>
<span id="cb19-3"><a href="#cb19-3"></a><span class="co">// r==3</span></span></code></pre></div>
<h3 id="wording-3"><span class="header-section-number">3.5.2</span> Wording<a href="#wording-3" class="self-link"></a></h3>
<p>The name <code>execution::via</code> denotes a customization point object. The expression <code>execution::via(S, Sch)</code> for some subexpressions <code>S</code>, <code>Sch</code> is expression-equivalent to:</p>
<ul>
<li><code>S.via(Sch)</code> if that expression is valid.</li>
<li>Otherwise, <code>via(S, Sch)</code> if that expression is valid with overload resolution performed in a context that includes the declaration</li>
</ul>
<div class="sourceCode" id="cb20"><pre class="sourceCode default"><code class="sourceCode default"><span id="cb20-1"><a href="#cb20-1"></a> template<class S, class Sch></span>
<span id="cb20-2"><a href="#cb20-2"></a> void via(S, Sch) = delete;</span></code></pre></div>
<ul>
<li>Otherwise constructs a receiver <code>r</code> such that when <code>set_value</code>, <code>set_error</code> or <code>set_done</code> is called on <code>r</code> the value(s) or error(s) are packaged, and a receiver <code>r2</code> constructed such that when <code>execution::set_value(r2)</code> is called, the stored value or error is transmitted and <code>r2</code> is submitted to <code>Sch</code>. If <code>set_error</code> or <code>set_done</code> is called on <code>r2</code> the error or cancellation is propagated and the packaged values ignored.</li>
<li>The returned sender’s value types match those of <code>sender1</code>.</li>
<li>The returned sender’s execution context is that of <code>scheduler1</code>.</li>
</ul>
<!--
If `execution::is_noexcept_sender(S1)` returns true at compile-time, and `execution::is_noexcept_sender(S2)` returns true at compile-time and all entries in `S1::value_types` are nothrow movable, `execution::is_noexcept_sender(on(S1, S2))` should return `true` at compile time^[Should, shall, may?].
-->
<h2 id="executionwhen_all"><span class="header-section-number">3.6</span> execution::when_all<a href="#executionwhen_all" class="self-link"></a></h2>
<h3 id="overview-4"><span class="header-section-number">3.6.1</span> Overview<a href="#overview-4" class="self-link"></a></h3>
<p><code>when_all</code> combines a set of <em>non-void</em> <code>senders</code>, returning a <code>sender</code> that, on success, completes with the combined values of all incoming <code>sender</code>s.</p>
<p>Signature:</p>
<div class="sourceCode" id="cb21"><pre class="sourceCode cpp"><code class="sourceCode cpp"><span id="cb21-1"><a href="#cb21-1"></a>S<span class="op"><</span>T0<span class="op">...</span>, T1<span class="op">...</span>, Tn<span class="op">...></span> when_all<span class="op">(</span>S<span class="op"><</span>Tn<span class="op">...>)</span>;</span></code></pre></div>
<p>where <code>S<T></code> is an implementation-defined type that is a sender that sends a value of type <code>T</code> in its value channel.</p>
<p><em>[ Example:</em></p>
<div class="sourceCode" id="cb22"><pre class="sourceCode cpp"><code class="sourceCode cpp"><span id="cb22-1"><a href="#cb22-1"></a><span class="dt">float</span> r <span class="op">=</span></span>
<span id="cb22-2"><a href="#cb22-2"></a> sync_wait<span class="op">(</span></span>
<span id="cb22-3"><a href="#cb22-3"></a> transform<span class="op">(</span></span>
<span id="cb22-4"><a href="#cb22-4"></a> when_all<span class="op">(</span>just<span class="op">(</span><span class="dv">3</span><span class="op">)</span> <span class="op">|</span> just<span class="op">(</span><span class="fl">1.2</span><span class="bu">f</span><span class="op">))</span>,</span>
<span id="cb22-5"><a href="#cb22-5"></a> <span class="op">[](</span><span class="dt">int</span> a, <span class="dt">float</span> b<span class="op">){</span><span class="cf">return</span> a <span class="op">+</span> b;<span class="op">}))</span>;</span>
<span id="cb22-6"><a href="#cb22-6"></a><span class="co">// r==4.2</span></span></code></pre></div>
<h3 id="wording-4"><span class="header-section-number">3.6.2</span> Wording<a href="#wording-4" class="self-link"></a></h3>
<p>The name <code>execution::when_all</code> denotes a customization point object. The expression <code>execution::when_all(S)</code> for some subexpression <code>S</code> is expression-equivalent to:</p>
<ul>
<li>Otherwise, <code>when_all(S)</code> if that expression is valid with overload resolution performed in a context that includes the declaration</li>
</ul>
<div class="sourceCode" id="cb23"><pre class="sourceCode default"><code class="sourceCode default"><span id="cb23-1"><a href="#cb23-1"></a> template<class S></span>
<span id="cb23-2"><a href="#cb23-2"></a> void when_all(S) = delete;</span></code></pre></div>
<ul>
<li>Otherwise constructs a receiver, <code>ri</code> for each passed <code>sender</code> <code>Si</code> in <code>S</code> and passes that receiver to <code>execution::submit(Si, ri)</code>. When some <code>output_receiver</code> has been passed to <code>submit</code> on the returned <code>sender</code>.
