-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathadjust_position.py
423 lines (299 loc) · 17.1 KB
/
adjust_position.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
# -*- coding:utf-8 -*-
#from kuanke.user_space_api import *
from rule import *
from util import *
import pandas
'''==============================个股止盈止损规则=============================='''
''' ---------个股止损 by 自最高值回落一定比例比例进行止损-------------------------'''
class Stop_loss_stocks_by_percentage(Rule):
__name__='Stop_loss_stocks_by_percentage'
def __init__(self,params):
self.percent = params.get('percentage', 0.08)
def update_params(self,context,params):
self.percent = params.get('percentage', self.percentage)
# 个股止损
def handle_data(self,context, data):
#持仓股票循环
for stock in context.portfolio.positions.keys():
#if stock in context.ATRList:
#return
#持有数量超过0
if context.portfolio.positions[stock].quantity > 0:
#当前价格
cur_price = data[stock].close
#历史最高价格
stockdic = context.maxvalue[stock]
highest = stockdic[0]
if data[stock].high > highest:
del context.maxvalue[stock]
temp = pd.DataFrame({str(stock):[max(highest, data[stock].high)]})
context.maxvalue = pd.concat([context.maxvalue, temp], axis=1, join='inner') # 更新其盘中最高价值和先阶段比例。
#更新历史最高价格
stockdic = context.maxvalue[stock]
highest = stockdic[0]
if cur_price < highest * (1 - self.percent):
position = context.portfolio.positions[stock]
self.close_position(position, False)
context.black_list.append(stock)
print('[比例止损卖出]', instruments(stock).symbol, context.portfolio.positions[stock].avg_price, highest, data[stock].last)
else:
if stock in context.ATRList:
context.ATRList.remove(stock)
def when_sell_stock(self,position,order,is_normal):
#if position.security in self.last_high:
# self.last_high.pop(position.security)
pass
def when_buy_stock(self,stock,order):
#if order.status == OrderStatus.held and order.filled == order.amount:
# 全部成交则删除相关证券的最高价缓存
# self.last_high[stock] = get_close_price(stock, 1, '1m')
pass
def __str__(self):
return '个股止损器:[按比例止损: %d ]' %self.percent
''' ----------------------个股止损 by ATR 60-------------------------------------'''
class Stop_loss_stocks_by_ATR(Rule):
__name__='Stop_loss_stocks_by_ATR'
def __init__(self,params):
pass
def update_params(self,context,params):
pass
# 个股止损
def handle_data(self, context, data):
for stock in context.ATRList:
if stock in context.portfolio.positions.keys() and context.portfolio.positions[stock].quantity > 0:
stockdic = context.maxvalue[stock]
highest = stockdic[0]
#当前涨幅判断
raisePercentage = (highest - context.portfolio.positions[stock].avg_price) /context.portfolio.positions[stock].avg_price
if raisePercentage > 0.18:
bar = context.bar_60
minute = '60分钟'
if (raisePercentage > 0.12) and (raisePercentage <= 0.18):
bar = context.bar_30
minute = '30分钟'
if (raisePercentage >= 0.06) and (raisePercentage <= 0.12):
bar = context.bar_15
minute = '15分钟'
if (raisePercentage < 0.06):
return
ATR = findATR(context, bar, stock)
high = bar[stock].iloc[-1]['high']
current = bar[stock].iloc[-1]['close']
del context.maxvalue[stock]
temp = pd.DataFrame({str(stock):[max(highest,high)]})
context.maxvalue= pd.concat([context.maxvalue, temp], axis=1, join='inner') # 更新其盘中最高价值和先阶段比例。
stockdic = context.maxvalue[stock]
highest = stockdic[0]
if data[stock].close < highest - 3*ATR:
print(minute, '[ATR止损卖出]', instruments(stock).symbol, context.portfolio.positions[stock].avg_price, highest, data[stock].last, ATR)
position = context.portfolio.positions[stock]
self.close_position(position)
context.black_list.append(stock)
else:
del context.maxvalue[stock]
context.ATRList.remove(stock)
def when_sell_stock(self,position,order,is_normal):
#if position.security in self.last_high:
# self.last_high.pop(position.security)
pass
def when_buy_stock(self,stock,order):
#if order.status == OrderStatus.held and order.filled == order.amount:
# 全部成交则删除相关证券的最高价缓存
# self.last_high[stock] = get_close_price(stock, 1, '1m')
pass
def after_trading_end(self,context):
#self.pct_change = {}
pass
def __str__(self):
return '个股止损器:ATR止损'
'''==============================调仓的操作基类================================'''
class Adjust_position(Rule):
