diff --git a/core/src/main/kotlin/org/jetbrains/kotlinx/dataframe/api/max.kt b/core/src/main/kotlin/org/jetbrains/kotlinx/dataframe/api/max.kt index 511376b9de..e57d6fa9c9 100644 --- a/core/src/main/kotlin/org/jetbrains/kotlinx/dataframe/api/max.kt +++ b/core/src/main/kotlin/org/jetbrains/kotlinx/dataframe/api/max.kt @@ -81,24 +81,24 @@ public fun DataFrame.max(skipNaN: Boolean = skipNaNDefault): DataRow = @Refine @Interpretable("Max1") -public fun ?> DataFrame.maxFor( +public fun ?> DataFrame.maxFor( skipNaN: Boolean = skipNaNDefault, columns: ColumnsForAggregateSelector, -): DataRow = Aggregators.max(skipNaN).aggregateFor(this, columns) +): DataRow = Aggregators.max.invoke(skipNaN).aggregateFor(this, columns) public fun DataFrame.maxFor(vararg columns: String, skipNaN: Boolean = skipNaNDefault): DataRow = maxFor(skipNaN) { columns.toComparableColumns() } @Deprecated(DEPRECATED_ACCESS_API) @AccessApiOverload -public fun ?> DataFrame.maxFor( +public fun ?> DataFrame.maxFor( vararg columns: ColumnReference, skipNaN: Boolean = skipNaNDefault, ): DataRow = maxFor(skipNaN) { columns.toColumnSet() } @Deprecated(DEPRECATED_ACCESS_API) @AccessApiOverload -public fun ?> DataFrame.maxFor( +public fun ?> DataFrame.maxFor( vararg columns: KProperty, skipNaN: Boolean = skipNaNDefault, ): DataRow = maxFor(skipNaN) { columns.toColumnSet() } @@ -212,24 +212,24 @@ public fun Grouped.max(skipNaN: Boolean = skipNaNDefault): DataFrame = @Refine @Interpretable("GroupByMax0") -public fun ?> Grouped.maxFor( +public fun ?> Grouped.maxFor( skipNaN: Boolean = skipNaNDefault, columns: ColumnsForAggregateSelector, -): DataFrame = Aggregators.max(skipNaN).aggregateFor(this, columns) +): DataFrame = Aggregators.max.invoke(skipNaN).aggregateFor(this, columns) public fun Grouped.maxFor(vararg columns: String, skipNaN: Boolean = skipNaNDefault): DataFrame = maxFor(skipNaN) { columns.toComparableColumns() } @Deprecated(DEPRECATED_ACCESS_API) @AccessApiOverload -public fun ?> Grouped.maxFor( +public fun ?> Grouped.maxFor( vararg columns: ColumnReference, skipNaN: Boolean = skipNaNDefault, ): DataFrame = maxFor(skipNaN) { columns.toColumnSet() } @Deprecated(DEPRECATED_ACCESS_API) @AccessApiOverload -public fun ?> Grouped.maxFor( +public fun ?> Grouped.maxFor( vararg columns: KProperty, skipNaN: Boolean = skipNaNDefault, ): DataFrame = maxFor(skipNaN) { columns.toColumnSet() } @@ -302,7 +302,7 @@ public inline fun ?> GroupBy.maxBy( public fun Pivot.max(separate: Boolean = false, skipNaN: Boolean = skipNaNDefault): DataRow = delegate { max(separate, skipNaN) } -public fun ?> Pivot.maxFor( +public fun ?> Pivot.maxFor( separate: Boolean = false, skipNaN: Boolean = skipNaNDefault, columns: ColumnsForAggregateSelector, @@ -316,7 +316,7 @@ public fun Pivot.maxFor( @Deprecated(DEPRECATED_ACCESS_API) @AccessApiOverload -public fun ?> Pivot.maxFor( +public fun ?> Pivot.maxFor( vararg columns: ColumnReference, separate: Boolean = false, skipNaN: Boolean = skipNaNDefault, @@ -324,7 +324,7 @@ public fun ?> Pivot.maxFor( @Deprecated(DEPRECATED_ACCESS_API) @AccessApiOverload -public fun ?> Pivot.maxFor( +public fun ?> Pivot.maxFor( vararg columns: KProperty, separate: Boolean = false, skipNaN: Boolean = skipNaNDefault, @@ -388,11 +388,11 @@ public inline fun ?> Pivot.maxBy( public fun PivotGroupBy.max(separate: Boolean = false, skipNaN: Boolean = skipNaNDefault): DataFrame = maxFor(separate, skipNaN, intraComparableColumns()) -public fun ?> PivotGroupBy.maxFor( +public fun ?> PivotGroupBy.maxFor( separate: Boolean = false, skipNaN: Boolean = skipNaNDefault, columns: ColumnsForAggregateSelector, -): DataFrame = Aggregators.max(skipNaN).aggregateFor(this, separate, columns) +): DataFrame = Aggregators.max.invoke(skipNaN).aggregateFor(this, separate, columns) public fun PivotGroupBy.maxFor( vararg columns: String, @@ -402,7 +402,7 @@ public fun PivotGroupBy.maxFor( @Deprecated(DEPRECATED_ACCESS_API) @AccessApiOverload -public fun ?> PivotGroupBy.maxFor( +public fun ?> PivotGroupBy.maxFor( vararg columns: ColumnReference, separate: Boolean = false, skipNaN: Boolean = skipNaNDefault, @@ -410,7 +410,7 @@ public fun ?