<ul>
<li>if <code>set_value(t...)</code> is called on all <code>ri</code>, will concatenate the list of values and call <code>set_value(output_receiver, t0..., t1..., tn...)</code> on the received passed to <code>submit</code> on the returned <code>sender</code>.</li>
<li>if <code>set_done()</code> is called on any <code>ri</code>, will call <code>set_done(output_receiver)</code>, discarding other results.</li>
<li>if <code>set_error(e)</code> is called on any <code>ri</code> will call <code>set_error(output_receiver, e)</code> for some <code>e</code>, discarding other results.</li>
</ul></li>
</ul>
<h2 id="executionindexed_for"><span class="header-section-number">3.7</span> execution::indexed_for<a href="#executionindexed_for" class="self-link"></a></h2>
<h3 id="overview-5"><span class="header-section-number">3.7.1</span> Overview<a href="#overview-5" class="self-link"></a></h3>
<p><code>indexed_for</code> is a sender adapter that takes a <code>sender</code>, execution policy, a range and an invocable and returns a <code>sender</code> that propagates the input values but runs the invocable once for each element of the range, passing the input by non-const reference.</p>
<p>Signature:</p>
<div class="sourceCode" id="cb24"><pre class="sourceCode cpp"><code class="sourceCode cpp"><span id="cb24-1"><a href="#cb24-1"></a>S<span class="op"><</span>T<span class="op">...></span> indexed_for<span class="op">(</span></span>
<span id="cb24-2"><a href="#cb24-2"></a> S<span class="op"><</span>T<span class="op">...></span>,</span>
<span id="cb24-3"><a href="#cb24-3"></a> execution_policy,</span>
<span id="cb24-4"><a href="#cb24-4"></a> range<span class="op"><</span>Idx<span class="op">></span>,</span>
<span id="cb24-5"><a href="#cb24-5"></a> invocable<span class="op"><</span><span class="dt">void</span><span class="op">(</span>Idx, T<span class="op">&...))</span>;</span></code></pre></div>
<p>where <code>S<T...></code> represents implementation-defined sender types that send a value of type list <code>T...</code> in their value channels. Note that in the general case there may be many types <code>T...</code> for a given <code>sender</code>, in which case the invocable may have to represent an overload set.</p>
<p><em>[ Example:</em></p>
<div class="sourceCode" id="cb25"><pre class="sourceCode cpp"><code class="sourceCode cpp"><span id="cb25-1"><a href="#cb25-1"></a><span class="dt">int</span> r <span class="op">=</span> sync_wait<span class="op">(</span></span>
<span id="cb25-2"><a href="#cb25-2"></a> just<span class="op">(</span><span class="dv">3</span><span class="op">)</span> <span class="op">|</span></span>
<span id="cb25-3"><a href="#cb25-3"></a> indexed_for<span class="op">(</span></span>
<span id="cb25-4"><a href="#cb25-4"></a> std<span class="op">::</span>execution<span class="op">::</span>par,</span>
<span id="cb25-5"><a href="#cb25-5"></a> ranges<span class="op">::</span>iota_view<span class="op">{</span><span class="dv">6</span><span class="op">}</span>,</span>
<span id="cb25-6"><a href="#cb25-6"></a> <span class="op">[](</span><span class="dt">int</span> idx, <span class="dt">int</span><span class="op">&</span> v<span class="op">){</span>v <span class="op">=</span> v <span class="op">+</span> idx;<span class="op">}))</span>;</span>
<span id="cb25-7"><a href="#cb25-7"></a><span class="co">// r==9</span></span></code></pre></div>
<h3 id="wording-5"><span class="header-section-number">3.7.2</span> Wording<a href="#wording-5" class="self-link"></a></h3>
<p>The name <code>execution::indexed_for</code> denotes a customization point object. The expression <code>execution::indexed_for(S, P, R, F)</code> for some subexpressions <code>S</code>, <code>P</code>, <code>R</code> and <code>F</code> is expression-equivalent to:</p>
<ul>
<li>If <code>P</code> does not satisfy <code>std::is_execution_policy_v<P></code>, then the expression is invalid.</li>
<li>If <code>R</code> does not satisfy either <code>range</code> then the expression is invalid.</li>
<li>If <code>P</code> is <code>std::execution::sequenced_policy</code> then <code>range</code> must satisfy <code>input_range</code> otherwise <code>range</code> must satisfy <code>random_access_range</code>.</li>
