-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdata_utils.py
43 lines (33 loc) · 1.41 KB
/
data_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
import torch
import torch.utils.data
import torchvision.datasets as dset
import torchvision.transforms as transforms
from torchvision.io import read_image, ImageReadMode
def prepare_data(dataroot, image_size, batch_size, workers, augmentation=False):
# Create the datasets
transformations = transforms.Compose([
transforms.Resize(image_size),
transforms.CenterCrop(image_size),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
])
data = dset.ImageFolder(root=dataroot, transform=transformations)
if augmentation:
transformations = transforms.Compose([
transforms.Resize(image_size),
transforms.CenterCrop(image_size),
transforms.RandomHorizontalFlip(p=1.0),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
])
augmented = dset.ImageFolder(root=dataroot, transform=transformations)
data = torch.utils.data.ConcatDataset([data, augmented])
# Create the dataloader
dataloader = torch.utils.data.DataLoader(data, batch_size=batch_size,
shuffle=True, num_workers=workers)
# noinspection PyTypeChecker
print("Dataset length", len(dataloader.dataset))
len_ds = len(dataloader)
status_step = len_ds // 2
print("len", len_ds, "stat", status_step)
return dataloader