> PivotGroupBy.maxFor( @Deprecated(DEPRECATED_ACCESS_API) @AccessApiOverload -public fun ?> PivotGroupBy.maxFor( +public fun ?> PivotGroupBy.maxFor( vararg columns: KProperty, separate: Boolean = false, skipNaN: Boolean = skipNaNDefault, @@ -500,7 +500,7 @@ public inline fun ?> AnyRow.rowMaxOf(): T & Any public fun DataFrame.max(): DataRow = max(skipNaN = skipNaNDefault) @Deprecated(MAX_NO_SKIPNAN, level = DeprecationLevel.HIDDEN) -public fun ?> DataFrame.maxFor(columns: ColumnsForAggregateSelector): DataRow = +public fun ?> DataFrame.maxFor(columns: ColumnsForAggregateSelector): DataRow = maxFor(skipNaN = skipNaNDefault, columns = columns) @Deprecated(MAX_NO_SKIPNAN, level = DeprecationLevel.HIDDEN) @@ -509,12 +509,12 @@ public fun DataFrame.maxFor(vararg columns: String): DataRow = @AccessApiOverload @Deprecated(MAX_NO_SKIPNAN, level = DeprecationLevel.HIDDEN) -public fun ?> DataFrame.maxFor(vararg columns: ColumnReference): DataRow = +public fun ?> DataFrame.maxFor(vararg columns: ColumnReference): DataRow = maxFor(columns = columns, skipNaN = skipNaNDefault) @AccessApiOverload @Deprecated(MAX_NO_SKIPNAN, level = DeprecationLevel.HIDDEN) -public fun ?> DataFrame.maxFor(vararg columns: KProperty): DataRow = +public fun ?> DataFrame.maxFor(vararg columns: KProperty): DataRow = maxFor(columns = columns, skipNaN = skipNaNDefault) @Deprecated(MAX_NO_SKIPNAN, level = DeprecationLevel.HIDDEN) @@ -608,7 +608,7 @@ public fun Grouped.max(): DataFrame = max(skipNaN = skipNaNDefault) @Refine @Interpretable("GroupByMax0") @Deprecated(MAX_NO_SKIPNAN, level = DeprecationLevel.HIDDEN) -public fun ?> Grouped.maxFor(columns: ColumnsForAggregateSelector): DataFrame = +public fun ?> Grouped.maxFor(columns: ColumnsForAggregateSelector): DataFrame = maxFor(skipNaN = skipNaNDefault, columns = columns) @Deprecated(MAX_NO_SKIPNAN, level = DeprecationLevel.HIDDEN) @@ -617,12 +617,12 @@ public fun Grouped.maxFor(vararg columns: String): DataFrame = @AccessApiOverload @Deprecated(MAX_NO_SKIPNAN, level = DeprecationLevel.HIDDEN) -public fun ?> Grouped.maxFor(vararg columns: ColumnReference): DataFrame = +public fun ?> Grouped.maxFor(vararg columns: ColumnReference): DataFrame = maxFor(columns = columns, skipNaN = skipNaNDefault) @AccessApiOverload @Deprecated(MAX_NO_SKIPNAN, level = DeprecationLevel.HIDDEN) -public fun ?> Grouped.maxFor(vararg columns: KProperty): DataFrame = +public fun ?> Grouped.maxFor(vararg columns: KProperty): DataFrame = maxFor(columns = columns, skipNaN = skipNaNDefault) @Refine @@ -684,7 +684,7 @@ public inline fun ?> GroupBy.maxBy( public fun Pivot.max(separate: Boolean = false): DataRow = max(separate, skipNaN = skipNaNDefault) @Deprecated(MAX_NO_SKIPNAN, level = DeprecationLevel.HIDDEN) -public fun ?> Pivot.maxFor( +public fun ?> Pivot.maxFor( separate: Boolean = false, columns: ColumnsForAggregateSelector, ): DataRow = maxFor(separate, skipNaN = skipNaNDefault, columns = columns) @@ -695,14 +695,14 @@ public fun Pivot.maxFor(vararg columns: String, separate: Boolean = false @AccessApiOverload @Deprecated(MAX_NO_SKIPNAN, level = DeprecationLevel.HIDDEN) -public fun ?> Pivot.maxFor( +public fun ?> Pivot.maxFor( vararg columns: ColumnReference, separate: Boolean = false, ): DataRow = maxFor(columns = columns, separate = separate, skipNaN = skipNaNDefault) @AccessApiOverload @Deprecated(MAX_NO_SKIPNAN, level = DeprecationLevel.HIDDEN) -public fun ?> Pivot.maxFor( +public fun ?> Pivot.maxFor( vararg columns: KProperty, separate: Boolean = false, ): DataRow = maxFor(columns = columns, separate = separate, skipNaN = skipNaNDefault) @@ -748,7 +748,7 @@ public inline fun ?> Pivot.maxBy(column: K public fun PivotGroupBy.max(separate: Boolean = false): DataFrame = max(separate, skipNaN = skipNaNDefault) @Deprecated(MAX_NO_SKIPNAN, level = DeprecationLevel.HIDDEN) -public fun ?> PivotGroupBy.maxFor( +public fun ?> PivotGroupBy.maxFor( separate: Boolean = false, columns: ColumnsForAggregateSelector, ): DataFrame = maxFor(separate, skipNaN = skipNaNDefault, columns = columns) @@ -759,14 +759,14 @@ public fun PivotGroupBy.maxFor(vararg columns: String, separate: Boolean @AccessApiOverload @Deprecated(MAX_NO_SKIPNAN, level = DeprecationLevel.HIDDEN) -public fun ?