Skip to content

Commit

Permalink
Merge pull request #13 from LaurentRDC/develop
Browse files Browse the repository at this point in the history
Develop
  • Loading branch information
LaurentRDC authored Jul 11, 2017
2 parents 9b0e3ef + 40a9094 commit 53bd53b
Show file tree
Hide file tree
Showing 33 changed files with 914 additions and 192 deletions.
2 changes: 1 addition & 1 deletion RELEASE.rst
Original file line number Diff line number Diff line change
@@ -1,7 +1,7 @@
Steps to Release scikit-ued
===========================

These are the steps to take to create a release of the module ``skued``:
These are the steps to take to create a release of the package ``skued``:

1. Switch to the release branch

Expand Down
4 changes: 3 additions & 1 deletion docs/source/api.rst
Original file line number Diff line number Diff line change
Expand Up @@ -10,7 +10,9 @@ Parallel Utilities

Plot Utilities
==============
.. automodule:: skued.plot_utils
.. autofunction:: skued.plot_utils.spectrum_colors

.. autofunction:: skued.plot_utils.rgb_sweep

Array Utilities
===============
Expand Down
1 change: 1 addition & 0 deletions docs/source/conf.py
Original file line number Diff line number Diff line change
Expand Up @@ -16,6 +16,7 @@
#
import os
import sys

sys.path.insert(0, os.path.abspath('../..'))

import skued
Expand Down
Binary file added docs/source/tutorials/Cr_1.tif
Binary file not shown.
Binary file added docs/source/tutorials/Cr_2.tif
Binary file not shown.
14 changes: 7 additions & 7 deletions docs/source/tutorials/baseline.rst
Original file line number Diff line number Diff line change
Expand Up @@ -25,7 +25,7 @@ example polycrystalline vanadium dioxide pattern:
import matplotlib.pyplot as plt
import numpy as np

s, intensity = np.load('data\\powder.npy')
s, intensity = np.load('powder.npy')
fig = plt.figure()
ax = fig.add_subplot(111)
ax.plot(s, intensity, 'k')
Expand All @@ -50,7 +50,7 @@ substrates, as well as inelastic scattering effects::
import numpy as np
from skued import gaussian

s, intensity = np.load('data\\powder.npy')
s, intensity = np.load('powder.npy')

# Double exponential inelastic background and substrate effects
background = 75 * np.exp(-7 * s) + 55 * np.exp(-2 * s)
Expand Down Expand Up @@ -78,7 +78,7 @@ Scikit-ued offers two ways of removing the background.
Iterative Baseline Determination using the Discrete Wavelet Transform
=====================================================================

The prodecude and rational for the :code:`baseline_dwt` routine is described in detail in:
The procedure and rational for the :code:`baseline_dwt` routine is described in detail in:

Galloway et al. 'An Iterative Algorithm for Background Removal in Spectroscopy by Wavelet
Transforms', Applied Spectroscopy pp. 1370 - 1376, September 2009.
Expand All @@ -89,7 +89,7 @@ Here is a usage example for the data presented above::
from skued import gaussian
from skued.baseline import baseline_dwt

s, intensity = np.load('data\\powder.npy')
s, intensity = np.load('powder.npy')

# Double exponential inelastic background and substrate effects
diffuse = 75 * np.exp(-7 * s) + 55 * np.exp(-2 * s)
Expand All @@ -105,7 +105,7 @@ Here is a usage example for the data presented above::
from skued import gaussian, spectrum_colors
from skued.baseline import baseline_dwt

s, intensity = np.load('data\\powder.npy')
s, intensity = np.load('powder.npy')

# Double exponential inelastic background and substrate effects
diffuse = 75 * np.exp(-7 * s) + 55 * np.exp(-2 * s)
Expand Down Expand Up @@ -155,7 +155,7 @@ Here is a usage example for the data presented above::
from skued import gaussian
from skued.baseline import baseline_dt

s, intensity = np.load('data\\powder.npy')
s, intensity = np.load('powder.npy')

# Double exponential inelastic background and substrate effects
diffuse = 75 * np.exp(-7 * s) + 55 * np.exp(-2 * s)
Expand All @@ -171,7 +171,7 @@ Here is a usage example for the data presented above::
from skued import gaussian, spectrum_colors
from skued.baseline import baseline_dt

s, intensity = np.load('data\\powder.npy')
s, intensity = np.load('powder.npy')

# Double exponential inelastic background and substrate effects
diffuse = 75 * np.exp(-7 * s) + 55 * np.exp(-2 * s)
Expand Down
138 changes: 111 additions & 27 deletions docs/source/tutorials/image.rst
Original file line number Diff line number Diff line change
Expand Up @@ -13,6 +13,7 @@ Contents
========

* :ref:`streaming`
* :ref:`alignment`
* :ref:`powder`

.. _streaming:
Expand Down Expand Up @@ -105,43 +106,127 @@ Here is a recipe for it::
errors = isem(stream2)
yield from zip(averages, errors)

.. _powder:
.. _alignment:

Image analysis on polycrystalline diffraction patterns
======================================================
Diffraction pattern alignment
=============================

Center-finding
--------------
Polycrystalline diffraction patterns display concentric rings, and finding
the center of those concentric rings is important.
Diffraction patterns can drift over a period of a few minutes, and for reliable data synthesis
it is important to align patterns to a reference.