<li>If <code>F</code> does not satisfy <code>MoveConstructible</code> then the expression is invalid.</li>
<li>S.indexed_for(P, R, F), if that expression is valid.</li>
<li>Otherwise, <code>indexed_for(S, R, P, F)</code>, if that expression is valid with overload resolution performed in a context that includes the declaration</li>
</ul>
<div class="sourceCode" id="cb26"><pre class="sourceCode default"><code class="sourceCode default"><span id="cb26-1"><a href="#cb26-1"></a> template<class S, class R, class P, class F></span>
<span id="cb26-2"><a href="#cb26-2"></a> void indexed_for(S, R, P, F) = delete;</span></code></pre></div>
<p>and that does not include a declaration of <code>execution::indexed_for</code>.</p>
<ul>
<li><p>Otherwise constructs a receiver, <code>r</code> over an implementation-defined synchronization primitive and passes that receiver to <code>execution::submit(S, r)</code>.</p>
<ul>
<li><p>If <code>set_value</code> is called on <code>r</code> with some parameter pack <code>t...</code> then calls <code>F(idx, t...)</code> for each element <code>idx</code> in <code>R</code>. Once all complete calls <code>execution::set_value(output_receiver, v)</code>.</p>
<ul>
<li>If any call to <code>set_value</code> throws an exception, then call <code>set_error(r, e)</code> with some exception from the set.</li>
</ul></li>
<li><p>If <code>set_error(r, e)</code> is called, passes <code>e</code> to <code>execution::set_error(output_receiver, e)</code>.</p></li>
<li><p>If <code>set_done(r)</code> is called, calls <code>execution::set_done(output_receiver)</code>.</p></li>
</ul></li>
</ul>
<p><strong>Notes:</strong> * If <code>P</code> is not <code>execution::seq</code> and <code>R</code> satisfies <code>random_access_range</code> then <code>indexed_for</code> may run the instances of <code>F</code> concurrently. * <code>P</code> represents a guarantee on the most relaxed execution policy <code>F</code> and the element access function of range <code>R</code> are safe to run under, and hence the most parallel fashion in which the underlying <code>scheduler</code> may map instances of <code>F</code> to execution agents.</p>
<h2 id="executiontransform"><span class="header-section-number">3.8</span> execution::transform<a href="#executiontransform" class="self-link"></a></h2>
<h3 id="overview-6"><span class="header-section-number">3.8.1</span> Overview<a href="#overview-6" class="self-link"></a></h3>
<p><code>transform</code> is a sender adapter that takes a <code>sender</code> and an invocable and returns a <code>sender</code> that propagates the value resulting from calling the invocable on the value passed by the preceding <code>sender</code>.</p>
<p>Signature:</p>
<div class="sourceCode" id="cb27"><pre class="sourceCode cpp"><code class="sourceCode cpp"><span id="cb27-1"><a href="#cb27-1"></a>S<span class="op"><</span>T2<span class="op">></span> transform<span class="op">(</span>S<span class="op"><</span>T<span class="op">...></span>, invocable<span class="op"><</span>T2<span class="op">(</span>T<span class="op">...))</span>;</span></code></pre></div>
<p>where <code>S<T...></code> and <code>S<T2></code> are implementation-defined types that is represent senders that send a value of type list <code>T...</code> or <code>T2</code> respectively in their value channels. Note that in the general case there may be many types <code>T...</code> for a given <code>sender</code>, in which case the invocable may have to represent an overload set.</p>
<p><em>[ Example:</em></p>
<div class="sourceCode" id="cb28"><pre class="sourceCode cpp"><code class="sourceCode cpp"><span id="cb28-1"><a href="#cb28-1"></a><span class="dt">int</span> r <span class="op">=</span> sync_wait<span class="op">(</span>just<span class="op">(</span><span class="dv">3</span><span class="op">)</span> <span class="op">|</span> transform<span class="op">([](</span><span class="dt">int</span> v<span class="op">){</span><span class="cf">return</span> v<span class="op">+</span><span class="dv">1</span>;<span class="op">}))</span>;</span>
<span id="cb28-2"><a href="#cb28-2"></a><span class="co">// r==4</span></span></code></pre></div>