> PivotGroupBy.maxFor( +public fun ?> PivotGroupBy.maxFor( vararg columns: ColumnReference, separate: Boolean = false, ): DataFrame = maxFor(columns = columns, separate = separate, skipNaN = skipNaNDefault) @AccessApiOverload @Deprecated(MAX_NO_SKIPNAN, level = DeprecationLevel.HIDDEN) -public fun ?> PivotGroupBy.maxFor( +public fun ?> PivotGroupBy.maxFor( vararg columns: KProperty, separate: Boolean = false, ): DataFrame = maxFor(columns = columns, separate = separate, skipNaN = skipNaNDefault) diff --git a/core/src/main/kotlin/org/jetbrains/kotlinx/dataframe/api/median.kt b/core/src/main/kotlin/org/jetbrains/kotlinx/dataframe/api/median.kt index 0bf290dc49..6a1b29daff 100644 --- a/core/src/main/kotlin/org/jetbrains/kotlinx/dataframe/api/median.kt +++ b/core/src/main/kotlin/org/jetbrains/kotlinx/dataframe/api/median.kt @@ -138,24 +138,24 @@ public fun DataFrame.median(skipNaN: Boolean = skipNaNDefault): DataRow?> DataFrame.medianFor( +public fun ?> DataFrame.medianFor( skipNaN: Boolean = skipNaNDefault, columns: ColumnsForAggregateSelector, -): DataRow = Aggregators.medianCommon(skipNaN).aggregateFor(this, columns) +): DataRow = Aggregators.median.invoke(skipNaN).aggregateFor(this, columns) public fun DataFrame.medianFor(vararg columns: String, skipNaN: Boolean = skipNaNDefault): DataRow = medianFor(skipNaN) { columns.toComparableColumns() } @Deprecated(DEPRECATED_ACCESS_API) @AccessApiOverload -public fun ?> DataFrame.medianFor( +public fun ?> DataFrame.medianFor( vararg columns: ColumnReference, skipNaN: Boolean = skipNaNDefault, ): DataRow = medianFor(skipNaN) { columns.toColumnSet() } @Deprecated(DEPRECATED_ACCESS_API) @AccessApiOverload -public fun ?> DataFrame.medianFor( +public fun ?> DataFrame.medianFor( vararg columns: KProperty, skipNaN: Boolean = skipNaNDefault, ): DataRow = medianFor(skipNaN) { columns.toColumnSet() } @@ -329,23 +329,23 @@ public fun Grouped.median(skipNaN: Boolean = skipNaNDefault): DataFrame?> Grouped.medianFor( +public fun ?> Grouped.medianFor( skipNaN: Boolean = skipNaNDefault, columns: ColumnsForAggregateSelector, -): DataFrame = Aggregators.medianCommon(skipNaN).aggregateFor(this, columns) +): DataFrame = Aggregators.median.invoke(skipNaN).aggregateFor(this, columns) public fun Grouped.medianFor(vararg columns: String): DataFrame = medianFor { columns.toComparableColumns() } @Deprecated(DEPRECATED_ACCESS_API) @AccessApiOverload -public fun ?> Grouped.medianFor( +public fun ?> Grouped.medianFor( vararg columns: ColumnReference, skipNaN: Boolean = skipNaNDefault, ): DataFrame = medianFor(skipNaN) { columns.toColumnSet() } @Deprecated(DEPRECATED_ACCESS_API) @AccessApiOverload -public fun ?> Grouped.medianFor( +public fun ?> Grouped.medianFor( vararg columns: KProperty, skipNaN: Boolean = skipNaNDefault, ): DataFrame = medianFor(skipNaN) { columns.toColumnSet() } @@ -418,7 +418,7 @@ public inline fun ?> GroupBy.medianB public fun Pivot.median(separate: Boolean = false, skipNaN: Boolean = skipNaNDefault): DataRow = medianFor(separate, skipNaN, intraComparableColumns()) -public fun ?> Pivot.medianFor( +public fun ?> Pivot.medianFor( separate: Boolean = false, skipNaN: Boolean = skipNaNDefault, columns: ColumnsForAggregateSelector, @@ -432,7 +432,7 @@ public fun Pivot.medianFor( @Deprecated(DEPRECATED_ACCESS_API) @AccessApiOverload -public fun ?> Pivot.medianFor( +public fun ?> Pivot.medianFor( vararg columns: ColumnReference, separate: Boolean = false, skipNaN: Boolean = skipNaNDefault, @@ -440,7 +440,7 @@ public fun ?> Pivot.medianFor( @Deprecated(DEPRECATED_ACCESS_API) @AccessApiOverload -public fun ?> Pivot.medianFor( +public fun ?> Pivot.medianFor( vararg columns: KProperty, separate: Boolean = false, skipNaN: Boolean = skipNaNDefault, @@ -501,11 +501,11 @@ public inline fun ?> Pivot.medianBy( public fun PivotGroupBy.median(separate: Boolean = false, skipNaN: Boolean = skipNaNDefault): DataFrame = medianFor(separate, skipNaN, intraComparableColumns()) -public fun ?> PivotGroupBy.medianFor( +public fun ?