-
Notifications
You must be signed in to change notification settings - Fork 11
/
config.py
63 lines (54 loc) · 2.8 KB
/
config.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
import argparse
def parse_args():
parser = argparse.ArgumentParser()
# in/out
parser.add_argument('--outf', default='./experiments',
help='trained model will be saved at here')
parser.add_argument('--save', default='UNet_vessel_seg',
help='save name of experiment in args.outf directory')
# data
parser.add_argument('--train_data_path_list',
default='./prepare_dataset/data_path_list/DRIVE/train.txt')
parser.add_argument('--test_data_path_list',
default='./prepare_dataset/data_path_list/DRIVE/test.txt')
parser.add_argument('--train_patch_height', default=64)
parser.add_argument('--train_patch_width', default=64)
parser.add_argument('--N_patches', default=2000,
help='Number of training image patches')
parser.add_argument('--inside_FOV', default='center',
help='Choose from [not,center,all]')
parser.add_argument('--val_ratio', default=0.1,
help='The ratio of the validation set in the training set')
parser.add_argument('--sample_visualization', default=True,
help='Visualization of training samples')
# model parameters
parser.add_argument('--in_channels', default=1,type=int,
help='input channels of model')
parser.add_argument('--classes', default=2,type=int,
help='output channels of model')
# training
parser.add_argument('--N_epochs', default=200, type=int,
help='number of total epochs to run')
parser.add_argument('--batch_size', default=64,
type=int, help='batch size')
parser.add_argument('--early-stop', default=50, type=int,
help='early stopping')
parser.add_argument('--lr', default=0.0005, type=float,
help='initial learning rate')
parser.add_argument('--val_on_test', default=False, type=bool,
help='Validation on testset')
# for pre_trained checkpoint
parser.add_argument('--start_epoch', default=1,
help='Start epoch')
parser.add_argument('--pre_trained', default=None,
help='(path of trained _model)load trained model to continue train')
# testing
parser.add_argument('--test_patch_height', default=64)
parser.add_argument('--test_patch_width', default=64)
parser.add_argument('--stride_height', default=16)
parser.add_argument('--stride_width', default=16)
# hardware setting
parser.add_argument('--cuda', default=True, type=bool,
help='Use GPU calculating')
args = parser.parse_args()
return args