<h3 id="wording-6"><span class="header-section-number">3.8.2</span> Wording<a href="#wording-6" class="self-link"></a></h3>
<p>The name <code>execution::transform</code> denotes a customization point object. The expression <code>execution::transform(S, F)</code> for some subexpressions <code>S</code> and <code>F</code> is expression-equivalent to:</p>
<ul>
<li><code>S.transform(F)</code> if that expression is valid.</li>
<li>Otherwise, <code>transform(S, F)</code>, if that expression is valid with overload resolution performed in a context that includes the declaration</li>
</ul>
<div class="sourceCode" id="cb29"><pre class="sourceCode default"><code class="sourceCode default"><span id="cb29-1"><a href="#cb29-1"></a> template<class S, class F></span>
<span id="cb29-2"><a href="#cb29-2"></a> void transform(S, F) = delete;</span></code></pre></div>
<p>and that does not include a declaration of <code>execution::transform</code>.</p>
<ul>
<li><p>Otherwise constructs a receiver, <code>r</code> over an implementation-defined synchronization primitive and passes that receiver to <code>execution::submit(S, r)</code>. When some <code>output_receiver</code> has been passed to <code>submit</code> on the returned <code>sender</code>.</p>
<ul>
<li>If <code>set_value(r, Ts... ts)</code> is called, calls <code>std::invoke(F, ts...)</code> and passes the result <code>v</code> to <code>execution::set_value(output_receiver, v)</code>.</li>
<li>If <code>F</code> throws, catches the exception and passes it to <code>execution::set_error(output_receiver, e)</code>.</li>
<li>If <code>set_error(c, e)</code> is called, passes <code>e</code> to <code>execution::set_error(output_receiver, e)</code>.</li>
<li>If <code>set_done(c)</code> is called, calls <code>execution::set_done(output_receiver)</code>.</li>
</ul></li>
</ul>
<!--
If `execution::is_noexcept_sender(S)` returns true at compile-time, and `F(S1::value_types)` is marked `noexcept` and all entries in `S1::value_types` are nothrow movable, `execution::is_noexcept_sender(transform(S1, F))` should return `true` at compile time.
-->
<h2 id="executionbulk_transform"><span class="header-section-number">3.9</span> execution::bulk_transform<a href="#executionbulk_transform" class="self-link"></a></h2>
<h3 id="overview-7"><span class="header-section-number">3.9.1</span> Overview<a href="#overview-7" class="self-link"></a></h3>
<p><code>bulk_transform</code> is a sender adapter that takes a <code>sender</code> of a <code>range</code> of values and an invocable and returns a <code>sender</code> that executes the invocable for each element of the input range, and propagates the range of returned values.</p>
<p>Signature:</p>
<div class="sourceCode" id="cb30"><pre class="sourceCode cpp"><code class="sourceCode cpp"><span id="cb30-1"><a href="#cb30-1"></a>S<span class="op"><</span>range<span class="op"><</span>T2<span class="op">>></span> bulk_transform<span class="op">(</span>S<span class="op"><</span>range<span class="op"><</span>T<span class="op">>></span>, invocable<span class="op"><</span>T2<span class="op">(</span>T<span class="op">))</span>;</span></code></pre></div>
<p>where <code>S<range<T>></code> and <code>S<T2></code> are implementation-defined types that is represent senders that send a value of type list <code>T</code> or <code>T2</code> respectively in their value channels. Note that in the general case there may be many types <code>T</code> for a given <code>sender</code>, in which case the invocable may have to represent an overload set.</p>
<p><em>[ Example:</em></p>
<div class="sourceCode" id="cb31"><pre class="sourceCode cpp"><code class="sourceCode cpp"><span id="cb31-1"><a href="#cb31-1"></a>std<span class="op">::</span>vector<span class="op"><</span><span class="dt">int</span><span class="op">></span> r <span class="op">=</span> sync_wait<span class="op">(</span>just<span class="op">(</span>std<span class="op">::</span>vector<span class="op"><</span><span class="dt">int</span><span class="op">>{</span><span class="dv">3</span>, <span class="dv">4</span>, <span class="dv">5</span><span class="op">})</span> <span class="op">|</span> bulk_transform<span class="op">([](</span><span class="dt">int</span> v<span class="op">){</span><span class="cf">return</span> v<span class="op">+</span><span class="dv">1</span>;<span class="op">}))</span>;</span>