> PivotGroupBy.medianFor( separate: Boolean = false, skipNaN: Boolean = skipNaNDefault, columns: ColumnsForAggregateSelector, -): DataFrame = Aggregators.medianCommon(skipNaN).aggregateFor(this, separate, columns) +): DataFrame = Aggregators.median.invoke(skipNaN).aggregateFor(this, separate, columns) public fun PivotGroupBy.medianFor( vararg columns: String, @@ -515,7 +515,7 @@ public fun PivotGroupBy.medianFor( @Deprecated(DEPRECATED_ACCESS_API) @AccessApiOverload -public fun ?> PivotGroupBy.medianFor( +public fun ?> PivotGroupBy.medianFor( vararg columns: ColumnReference, separate: Boolean = false, skipNaN: Boolean = skipNaNDefault, @@ -523,7 +523,7 @@ public fun ?> PivotGroupBy.medianFor( @Deprecated(DEPRECATED_ACCESS_API) @AccessApiOverload -public fun ?> PivotGroupBy.medianFor( +public fun ?> PivotGroupBy.medianFor( vararg columns: KProperty, separate: Boolean = false, skipNaN: Boolean = skipNaNDefault, diff --git a/core/src/main/kotlin/org/jetbrains/kotlinx/dataframe/api/min.kt b/core/src/main/kotlin/org/jetbrains/kotlinx/dataframe/api/min.kt index 96a22b9f05..a95167945e 100644 --- a/core/src/main/kotlin/org/jetbrains/kotlinx/dataframe/api/min.kt +++ b/core/src/main/kotlin/org/jetbrains/kotlinx/dataframe/api/min.kt @@ -81,24 +81,24 @@ public fun DataFrame.min(skipNaN: Boolean = skipNaNDefault): DataRow = @Refine @Interpretable("Min1") -public fun ?> DataFrame.minFor( +public fun ?> DataFrame.minFor( skipNaN: Boolean = skipNaNDefault, columns: ColumnsForAggregateSelector, -): DataRow = Aggregators.min(skipNaN).aggregateFor(this, columns) +): DataRow = Aggregators.min.invoke(skipNaN).aggregateFor(this, columns) public fun DataFrame.minFor(vararg columns: String, skipNaN: Boolean = skipNaNDefault): DataRow = minFor(skipNaN) { columns.toComparableColumns() } @Deprecated(DEPRECATED_ACCESS_API) @AccessApiOverload -public fun ?> DataFrame.minFor( +public fun ?> DataFrame.minFor( vararg columns: ColumnReference, skipNaN: Boolean = skipNaNDefault, ): DataRow = minFor(skipNaN) { columns.toColumnSet() } @Deprecated(DEPRECATED_ACCESS_API) @AccessApiOverload -public fun ?> DataFrame.minFor( +public fun ?> DataFrame.minFor( vararg columns: KProperty, skipNaN: Boolean = skipNaNDefault, ): DataRow = minFor(skipNaN) { columns.toColumnSet() } @@ -212,24 +212,24 @@ public fun Grouped.min(skipNaN: Boolean = skipNaNDefault): DataFrame = @Refine @Interpretable("GroupByMin0") -public fun ?> Grouped.minFor( +public fun ?> Grouped.minFor( skipNaN: Boolean = skipNaNDefault, columns: ColumnsForAggregateSelector, -): DataFrame = Aggregators.min(skipNaN).aggregateFor(this, columns) +): DataFrame = Aggregators.min.invoke(skipNaN).aggregateFor(this, columns) public fun Grouped.minFor(vararg columns: String, skipNaN: Boolean = skipNaNDefault): DataFrame = minFor(skipNaN) { columns.toComparableColumns() } @Deprecated(DEPRECATED_ACCESS_API) @AccessApiOverload -public fun ?> Grouped.minFor( +public fun ?> Grouped.minFor( vararg columns: ColumnReference, skipNaN: Boolean = skipNaNDefault, ): DataFrame = minFor(skipNaN) { columns.toColumnSet() } @Deprecated(DEPRECATED_ACCESS_API) @AccessApiOverload -public fun ?> Grouped.minFor( +public fun ?> Grouped.minFor( vararg columns: KProperty, skipNaN: Boolean = skipNaNDefault, ): DataFrame = minFor(skipNaN) { columns.toColumnSet() } @@ -302,7 +302,7 @@ public inline fun ?> GroupBy.minBy( public fun Pivot.min(separate: Boolean = false, skipNaN: Boolean = skipNaNDefault): DataRow = delegate { min(separate, skipNaN) } -public fun ?> Pivot.minFor( +public fun ?> Pivot.minFor( separate: Boolean = false, skipNaN: Boolean = skipNaNDefault, columns: ColumnsForAggregateSelector, @@ -316,7 +316,7 @@ public fun Pivot.minFor( @Deprecated(DEPRECATED_ACCESS_API) @AccessApiOverload -public fun ?> Pivot.minFor( +public fun ?> Pivot.minFor( vararg columns: ColumnReference, separate: Boolean = false, skipNaN: Boolean = skipNaNDefault, @@ -324,7 +324,7 @@ public fun ?> Pivot.minFor( @Deprecated(DEPRECATED_ACCESS_API) @AccessApiOverload -public fun ?> Pivot.minFor( +public fun ?> Pivot.minFor( vararg columns: KProperty, separate: Boolean = false, skipNaN: Boolean = skipNaNDefault, @@ -388,11 +388,11 @@ public inline fun ?