The procedure of detecting, or registering, the translation between two similar images is usually
done by measuring the cross-correlation between images. When images are very similar, this procedure
is fine; take a look at scikit-image's :code:`skimage.feature.register_translation` for example.

However, diffraction patterns all have a fixed feature: the position of the beam-block. Therefore, some pixels
in each diffraction pattern must be ignored in the computation of the cross-correlation.

Setting the 'invalid pixels' to 0 will not work, at those will correlate with the invalid pixels from the reference. One must use
the **masked normalized cross-correlation** through scikit-ued's :code:`mnxc2`.

All of this is taken care of in scikit-ued's :code:`diff_register` function. Let's look at some polycrystalline Chromium:

.. plot::

Let's load a test image::
from skimage import img_as_uint
from skimage.io import imread
import matplotlib.pyplot as plt

path = '\\data\\vo2.tif'
im = img_as_uint(imread(path, plugin = 'tifffile'))
ref = imread('Cr_1.tif')
im = imread('Cr_2.tif')

mask = np.zeros_like(im, dtype = np.bool)
mask[0:1250, 700:1100] = True
im[mask] = 0
fig, (ax1, ax2, ax3) = plt.subplots(nrows = 1, ncols = 3, figsize = (9,3))
ax1.imshow(ref, vmin = 0, vmax = 200)
ax2.imshow(im, vmin = 0, vmax = 200)
ax3.imshow(ref - im, cmap = 'RdBu_r')

for ax in (ax1, ax2, ax3):
ax.get_xaxis().set_visible(False)
ax.get_yaxis().set_visible(False)

ax1.set_title('Reference')
ax2.set_title('Data')
ax3.set_title('Difference')

plt.tight_layout()
plt.show()

From the difference pattern, we can see that the 'Data' pattern is shifted from 'Reference' quite a bit.
To determine the exact shift, we need to use a mask that obscures the beam-block and main beam::

from skued.image import diff_register, shift_image
import numpy as np

ref = imread('Cr_1.tif')
im = imread('Cr_2.tif')

mask = np.zeros_like(ref, dtype = np.bool)
mask[0:1250, 950:1250] = True

shift = diff_register(im, reference = ref, mask = mask)
im = shift_image(im, shift)

plt.imshow(im, vmin = 1000, vmax = 1200)
Let's look at the difference:

.. plot::

from skimage.io import imread
import matplotlib.pyplot as plt
import numpy as np
from skued.image import diff_register, shift_image

ref = imread('Cr_1.tif')
im = imread('Cr_2.tif')

mask = np.zeros_like(ref, dtype = np.bool)
mask[0:1250, 950:1250] = True

shift = diff_register(im, ref, mask)
shifted = shift_image(im, -shift)

fig, ((ax1, ax2, ax3), (ax4, ax5, ax6)) = plt.subplots(nrows = 2, ncols = 3, figsize = (9,6))
ax1.imshow(ref, vmin = 0, vmax = 200)
ax2.imshow(im, vmin = 0, vmax = 200)
ax3.imshow(ref - im, cmap = 'RdBu_r')
ax4.imshow(mask, vmin = 0, vmax = 1, cmap = 'binary')
ax5.imshow(shifted, vmin = 0, vmax = 200)
ax6.imshow(ref - shifted, cmap = 'RdBu_r')

for ax in (ax1, ax2, ax3, ax4, ax5, ax6):
ax.get_xaxis().set_visible(False)
ax.get_yaxis().set_visible(False)

ax1.set_title('Reference')
ax2.set_title('Data')
ax3.set_title('Difference')
ax4.set_title('Mask')
ax5.set_title('Aligned data')
ax6.set_title('Diff. after shift')

plt.tight_layout()
plt.show()

.. _powder:

Image analysis on polycrystalline diffraction patterns
======================================================

Center-finding
--------------
Polycrystalline diffraction patterns display concentric rings, and finding
the center of those concentric rings is important. Let's load a test image:

.. plot::

from skimage import img_as_uint
from skimage.io import imread
import matplotlib.pyplot as plt
path = 'data\\vo2.tif'
im = img_as_uint(imread(path, plugin = 'tifffile'))
path = 'Cr_1.tif'

im = imread(path, plugin = 'tifffile')
mask = np.zeros_like(im, dtype = np.bool)
mask[0:1250, 700:1100] = True
mask[0:1250, 950:1250] = True

im[mask] = 0
plt.imshow(im, vmin = 1000, vmax = 1200)
plt.imshow(im, vmin = 0, vmax = 200)
plt.show()

This is a noisy diffraction pattern of polycrystalline vanadium dioxide.
Expand All @@ -163,20 +248,19 @@ Finding the center of such a symmetry pattern can be done with the