<span id="cb31-2"><a href="#cb31-2"></a><span class="co">// r=={4, 5, 6}</span></span></code></pre></div>
<p>Note: it is TBD how precisely we should represent the intermediate data types here. Intermediate vectors would require allocator support. Purely lazy ranges may be inadequate.</p>
<h3 id="wording-7"><span class="header-section-number">3.9.2</span> Wording<a href="#wording-7" class="self-link"></a></h3>
<p>The name <code>execution::bulk_transform</code> denotes a customization point object. The expression <code>execution::bulk_transform(S, F)</code> for some subexpressions S and F is expression-equivalent to:</p>
<ul>
<li>S.bulk_transform(F), if that expression is valid.</li>
<li>Otherwise, <code>bulk_transform(S, F)</code>, if that expression is valid with overload resolution performed in a context that includes the declaration</li>
</ul>
<div class="sourceCode" id="cb32"><pre class="sourceCode default"><code class="sourceCode default"><span id="cb32-1"><a href="#cb32-1"></a> template<class S, class F></span>
<span id="cb32-2"><a href="#cb32-2"></a> void bulk_transform(S, F) = delete;</span></code></pre></div>
<p>and that does not include a declaration of <code>execution::bulk_transform</code>.</p>
<ul>
<li><p>Otherwise constructs a receiver, <code>r</code> over an implementation-defined synchronization primitive and passes that receiver to <code>execution::submit(S, r)</code>.</p>
<ul>
<li>If <code>S::value_type</code> does not model the concept <code>Range<T></code> for some <code>T</code> the expression ill-formed.</li>
<li>If <code>set_value</code> is called on <code>r</code> with some parameter <code>input</code> applies the equivalent of <code>out = std::ranges::transform_view(input, F)</code> and passes the result <code>output</code> to <code>execution::set_value(output_receiver, v)</code>.</li>
<li>If <code>set_error(r, e)</code> is called, passes <code>e</code> to <code>execution::set_error(output_receiver, e)</code>.</li>
<li>If <code>set_done(r)</code> is called, calls <code>execution::set_done(output_receiver)</code>.</li>
</ul></li>
</ul>
<h2 id="executionhandle_error"><span class="header-section-number">3.10</span> execution::handle_error<a href="#executionhandle_error" class="self-link"></a></h2>
<!-- TODO: Should this filter for error types? "if it is callable with...". -->
<h3 id="overview-8"><span class="header-section-number">3.10.1</span> Overview<a href="#overview-8" class="self-link"></a></h3>
<p><code>handle_error</code> is a sender adapter that takes a <code>sender</code> and an invocable and returns a <code>sender</code> that propagates the value, error or done signal from the <code>sender</code> returned by the invocable.</p>
<p>Signature:</p>
<div class="sourceCode" id="cb33"><pre class="sourceCode cpp"><code class="sourceCode cpp"><span id="cb33-1"><a href="#cb33-1"></a>S<span class="op"><</span>T2<span class="op">...</span>, E2<span class="op">...></span> handle_error<span class="op">(</span>S<span class="op"><</span>T<span class="op">...</span>, E<span class="op">...></span>, invocable<span class="op"><</span>sender<span class="op"><</span>T2<span class="op">...</span>, E2<span class="op">...>(</span>E<span class="op">...))</span>;</span></code></pre></div>
<p>where <code>S<T..., E...></code> and <code>S<T2..., E2...></code> are implementation-defined types that is represent senders that send a value of type list <code>T...</code> or <code>T2...</code> respectively in their value channels and error type lists <code>E...</code> and <code>E2...</code> in their error channels. The invocable takes the error types <code>E...</code> and returns a <code>sender</code> over some potentially new set of types. By returning a <code>sender</code> the algorithm has control of error recovery as well as use cases such as logging and propagation. Note that in the general case there may be many types <code>E...</code> for a given <code>sender</code>, in which case the invocable may have to represent an overload set.</p>