> Pivot.minBy( public fun PivotGroupBy.min(separate: Boolean = false, skipNaN: Boolean = skipNaNDefault): DataFrame = minFor(separate, skipNaN, intraComparableColumns()) -public fun ?> PivotGroupBy.minFor( +public fun ?> PivotGroupBy.minFor( separate: Boolean = false, skipNaN: Boolean = skipNaNDefault, columns: ColumnsForAggregateSelector, -): DataFrame = Aggregators.min(skipNaN).aggregateFor(this, separate, columns) +): DataFrame = Aggregators.min.invoke(skipNaN).aggregateFor(this, separate, columns) public fun PivotGroupBy.minFor( vararg columns: String, @@ -402,7 +402,7 @@ public fun PivotGroupBy.minFor( @Deprecated(DEPRECATED_ACCESS_API) @AccessApiOverload -public fun ?> PivotGroupBy.minFor( +public fun ?> PivotGroupBy.minFor( vararg columns: ColumnReference, separate: Boolean = false, skipNaN: Boolean = skipNaNDefault, @@ -410,7 +410,7 @@ public fun ?> PivotGroupBy.minFor( @Deprecated(DEPRECATED_ACCESS_API) @AccessApiOverload -public fun ?> PivotGroupBy.minFor( +public fun ?> PivotGroupBy.minFor( vararg columns: KProperty, separate: Boolean = false, skipNaN: Boolean = skipNaNDefault, @@ -500,7 +500,7 @@ public inline fun ?> AnyRow.rowMinOf(): T & Any public fun DataFrame.min(): DataRow = min(skipNaN = skipNaNDefault) @Deprecated(MIN_NO_SKIPNAN, level = DeprecationLevel.HIDDEN) -public fun ?> DataFrame.minFor(columns: ColumnsForAggregateSelector): DataRow = +public fun ?> DataFrame.minFor(columns: ColumnsForAggregateSelector): DataRow = minFor(skipNaN = skipNaNDefault, columns = columns) @Deprecated(MIN_NO_SKIPNAN, level = DeprecationLevel.HIDDEN) @@ -509,12 +509,12 @@ public fun DataFrame.minFor(vararg columns: String): DataRow = @AccessApiOverload @Deprecated(MIN_NO_SKIPNAN, level = DeprecationLevel.HIDDEN) -public fun ?> DataFrame.minFor(vararg columns: ColumnReference): DataRow = +public fun ?> DataFrame.minFor(vararg columns: ColumnReference): DataRow = minFor(columns = columns, skipNaN = skipNaNDefault) @AccessApiOverload @Deprecated(MIN_NO_SKIPNAN, level = DeprecationLevel.HIDDEN) -public fun ?> DataFrame.minFor(vararg columns: KProperty): DataRow = +public fun ?> DataFrame.minFor(vararg columns: KProperty): DataRow = minFor(columns = columns, skipNaN = skipNaNDefault) @Deprecated(MIN_NO_SKIPNAN, level = DeprecationLevel.HIDDEN) @@ -608,7 +608,7 @@ public fun Grouped.min(): DataFrame = min(skipNaN = skipNaNDefault) @Refine @Interpretable("GroupByMin0") @Deprecated(MIN_NO_SKIPNAN, level = DeprecationLevel.HIDDEN) -public fun ?> Grouped.minFor(columns: ColumnsForAggregateSelector): DataFrame = +public fun ?> Grouped.minFor(columns: ColumnsForAggregateSelector): DataFrame = minFor(skipNaN = skipNaNDefault, columns = columns) @Deprecated(MIN_NO_SKIPNAN, level = DeprecationLevel.HIDDEN) @@ -617,12 +617,12 @@ public fun Grouped.minFor(vararg columns: String): DataFrame = @AccessApiOverload @Deprecated(MIN_NO_SKIPNAN, level = DeprecationLevel.HIDDEN) -public fun ?> Grouped.minFor(vararg columns: ColumnReference): DataFrame = +public fun ?> Grouped.minFor(vararg columns: ColumnReference): DataFrame = minFor(columns = columns, skipNaN = skipNaNDefault) @AccessApiOverload @Deprecated(MIN_NO_SKIPNAN, level = DeprecationLevel.HIDDEN) -public fun ?> Grouped.minFor(vararg columns: KProperty): DataFrame = +public fun ?> Grouped.minFor(vararg columns: KProperty): DataFrame = minFor(columns = columns, skipNaN = skipNaNDefault) @Refine @@ -684,7 +684,7 @@ public inline fun ?> GroupBy.minBy( public fun Pivot.min(separate: Boolean = false): DataRow = min(separate, skipNaN = skipNaNDefault) @Deprecated(MIN_NO_SKIPNAN, level = DeprecationLevel.HIDDEN) -public fun ?> Pivot.minFor( +public fun ?> Pivot.minFor( separate: Boolean = false, columns: ColumnsForAggregateSelector, ): DataRow = minFor(separate, skipNaN = skipNaNDefault, columns = columns) @@ -695,14 +695,14 @@ public fun Pivot.minFor(vararg columns: String, separate: Boolean = false @AccessApiOverload @Deprecated(MIN_NO_SKIPNAN, level = DeprecationLevel.HIDDEN) -public fun ?> Pivot.minFor( +public fun ?