__name__='Adjust_position'
def adjust(self,context,data,buy_stocks):
pass
'''---------------卖出股票规则------------------------'''
'''---------------个股涨幅超过5%,进入ATR--------------'''
class Sell_stocks(Adjust_position):
__name__='Sell_stocks'
def adjust(self,context,data,buy_stocks):
for stock in context.portfolio.positions.keys():
if context.portfolio.positions[stock].quantity == 0:
return
if context.portfolio.positions[stock].sellable == 0:
return
#止损
if data[stock].close < context.portfolio.positions[stock].avg_price * 0.94:
position = context.portfolio.positions[stock]
self.close_position(position)
context.black_list.append(stock)
if (context.maxvalue[stock][0] - context.portfolio.positions[stock].avg_price)/context.portfolio.positions[stock].avg_price > 0.06:
if stock not in context.ATRList:
context.ATRList.append(stock)
if stock in context.stock_60:
#涨幅 8%
if data[stock].close > context.portfolio.positions[stock].avg_price * 1.07:
positions = context.portfolio.positions[stock]
percentage = context.portfolio.positions[stock].value_percent
print(stock, instruments(stock).symbol, data[stock].close, '60分钟 7%止盈卖出')
close_position_2(positions, percentage)
context.black_list.append(stock)
context.stock_60.remove(stock)
if stock in context.stock_30:
#涨幅 4%
if data[stock].close > context.portfolio.positions[stock].avg_price * 1.04:
positions = context.portfolio.positions[stock]
percentage = context.portfolio.positions[stock].value_percent
print(stock, instruments(stock).symbol, data[stock].close, '30分钟 4%止盈卖出')
close_position_2(positions, percentage)
context.black_list.append(stock)
context.stock_30.remove(stock)
if stock in context.stock_15:
#涨幅 2.5%
if data[stock].close > context.portfolio.positions[stock].avg_price * 1.025:
positions = context.portfolio.positions[stock]
percentage = context.portfolio.positions[stock].value_percent
print(stock, instruments(stock).symbol, data[stock].close, '15分钟 2.5%止盈卖出')
close_position_2(positions, percentage)
context.black_list.append(stock)
context.stock_15.remove(stock)
def __str__(self):
return '股票调仓卖出规则:卖出不在buy_stocks的股票'
'''---------------买入股票规则 补足仓位--------------'''
class Buy_stocks_position(Adjust_position):
__name__='Buy_stocks'
def __init__(self,params):
self.buy_count = params.get('buy_count', 4)
def update_params(self,context,params):
self.buy_count = params.get('buy_count',self.buy_count)
def adjust(self,context,data,buy_stocks):
actual_position = context.portfolio.market_value / context.portfolio.portfolio_value
if actual_position > context.position * 0.99:
return
#避免小额下单
if context.portfolio.cash < 10000:
return
buy_stock_list = []
stock_list_count = len(context.stock_list)
for stock in context.stock_list:
if stock in context.black_list:
return
fiveday_avg = calc_avg(stock, 5, '1d').tolist()
fiveday_avg.reverse();
if fiveday_avg[0]/fiveday_avg[1] > 0.99 :
#超过5日线,且涨幅小于5%
last_close = history_bars(stock, 1, '1d', fields = 'close', include_now = False)
if data[stock].close > fiveday_avg[0] and ((data[stock].close - last_close)/last_close) < 1.05:
createdic(context, data, stock)
if context.portfolio.positions[stock].value_percent * 1.05 < (context.position/self.buy_count):
if context.position - actual_position - context.position/self.buy_count > 0:
self.open_position_by_percent(stock, (context.position/self.buy_count))
print('[5日线 补仓买入]', instruments(stock).symbol, '仓位', (context.position/self.buy_count), '当前价格',data[stock].close)
else:
self.open_position_by_percent(stock, (context.position - actual_position))
print('[5日线 补仓买入]', instruments(stock).symbol, '仓位', (context.position - actual_position), '当前价格', data[stock].close)
if context.index_df.iloc[-1]['diff'] < 0:
return
print('激进策略')
#激进
for stock in context.stock_list:
if stock in context.black_list:
return
fiveday_avg = calc_avg(stock, 5, '120m').tolist()
fiveday_avg.reverse();
tendday_avg = calc_avg(stock, 10, '120m').tolist()
tendday_avg.reverse();
if fiveday_avg[0]/fiveday_avg[1] > 0.99 and fiveday_avg[0] > tendday_avg[0]:
last_close = history_bars(stock, 1, '1d', fields = 'close', include_now = False)
if data[stock].close > fiveday_avg[0] and ((data[stock].close - last_close)/last_close) < 1.05:
