-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcocodata.py
138 lines (97 loc) · 4.47 KB
/
cocodata.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
import os
from os import listdir
from os.path import isfile
import numpy as np
import torch
import torchvision.transforms as T
import torchvision.transforms.functional as F
from PIL import Image
from pycocotools.coco import COCO
from torch.utils.data import DataLoader, Dataset
class CocoDataset(Dataset):
def __init__(self, root, subset, transform=None, sup=False):
print(f"\nLoading {subset} dataset")
self.imgs_dir = os.path.join(root + "/images/", subset)
ann_file = os.path.join(root + "/annotations/", f"instances_{subset}2017.json")
self.coco = COCO(ann_file)
self.sup = sup
self.classes = self.coco.loadCats(self.coco.getCatIds())
self.class_names = [cat['name'] for cat in self.classes]
self.superclasses = list(set([cat['supercategory'] for cat in self.classes]))
self.target_classes = self.superclasses if self.sup else self.classes
self.target_classes_nb = len(self.target_classes) + 1
self.img_ids = self.coco.getImgIds()
self.transform = transform
def assign_class(self, normal_class, attrname):
for c in self.classes:
if c['id'] == normal_class:
return c[attrname]
def __getitem__(self, idx):
img_id = self.img_ids[idx]
anns = self.coco.loadAnns(self.coco.getAnnIds(img_id))
img_obj = self.coco.loadImgs(img_id)[0]
img = Image.open(os.path.join(self.imgs_dir, img_obj['file_name'])).convert('RGB')
mask = np.zeros(img.size[::-1], dtype=np.uint8)
for ann in anns:
class_name = self.assign_class(ann['category_id'], 'name')
pixel_value = self.class_names.index(class_name) + 1
mask = np.maximum(self.coco.annToMask(ann) * pixel_value, mask)
if self.sup:
for cl in self.classes:
idx = mask == cl['id']
class_index = self.assign_class(cl['id'], 'supercategory')
mask[idx] = self.superclasses.index(class_index) + 1
idx = mask > self.target_classes_nb
mask[idx] = 0
mask = Image.fromarray(mask)
if self.transform is not None:
img = self.transform(img)
img = T.ToTensor()(img)
img = T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])(img)
mask = self.transform(mask)
mask = T.PILToTensor()(mask)
return img, mask.long()
def __len__(self):
return len(self.img_ids)
class CocoTestDataset(Dataset):
def __init__(self, root, subset, transform=None):
print(f"\nLoading {subset} dataset")
self.imgs_dir = os.path.join(root + "/images/", subset)
self.img_names = [f for f in listdir(self.imgs_dir) if isfile(os.path.join(self.imgs_dir, f))]
self.transform = transform
def __getitem__(self, idx):
img = Image.open(os.path.join(self.imgs_dir, self.img_names[idx])).convert('RGB')
if self.transform is not None:
img = self.transform(img)
return img
def __len__(self):
return len(self.img_names)
def get_data(input_size, batch_size=64, sup=False, gui=False):
data_transforms = {
'train': T.Compose([
T.Resize(input_size, interpolation=F.InterpolationMode.BILINEAR),
T.CenterCrop(input_size)
]),
'val': T.Compose([
T.Resize(input_size, interpolation=F.InterpolationMode.BILINEAR),
T.CenterCrop(input_size),
]),
'test': T.Compose([
T.Resize(input_size, interpolation=F.InterpolationMode.BILINEAR),
T.CenterCrop(input_size),
T.ToTensor()
]),
}
sharetrain = 3 if gui else 15
shareval = 3 if gui else 5
coco_train = CocoDataset(root="data", subset="train", transform=data_transforms["train"], sup=sup)
sub1 = torch.utils.data.Subset(coco_train, range(0, sharetrain))
train_dl = DataLoader(sub1, batch_size=batch_size, shuffle=True)
coco_val = CocoDataset(root="data", subset="val", transform=data_transforms["val"], sup=sup)
sub2 = torch.utils.data.Subset(coco_val, range(0, shareval))
val_dl = DataLoader(sub2, batch_size=batch_size, shuffle=True)
coco_test = CocoTestDataset(root="data", subset="test", transform=data_transforms["test"])
sub3 = torch.utils.data.Subset(coco_test, range(0, 50))
test_dl = DataLoader(sub3, batch_size=None, shuffle=True)
cats = ['unlabeled'] + coco_train.target_classes
return train_dl, val_dl, test_dl, cats