<p><em>[ Example:</em></p>
<div class="sourceCode" id="cb34"><pre class="sourceCode cpp"><code class="sourceCode cpp"><span id="cb34-1"><a href="#cb34-1"></a><span class="dt">float</span> r <span class="op">=</span> sync_wait<span class="op">(</span></span>
<span id="cb34-2"><a href="#cb34-2"></a> just<span class="op">(</span><span class="dv">3</span><span class="op">)</span> <span class="op">|</span></span>
<span id="cb34-3"><a href="#cb34-3"></a> transform<span class="op">([](</span><span class="dt">int</span> v<span class="op">){</span><span class="cf">throw</span> <span class="fl">2.0</span><span class="bu">f</span>;<span class="op">})</span> <span class="op">|</span></span>
<span id="cb34-4"><a href="#cb34-4"></a> handle_error<span class="op">([](</span><span class="dt">float</span> e<span class="op">){</span><span class="cf">return</span> just<span class="op">(</span>e<span class="op">+</span><span class="dv">1</span><span class="op">)</span>;<span class="op">}))</span>;</span>
<span id="cb34-5"><a href="#cb34-5"></a><span class="co">// r==3.0f</span></span></code></pre></div>
<h3 id="wording-8"><span class="header-section-number">3.10.2</span> Wording<a href="#wording-8" class="self-link"></a></h3>
<p>The name <code>execution::handle_error</code> denotes a customization point object. The expression <code>execution::handle_error(S, F)</code> for some subexpressions S and F is expression-equivalent to:</p>
<ul>
<li>S.handle_error(F), if that expression is valid.</li>
<li>Otherwise, <code>handle_error(S, F)</code>, if that expression is valid with overload resolution performed in a context that includes the declaration</li>
</ul>
<div class="sourceCode" id="cb35"><pre class="sourceCode default"><code class="sourceCode default"><span id="cb35-1"><a href="#cb35-1"></a> template<class S, class F></span>
<span id="cb35-2"><a href="#cb35-2"></a> void handle_error(S, F) = delete;</span></code></pre></div>
<p>and that does not include a declaration of <code>execution::handle_error</code>.</p>
<ul>
<li><p>Otherwise constructs a receiver, <code>r</code> over an implementation-defined synchronization primitive and passes that receiver to <code>execution::submit(S, r)</code>.</p>
<ul>
<li>If <code>set_value(r, v...)</code> is called, passes <code>v...</code> to <code>execution::set_value(output_receiver, v...)</code>.</li>
<li>If <code>set_error(r, e...)</code> is called, passes <code>e...</code> to <code>f</code>, resulting in a <code>sender</code> <code>s2</code> and passes <code>output_receiver</code> to <code>submit(s2, output_receiver)</code>.</li>
<li>If <code>set_done(r)</code> is called, calls <code>execution::set_done(output_receiver)</code>.</li>
</ul></li>
</ul>
<h1 id="customization-and-example"><span class="header-section-number">4</span> Customization and example<a href="#customization-and-example" class="self-link"></a></h1>
<p>Each of these algorithms, apart from <code>just</code>, is customizable on one or more <code>sender</code> implementations. This allows full optimization. For example, in the following simple work chain:</p>
<div class="sourceCode" id="cb36"><pre class="sourceCode default"><code class="sourceCode default"><span id="cb36-1"><a href="#cb36-1"></a>auto s = just(3) | // s1</span>
<span id="cb36-2"><a href="#cb36-2"></a> via(scheduler1) | // s2</span>
<span id="cb36-3"><a href="#cb36-3"></a> transform([](int a){return a+1;}) | // s3</span>
<span id="cb36-4"><a href="#cb36-4"></a> transform([](int a){return a*2;}) | // s4</span>
<span id="cb36-5"><a href="#cb36-5"></a> via(scheduler2) | // s5</span>
<span id="cb36-6"><a href="#cb36-6"></a> handle_error([](auto e){return just(3);}); // s6</span>
<span id="cb36-7"><a href="#cb36-7"></a>int r = sync_wait(s);</span></code></pre></div>
<p>The result of <code>s1</code> might be a <code>just_sender<int></code> implemented by the standard library vendor.</p>
<p><code>via(just_sender<int>, scheduler1)</code> has no customization defined, and this expression returns an <code>scheduler1_via_sender<int></code> that is a custom type from the author of <code>scheduler1</code>, it will call <code>submit</code> on the result of <code>s1</code>.</p>