> Pivot.minFor( vararg columns: ColumnReference, separate: Boolean = false, ): DataRow = minFor(columns = columns, separate = separate, skipNaN = skipNaNDefault) @AccessApiOverload @Deprecated(MIN_NO_SKIPNAN, level = DeprecationLevel.HIDDEN) -public fun ?> Pivot.minFor( +public fun ?> Pivot.minFor( vararg columns: KProperty, separate: Boolean = false, ): DataRow = minFor(columns = columns, separate = separate, skipNaN = skipNaNDefault) @@ -748,7 +748,7 @@ public inline fun ?> Pivot.minBy(column: K public fun PivotGroupBy.min(separate: Boolean = false): DataFrame = min(separate, skipNaN = skipNaNDefault) @Deprecated(MIN_NO_SKIPNAN, level = DeprecationLevel.HIDDEN) -public fun ?> PivotGroupBy.minFor( +public fun ?> PivotGroupBy.minFor( separate: Boolean = false, columns: ColumnsForAggregateSelector, ): DataFrame = minFor(separate, skipNaN = skipNaNDefault, columns = columns) @@ -759,14 +759,14 @@ public fun PivotGroupBy.minFor(vararg columns: String, separate: Boolean @AccessApiOverload @Deprecated(MIN_NO_SKIPNAN, level = DeprecationLevel.HIDDEN) -public fun ?> PivotGroupBy.minFor( +public fun ?> PivotGroupBy.minFor( vararg columns: ColumnReference, separate: Boolean = false, ): DataFrame = minFor(columns = columns, separate = separate, skipNaN = skipNaNDefault) @AccessApiOverload @Deprecated(MIN_NO_SKIPNAN, level = DeprecationLevel.HIDDEN) -public fun ?> PivotGroupBy.minFor( +public fun ?> PivotGroupBy.minFor( vararg columns: KProperty, separate: Boolean = false, ): DataFrame = minFor(columns = columns, separate = separate, skipNaN = skipNaNDefault) diff --git a/core/src/main/kotlin/org/jetbrains/kotlinx/dataframe/api/percentile.kt b/core/src/main/kotlin/org/jetbrains/kotlinx/dataframe/api/percentile.kt index 0371994f4d..b57bf16a3d 100644 --- a/core/src/main/kotlin/org/jetbrains/kotlinx/dataframe/api/percentile.kt +++ b/core/src/main/kotlin/org/jetbrains/kotlinx/dataframe/api/percentile.kt @@ -152,11 +152,11 @@ public fun DataFrame.percentile(percentile: Double, skipNaN: Boolean = sk @Refine @Interpretable("Percentile1") -public fun ?> DataFrame.percentileFor( +public fun ?> DataFrame.percentileFor( percentile: Double, skipNaN: Boolean = skipNaNDefault, columns: ColumnsForAggregateSelector, -): DataRow = Aggregators.percentileCommon(percentile, skipNaN).aggregateFor(this, columns) +): DataRow = Aggregators.percentile.invoke(percentile, skipNaN).aggregateFor(this, columns) public fun DataFrame.percentileFor( percentile: Double, @@ -166,7 +166,7 @@ public fun DataFrame.percentileFor( @Deprecated(DEPRECATED_ACCESS_API) @AccessApiOverload -public fun ?> DataFrame.percentileFor( +public fun ?> DataFrame.percentileFor( percentile: Double, vararg columns: ColumnReference, skipNaN: Boolean = skipNaNDefault, @@ -174,7 +174,7 @@ public fun ?> DataFrame.percentileFor( @Deprecated(DEPRECATED_ACCESS_API) @AccessApiOverload -public fun ?> DataFrame.percentileFor( +public fun ?> DataFrame.percentileFor( percentile: Double, vararg columns: KProperty, skipNaN: Boolean = skipNaNDefault, @@ -393,18 +393,18 @@ public fun Grouped.percentile(percentile: Double, skipNaN: Boolean = skip @Refine @Interpretable("GroupByPercentile0") -public fun ?> Grouped.percentileFor( +public fun ?> Grouped.percentileFor( percentile: Double, skipNaN: Boolean = skipNaNDefault, columns: ColumnsForAggregateSelector, -): DataFrame = Aggregators.percentileCommon(percentile, skipNaN).aggregateFor(this, columns) +): DataFrame = Aggregators.percentile.invoke(percentile, skipNaN).aggregateFor(this, columns) public fun Grouped.percentileFor(percentile: Double, vararg columns: String): DataFrame = percentileFor(percentile) { columns.toComparableColumns() } @Deprecated(DEPRECATED_ACCESS_API) @AccessApiOverload -public fun ?> Grouped.percentileFor( +public fun ?> Grouped.percentileFor( percentile: Double, vararg columns: ColumnReference, skipNaN: Boolean = skipNaNDefault, @@ -412,7 +412,7 @@ public fun ?> Grouped.percentileFor( @Deprecated(DEPRECATED_ACCESS_API) @AccessApiOverload -public fun ?> Grouped.percentileFor( +public fun ?