-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_progsnn_murd.py
149 lines (128 loc) · 5.27 KB
/
train_progsnn_murd.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
from argparse import ArgumentParser
import datetime
import os
import numpy as np
import torch
import torch.utils.data
from torch import nn
from torch.nn import functional as F
import pickle
import pytorch_lightning as pl
from pytorch_lightning.loggers import WandbLogger
from pytorch_lightning.callbacks.early_stopping import EarlyStopping
from pytorch_lightning.loggers import TensorBoardLogger
from pathlib import Path
from models.gsae_model import GSAE
from models.progsnn import ProGSNN_ATLAS
from torch_geometric.loader import DataLoader
from torchvision import transforms
from deshaw_processing.de_shaw_Dataset import DEShaw, Scattering
if __name__ == '__main__':
parser = ArgumentParser()
parser.add_argument('--dataset', default='murd', type=str)
parser.add_argument('--input_dim', default=None, type=int)
parser.add_argument('--latent_dim', default=64, type=int)
parser.add_argument('--hidden_dim', default=64, type=int)
parser.add_argument('--embedding_dim', default=128, type=int)
parser.add_argument('--lr', default=0.001, type=float)
parser.add_argument('--alpha', default=1e-8, type=float)
parser.add_argument('--beta', default=0.0005, type=float)
parser.add_argument('--beta_loss', default=0.2, type=float)
parser.add_argument('--gamma', default=0.0005, type=float)
# parser.add_argument('--delta', default=0.6, type=float)
parser.add_argument('--n_epochs', default=300, type=int)
parser.add_argument('--len_epoch', default=None)
parser.add_argument('--probs', default=0.2)
parser.add_argument('--nhead', default=1)
parser.add_argument('--layers', default=1)
parser.add_argument('--task', default='reg')
parser.add_argument('--batch_size', default=1, type=int)
parser.add_argument('--n_gpus', default=1, type=int)
parser.add_argument('--save_dir', default='train_logs/', type=str)
parser.add_argument('--residue_num', default=None, type=int)
parser.add_argument('--protein', default=None, type=str)
# add args from trainer
# parser = pl.Trainer.add_argparse_args(parser)
# parse params
args = parser.parse_args()
#55 residues
if args.protein == 'murd':
with open('MurD/graphs_MurD.pkl', 'rb') as file:
full_dataset = pickle.load(file)
# import pdb; pdb.set_trace()
# full_dataset = full_dataset[:1000]
#-----FOR RMSD DATASET-----#
# for data in full_dataset:
# y = float(data.y)
# data.y = y
#--------------------------#
train_size = int(0.8 * len(full_dataset))
val_size = len(full_dataset) - train_size
train_set, val_set = torch.utils.data.random_split(full_dataset, [train_size, val_size])
# train loader
train_loader = DataLoader(train_set, batch_size=args.batch_size,
shuffle=True, num_workers=15)
# valid loader
valid_loader = DataLoader(val_set, batch_size=args.batch_size,
shuffle=False, num_workers=15)
full_loader = DataLoader(full_dataset,
batch_size=args.batch_size,
shuffle=False,
num_workers=15)
# logger
now = datetime.datetime.now()
date_suffix = now.strftime("%Y-%m-%d-%M")
save_dir = args.save_dir + 'progsnn_logs_run_{}_{}/'.format(args.dataset,date_suffix)
if not os.path.exists(save_dir):
os.makedirs(save_dir)
wandb_logger = WandbLogger(name=f'murd_{args.protein}',
project='progsnn',
log_model=True,
save_dir=save_dir)
wandb_logger.log_hyperparams(args)
wandb_logger.experiment.log({"logging timestamp":date_suffix})
# print(train_loader)
# print([item for item in full_dataset])
# early stopping
# early_stop_callback = EarlyStopping(
# monitor='val_loss',
# min_delta=0.00,
# patience=5,
# verbose=True,
# mode='min'
# )
# print(len(val_set))
# args.input_dim = len(train_set)
# print()
# args.input_dim = train_set[0].x.shape[-1]
args.input_dim = 3
# print(train_set[0].x.shape[-1])
# print(full_dataset[0][0].shape)
args.prot_graph_size = max(
[item.edge_index.shape[1] for item in full_dataset])
print(args.prot_graph_size)
# import pdb; pdb.set_trace()
args.len_epoch = len(train_loader)
# import pdb; pdb.set_trace()
#Set number of residues args here
args.residue_num = full_dataset[0].x.shape[0]
print(args.batch_size)
# init module
model = ProGSNN_ATLAS(args)
print("Training...")
# most basic trainer, uses good defaults
trainer = pl.Trainer(
max_epochs=args.n_epochs,
devices = "auto",
#gpus=args.n_gpus,
#callbacks=[early_stop_callback],
logger = wandb_logger
)
trainer.fit(model=model,
train_dataloaders=train_loader,
val_dataloaders=valid_loader,
)
model = model.cpu()
model.dev_type = 'cpu'
print('saving model')
torch.save(model.state_dict(), save_dir + f"model_murd_{args.protein}.npy")