createdic(context, data, stock)
if context.portfolio.positions[stock].value_percent * 1.05 < (context.position/self.buy_count):
if context.position - actual_position - context.position/self.buy_count > 0:
self.open_position_by_percent(stock, (context.position/self.buy_count))
print('[120分钟线 补仓买入]', instruments(stock).symbol, '仓位', (context.position/self.buy_count), '当前价格',data[stock].close)
else:
self.open_position_by_percent(stock, (context.position - actual_position))
print('[120分钟线 补仓买入]', instruments(stock).symbol, '仓位', (context.position - actual_position), '当前价格', data[stock].close)
#激进
for stock in context.stock_list:
if stock in context.black_list:
return
fiveday_avg = calc_avg(stock, 5, '60m').tolist()
fiveday_avg.reverse();
tendday_avg = calc_avg(stock, 10, '60m').tolist()
tendday_avg.reverse();
if fiveday_avg[0]/fiveday_avg[1] > 0.99 and fiveday_avg[0] > tendday_avg[0]:
last_close = history_bars(stock, 1, '1d', fields = 'close', include_now = False)
if data[stock].close > fiveday_avg[0] and ((data[stock].close - last_close)/last_close) < 1.05:
createdic(context, data, stock)
if context.portfolio.positions[stock].value_percent * 1.05 < (context.position/self.buy_count):
if context.position - actual_position - context.position/self.buy_count > 0:
self.open_position_by_percent(stock, (context.position/self.buy_count))
print('[60分钟线 补仓买入]', instruments(stock).symbol, '仓位', (context.position/self.buy_count), '当前价格',data[stock].close)
else:
self.open_position_by_percent(stock, (context.position - actual_position))
print('[60分钟线 补仓买入]', instruments(stock).symbol, '仓位', (context.position - actual_position), '当前价格', data[stock].close)
pass
def __str__(self):
return '股票调仓买入规则:现金平分式买入股票达目标股票数'
'''---------------买入股票规则 按底部结构买入--------------'''
class Buy_stocks_low(Adjust_position):
__name__='Buy_stocks_low'
def __init__(self,params):
self.buy_count = params.get('buy_count', 4)
def update_params(self,context,params):
self.buy_count = params.get('buy_count',self.buy_count)
def adjust(self,context,data,buy_stocks):
# 买入股票
# 始终保持持仓数目为g.buy_stock_count
# 根据股票数量分仓
# 此处只根据可用金额平均分配购买,不能保证每个仓位平均分配
#开盘和尾盘不进行交易
if context.timedelt < 15 or context.timedelt > 237:
return
#30分钟线进行交易
if (context.timedelt % 5 >= 3) or (context.timedelt % 5 == 0): #and (context.timedelt % 60 <= 5):
return
for stock in buy_stocks:
if stock in context.black_list:
return
#避免小额下单
if context.portfolio.cash < 20000:
return
macd_df_60 = context.bar_60[stock]
macd_df_30 = context.bar_30[stock]
macd_df_15 = context.bar_15[stock]
#if (context.portfolio.market_value / context.portfolio.portfolio_value) > context.position:
# return
#构成买入条件
if macd_df_60.iloc[-1]['bottom_buy'] == 1:
createdic(context, data, stock)
if context.portfolio.positions[stock].value_percent * 1.1 < context.position/self.buy_count:
self.open_position_by_percent(stock, context.position/self.buy_count)
if stock not in context.stock_60:
context.stock_60.append(stock)
print('[60分钟 底部结构买入]', instruments(stock).symbol, context.position/self.buy_count)
if macd_df_30.iloc[-1]['bottom_buy'] == 1:
createdic(context, data, stock)
if context.portfolio.positions[stock].value_percent * 1.1 < (context.position/self.buy_count):
self.open_position_by_percent(stock, context.position/self.buy_count)
if stock not in context.stock_30:
context.stock_30.append(stock)
print('[30分钟 底部结构买入]', instruments(stock).symbol, context.position/self.buy_count)
if macd_df_15.iloc[-1]['bottom_buy'] == 1 and context.index_df.iloc[-1]['macd'] > 0:
createdic(context, data, stock)
if context.portfolio.positions[stock].value_percent * 1.1 < (context.position/self.buy_count):
self.open_position_by_percent(stock, context.position/self.buy_count)
if stock not in context.stock_15:
context.stock_30.append(stock)
print('[15分钟 底部结构买入]', instruments(stock).symbol, context.position/self.buy_count)
#else:
#self.open_position_by_percent(stock, 1/buy_count)
pass
def __str__(self):
return '股票调仓买入规则:现金平分式买入股票达目标股票数'
def generate_portion(num):
total_portion = num * (num+1) / 2
start = num
while num != 0:
yield float(num) / float(total_portion)
num -= 1