forked from dalek7/DLWorkshop17Summer
-
Notifications
You must be signed in to change notification settings - Fork 0
/
02-1-logistic-regression-classifier.py
executable file
·87 lines (71 loc) · 2.34 KB
/
02-1-logistic-regression-classifier.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
#-*- coding: utf-8 -*-
# Lab 3 Logistic Regression Classifier
import tensorflow as tf
import matplotlib.pyplot as plt
import numpy as np
tf.set_random_seed(777) # for reproducibility
# 좌표
x_data = [[1, 2],
[2, 3],
[3, 1],
[4, 3],
[5, 3],
[6, 2]]
# Label
y_data = [[0],
[0],
[0],
[1],
[1],
[1]]
# placeholders for a tensor that will be always fed.
X = tf.placeholder(tf.float32, shape=[None, 2])
Y = tf.placeholder(tf.float32, shape=[None, 1])
W = tf.Variable(tf.random_normal([2, 1]), name='weight')
b = tf.Variable(tf.random_normal([1]), name='bias')
# Hypothesis using sigmoid: tf.div(1., 1. + tf.exp(tf.matmul(X, W)))
hypothesis = tf.sigmoid(tf.matmul(X, W) + b)
# cost/loss function
# linear의 경우
# cost = tf.reduce_mean(tf.square(hypothesis - Y))
cost = -tf.reduce_mean(Y * tf.log(hypothesis) + (1 - Y) * tf.log(1 - hypothesis))
train = tf.train.GradientDescentOptimizer(learning_rate=0.01).minimize(cost)
# Accuracy computation
# True if hypothesis>0.5 else False
predicted = tf.cast(hypothesis > 0.5, dtype=tf.float32)
accuracy = tf.reduce_mean(tf.cast(tf.equal(predicted, Y), dtype=tf.float32))
steps = []
costs = []
# Launch graph
with tf.Session() as sess:
# Initialize TensorFlow variables
sess.run(tf.global_variables_initializer())
for step in range(10001):
cost_val, _ = sess.run([cost, train], feed_dict={X: x_data, Y: y_data})
steps.append(step)
costs.append(cost_val)
if step % 200 == 0:
print(step, cost_val)
# Accuracy report
h, c, a = sess.run([hypothesis, predicted, accuracy],
feed_dict={X: x_data, Y: y_data})
print("\nHypothesis: ", h, "\nCorrect (Y): ", c, "\nAccuracy: ", a)
print sess.run(W)
for i in range(len(x_data)):
v1 = sess.run(hypothesis, feed_dict={X: [x_data[i]]})
v2 = np.round(v1)
print x_data[i], "--->", v1, "-->", v2;
#print(sess.run(hypothesis, feed_dict={X: [[1, 2]]}))
x_data2 = np.array(x_data)
x1 = x_data2[:, 0]
x2 = x_data2[:, 1]
print(len(x1))
print ('x1=', x1)
print ('x2=', x2)
plt.figure(0)
for i in range(len(x1)):
if y_data[i] == [0]:
plt.plot(x1[i], x2[i], "bo")
else:
plt.plot(x1[i], x2[i], "r^")
plt.show()