.. plot::

from skimage import img_as_uint
from skimage.io import imread
import numpy as np
import matplotlib.pyplot as plt
path = 'data\\vo2.tif'
im = img_as_uint(imread(path, plugin = 'tifffile'))
path = 'Cr_1.tif'
im = imread(path, plugin = 'tifffile')
from skued.image import powder_center
mask = np.zeros_like(im, dtype = np.bool)
mask[0:1250, 700:1100] = True
mask[0:1250, 950:1250] = True
ic, jc = powder_center(im, mask = mask)
ii, jj = np.meshgrid(np.arange(im.shape[0]), np.arange(im.shape[1]),indexing = 'ij')
rr = np.sqrt((ii - ic)**2 + (jj - jc)**2)
im[rr < 100] = 0
plt.imshow(im, vmin = 1000, vmax = 1200)
im[rr < 100] = 1e6
plt.imshow(im, vmin = 0, vmax = 200)
plt.show()

Angular average
Expand Down
File renamed without changes.
File renamed without changes.
47 changes: 47 additions & 0 deletions external/MaskedFFTRegistrationCode/MaskedTranslationRegistration.m
Original file line number Diff line number Diff line change
@@ -0,0 +1,47 @@
function [transform,maxC,C,numberOfOverlapMaskedPixels] = MaskedTranslationRegistration(fixedImage,movingImage,fixedMask,movingMask,overlapRatio)

% [transform,maxC,C,numberOfOverlapMaskedPixels] =
% MaskedTranslationRegistration(fixedImage,movingImage,fixedMask,movingMask,overlapRatio)
% Masked FFT normalized cross-correlation registration of movingImage and
% fixedImage under masks movingMask and fixedMask.
% movingMask and fixedMask should consist of only 1s and 0s, where 1
% indicates locations of useful information in the corresponding image,
% and 0 indicates locations that should be masked (ignored).
% fixedImage and movingImage need not be the same size, but fixedMask
% must be the same size as fixedImage, and movingMask must be the same
% size as movingImage.
% If a mask is not needed for either the fixedImage or the movingImage,
% the fixedMask and/or movingMask can be set to an image of all ones of
% the same size as the corresponding fixedImage and/or movingImage.
% The optional overlapRatio specifies the number of pixels needed in the
% overlap region for meaningful results. It is specified as a ratio of the
% maximum number of overlap pixels. Regions in the resulting correlation
% image that have fewer than this number of pixels will be set to 0.
%
% References:
% D. Padfield. "Masked Object Registration in the Fourier Domain".
% Transactions on Image Processing.
% D. Padfield. "Masked FFT registration". In Proc. Computer Vision and
% Pattern Recognition, 2010.
%
% Author: Dirk Padfield, GE Global Research, [email protected]
%

if( nargin < 5 )
overlapRatio = 3/10;
end

[C,numberOfOverlapMaskedPixels] = normxcorr2_masked(fixedImage,movingImage,fixedMask,movingMask);

imageSize = size(movingImage);

% Mask the borders;
numberOfPixelsThreshold = overlapRatio * max(numberOfOverlapMaskedPixels(:));
C(numberOfOverlapMaskedPixels < numberOfPixelsThreshold) = 0;

[maxC, imax] = max(C(:));
[ypeak, xpeak] = ind2sub(size(C),imax(1));
transform = [(xpeak-imageSize(2)) (ypeak-imageSize(1))];

% Take the negative of the transform so that it has the correct sign.
transform = -transform;
Original file line number Diff line number Diff line change
@@ -0,0 +1,42 @@
% MaskedTranslationRegistrationTest
% Test the MaskedTranslationRegistration code.
%
% References:
% D. Padfield. "Masked Object Registration in the Fourier Domain".
% Transactions on Image Processing.
% D. Padfield. "Masked FFT registration". In Proc. Computer Vision and
% Pattern Recognition, 2010.
%
% Author: Dirk Padfield, GE Global Research, [email protected]
%


close all;
clear variables;
clc;

% Perform the registration on several sets of images.
x = [75 -130 130];
y = [75 130 130];
overlapRatio = 1/10;

for i = 1:3
fixedImage = imread(sprintf('OriginalX%2iY%2i.png',x(i),y(i)));
movingImage = imread(sprintf('TransformedX%2iY%2i.png',x(i),y(i)));
fixedMask = fixedImage~=0;
movingMask = movingImage~=0;

[translation,maxC] = MaskedTranslationRegistration(fixedImage,movingImage,fixedMask,movingMask,overlapRatio);
[transformedMovingImage] = TransformImageTranslation(movingImage,translation);

% Given the transform, transform the moving image.
[overlayImage] = OverlayRegistration(fixedImage,transformedMovingImage);
figure; imagesc(overlayImage); title(['Test ' num2str(i) ': Registered Overlay Image']);

disp(['Test ' num2str(i) ':']);
disp(['Computed translation: ' num2str([translation(1) -translation(2)])]);
disp(['Correlation score: ' num2str(maxC)]);
trueTranslation = [x(i),-y(i)];
disp(['Transformation error: ' num2str(translation - trueTranslation)]);
disp(' ');
end
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading

0 comments on commit 53bd53b

Please sign in to comment.