forked from dalek7/DLWorkshop17Summer
-
Notifications
You must be signed in to change notification settings - Fork 0
/
03-6-mnist-cnn.py
executable file
·104 lines (77 loc) · 3.5 KB
/
03-6-mnist-cnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
# based on https://www.tensorflow.org/get_started/mnist/pros
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets('../MNIST_data', one_hot=True)
import tensorflow as tf
sess = tf.InteractiveSession()
#sess = tf.Session()
def weight_variable(shape):
initial = tf.truncated_normal(shape, stddev=0.1)
return tf.Variable(initial)
def bias_variable(shape):
initial = tf.constant(0.1, shape=shape)
return tf.Variable(initial)
# Convolution and Pooling
def conv2d(x, W):
return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')
def max_pool_2x2(x):
return tf.nn.max_pool(x, ksize=[1, 2, 2, 1],
strides=[1, 2, 2, 1], padding='SAME')
# Placeholders
x = tf.placeholder(tf.float32, shape=[None, 784])
y_ = tf.placeholder(tf.float32, shape=[None, 10])
# First Convolutional Layer
## first layer will consist of convolution, followed by max pooling
## The convolution will compute 32 features for each 5x5 patch.
## Its weight tensor will have a shape of [5, 5, 1, 32].
W_conv1 = weight_variable([5, 5, 1, 32])
b_conv1 = bias_variable([32])
## reshape x to a 4d tensor
x_image = tf.reshape(x, [-1,28,28,1])
## We then convolve x_image with the weight tensor, add the bias, apply the ReLU function, and finally max pool.
h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)
## The max_pool_2x2 method will reduce the image size to 14x14.
h_pool1 = max_pool_2x2(h_conv1)
# Second Convolutional Layer
## The second layer will have 64 features for each 5x5 patch.
W_conv2 = weight_variable([5, 5, 32, 64])
b_conv2 = bias_variable([64])
h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
h_pool2 = max_pool_2x2(h_conv2) ## the image size will be reduced to 7x7
# Densely Connected Layer
n_neurons = 512;
## Now that the image size has been reduced to 7x7, we add a fully-connected layer with 1024 neurons to allow processing on the entire image.
## We reshape the tensor from the pooling layer into a batch of vectors, multiply by a weight matrix, add a bias, and apply a ReLU.
W_fc1 = weight_variable([7 * 7 * 64, n_neurons])
b_fc1 = bias_variable([n_neurons])
h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64])
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)
## Dropout
keep_prob = tf.placeholder(tf.float32)
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)
# Readout Layer
#W_fc2 = weight_variable([1024, 10])
W_fc2 = weight_variable([n_neurons, 10])
b_fc2 = bias_variable([10])
y_conv = tf.matmul(h_fc1_drop, W_fc2) + b_fc2
# Train and Evaluate the Model
cross_entropy = tf.reduce_mean(
tf.nn.softmax_cross_entropy_with_logits(labels=y_, logits=y_conv))
train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
correct_prediction = tf.equal(tf.argmax(y_conv,1), tf.argmax(y_,1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
saver = tf.train.Saver()
sess.run(tf.global_variables_initializer())
for i in range(1000): # 20000
batch = mnist.train.next_batch(50)
if i%100 == 0:
train_accuracy = accuracy.eval(feed_dict={
x:batch[0], y_: batch[1], keep_prob: 1.0})
print("step %d, training accuracy %g"%(i, train_accuracy))
train_step.run(feed_dict={x: batch[0], y_: batch[1], keep_prob: 0.5})
save_path = saver.save(sess, "model2.ckpt")
print ("Model saved in file: ", save_path)
print("test accuracy %g"% sess.run(
accuracy, feed_dict={x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.0}))
sess.close()
# Ran out of memory trying to allocate 957.03MiB. See logs for memory state !!
# TODO : upgrade GPU !