> Grouped.percentileFor( percentile: Double, vararg columns: KProperty, skipNaN: Boolean = skipNaNDefault, @@ -500,7 +500,7 @@ public fun Pivot.percentile( skipNaN: Boolean = skipNaNDefault, ): DataRow = percentileFor(percentile, separate, skipNaN, intraComparableColumns()) -public fun ?> Pivot.percentileFor( +public fun ?> Pivot.percentileFor( percentile: Double, separate: Boolean = false, skipNaN: Boolean = skipNaNDefault, @@ -516,7 +516,7 @@ public fun Pivot.percentileFor( @Deprecated(DEPRECATED_ACCESS_API) @AccessApiOverload -public fun ?> Pivot.percentileFor( +public fun ?> Pivot.percentileFor( percentile: Double, vararg columns: ColumnReference, separate: Boolean = false, @@ -525,7 +525,7 @@ public fun ?> Pivot.percentileFor( @Deprecated(DEPRECATED_ACCESS_API) @AccessApiOverload -public fun ?> Pivot.percentileFor( +public fun ?> Pivot.percentileFor( percentile: Double, vararg columns: KProperty, separate: Boolean = false, @@ -603,12 +603,12 @@ public fun PivotGroupBy.percentile( skipNaN: Boolean = skipNaNDefault, ): DataFrame = percentileFor(percentile, separate, skipNaN, intraComparableColumns()) -public fun ?> PivotGroupBy.percentileFor( +public fun ?> PivotGroupBy.percentileFor( percentile: Double, separate: Boolean = false, skipNaN: Boolean = skipNaNDefault, columns: ColumnsForAggregateSelector, -): DataFrame = Aggregators.percentileCommon(percentile, skipNaN).aggregateFor(this, separate, columns) +): DataFrame = Aggregators.percentile.invoke(percentile, skipNaN).aggregateFor(this, separate, columns) public fun PivotGroupBy.percentileFor( percentile: Double, @@ -619,7 +619,7 @@ public fun PivotGroupBy.percentileFor( @Deprecated(DEPRECATED_ACCESS_API) @AccessApiOverload -public fun ?> PivotGroupBy.percentileFor( +public fun ?> PivotGroupBy.percentileFor( percentile: Double, vararg columns: ColumnReference, separate: Boolean = false, @@ -628,7 +628,7 @@ public fun ?> PivotGroupBy.percentileFor( @Deprecated(DEPRECATED_ACCESS_API) @AccessApiOverload -public fun ?> PivotGroupBy.percentileFor( +public fun ?> PivotGroupBy.percentileFor( percentile: Double, vararg columns: KProperty, separate: Boolean = false, diff --git a/core/src/test/kotlin/org/jetbrains/kotlinx/dataframe/samples/api/Analyze.kt b/core/src/test/kotlin/org/jetbrains/kotlinx/dataframe/samples/api/Analyze.kt index 8726e7d362..19457121da 100644 --- a/core/src/test/kotlin/org/jetbrains/kotlinx/dataframe/samples/api/Analyze.kt +++ b/core/src/test/kotlin/org/jetbrains/kotlinx/dataframe/samples/api/Analyze.kt @@ -181,7 +181,7 @@ class Analyze : TestBase() { // SampleStart df.min() // min of values per every comparable column df.min { age and weight } // min of all values in `age` and `weight` - df.minFor(skipNaN = true) { age and weight } // min of values per `age` and `weight` separately + df.minFor(skipNaN = true) { age and name.firstName } // min of values per `age` and `firstName` separately df.minOf { (weight ?: 0) / age } // min of expression evaluated for every row df.minBy { age } // DataRow with minimal `age` // SampleEnd @@ -205,7 +205,7 @@ class Analyze : TestBase() { // SampleStart df.median() // median of values per every comparable column df.median { age and weight } // median of all values in `age` and `weight` - df.medianFor(skipNaN = true) { age and weight } // median of values per `age` and `weight` separately + df.medianFor(skipNaN = true) { age and name.firstName } // median of values per `age` and `firstName` separately df.medianOf { (weight ?: 0) / age } // median of expression evaluated for every row df.medianBy { age } // DataRow where the median age lies (lower-median for an even number of values) // SampleEnd @@ -229,7 +229,7 @@ class Analyze : TestBase() { // SampleStart df.percentile(25.0) // 25th percentile of values per every comparable column df.percentile(75.0) { age and weight } // 75th percentile of all values in `age` and `weight` - df.percentileFor(50.0, skipNaN = true) { age and weight } // 50th percentile of values per `age` and `weight` separately + df.percentileFor(50.0, skipNaN = true) { age and name.firstName } // 50th percentile of values per `age` and `firstName` separately df.percentileOf(75.0) { (weight ?: 0) / age } // 75th percentile of expression evaluated for every row df.percentileBy(25.0) { age } // DataRow where the 25th percentile of `age` lies (index rounded using R3) // SampleEnd @@ -438,7 +438,7 @@ class Analyze : TestBase() { fun columnsFor_properties() { // SampleStart df.minFor { colsOf() } - df.maxFor { name.firstName and name.lastName } + df.maxFor { name.firstName and age } df.sumFor { age and weight } df.meanFor { cols(1, 3).asNumbers() } df.medianFor { name.allCols().asComparable() } @@ -457,7 +457,7 @@ class Analyze : TestBase() { df.minFor { colsOf() } - df.maxFor { firstName and lastName } + df.maxFor { firstName and age } // or df.maxFor(firstName, lastName) @@ -475,7 +475,7 @@ class Analyze : TestBase() { fun columnsFor_strings() { // SampleStart df.minFor { colsOf() } - df.maxFor { "name"["firstName"].asComparable() and "name"["lastName"].asComparable() } + df.maxFor { "name"["firstName"].asComparable() and "age"() } df.sumFor("age", "weight") // or diff --git a/docs/StardustDocs/resources/snippets/org.jetbrains.kotlinx.dataframe.samples.api.Analyze.columnsFor.html b/docs/StardustDocs/resources/snippets/org.jetbrains.kotlinx.dataframe.samples.api.Analyze.columnsFor.html index 7b0fe0f8a7..a8fa769c9f 100644 --- a/docs/StardustDocs/resources/snippets/org.jetbrains.kotlinx.dataframe.samples.api.Analyze.columnsFor.html +++ b/docs/StardustDocs/resources/snippets/org.jetbrains.kotlinx.dataframe.samples.api.Analyze.columnsFor.html @@ -194,7 +194,7 @@
- df.maxFor { name.firstName and name.lastName } + df.maxFor { name.firstName and age }
Input DataFrame: rowsCount = 7, columnsCount = 5
@@ -668,7 +668,7 @@ /**/ diff --git a/docs/StardustDocs/topics/median.md b/docs/StardustDocs/topics/median.md index ab1fcd05fb..3a20c256fa 100644 --- a/docs/StardustDocs/topics/median.md +++ b/docs/StardustDocs/topics/median.md @@ -30,7 +30,7 @@ When it's set to `true`, `NaN` values are ignored. ```kotlin df.median() // median of values per every comparable column df.median { age and weight } // median of all values in `age` and `weight` -df.medianFor(skipNaN = true) { age and weight } // median of values per `age` and `weight` separately +df.medianFor(skipNaN = true) { age and name.firstName } // median of values per `age` and `firstName` separately df.medianOf { (weight ?: 0) / age } // median of expression evaluated for every row df.medianBy { age } // DataRow where the median age lies (lower-median for an even number of values) ``` diff --git a/docs/StardustDocs/topics/minmax.md b/docs/StardustDocs/topics/minmax.md index 4c096e6c07..82508830a4 100644 --- a/docs/StardustDocs/topics/minmax.md +++ b/docs/StardustDocs/topics/minmax.md @@ -21,7 +21,7 @@ When it's set to `true`, `NaN` values are ignored. ```kotlin df.min() // min of values per every comparable column df.min { age and weight } // min of all values in `age` and `weight` -df.minFor(skipNaN = true) { age and weight } // min of values per `age` and `weight` separately +df.minFor(skipNaN = true) { age and name.firstName } // min of values per `age` and `firstName` separately df.minOf { (weight ?: 0) / age } // min of expression evaluated for every row df.minBy { age } // DataRow with minimal `age` ``` diff --git a/docs/StardustDocs/topics/percentile.md b/docs/StardustDocs/topics/percentile.md index 5fe3905fd8..51c2cc8598 100644 --- a/docs/StardustDocs/topics/percentile.md +++ b/docs/StardustDocs/topics/percentile.md @@ -52,7 +52,7 @@ In the future we might add an option to change the quantile estimation method. ```kotlin df.percentile(25.0) // 25th percentile of values per every comparable column df.percentile(75.0) { age and weight } // 75th percentile of all values in `age` and `weight` -df.percentileFor(50.0, skipNaN = true) { age and weight } // 50th percentile of values per `age` and `weight` separately +df.percentileFor(50.0, skipNaN = true) { age and name.firstName } // 50th percentile of values per `age` and `firstName` separately df.percentileOf(75.0) { (weight ?: 0) / age } // 75th percentile of expression evaluated for every row df.percentileBy(25.0) { age } // DataRow where the 25th percentile of `age` lies (index rounded using R3) ```