-
Notifications
You must be signed in to change notification settings - Fork 94
/
Copy pathdraw_precision_recall_curve.py
66 lines (44 loc) · 1.72 KB
/
draw_precision_recall_curve.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
import sys
import argparse
import matplotlib.pyplot as plt
from pylab import *
import numpy as np
def main(argv):
parser = argparse.ArgumentParser()
parser.add_argument('input_file',default = "C:\\darknet_fire_detection\\build\\darknet\\x64\\log\\precision_recall5.txt", help="file to read precision and recall")
#parser.add_argument('-output_file',default = "C:\\darknet_fire_detection\\build\\darknet\\x64\\log\\precision_recall3.png", help='full path to save curve')
args = parser.parse_args()
args.output_file = args.input_file.replace(".txt",".png")
print "input file you provided is {}".format(args.input_file)
print "output file you provided is {}".format(args.output_file)
f = open(args.input_file)
lines = [line.rstrip("\n") for line in f.readlines()]
iters = []
precisions = []
recalls = []
for line in lines:
cols = line.split()
if len(cols)<3:
continue
iters.append(float(cols[0][:-1]))
precisions.append(float(cols[1]))
recalls.append(float(cols[2]))
print iters
print precisions
print recalls
fig= plt.figure()
ax = fig.add_subplot(111)
#figure()
#gca().set_position((.1, .3, .8, .6))
plt.plot(iters,precisions,label = "precision")
plt.plot(iters,recalls, label = "recall")
plt.legend()
ax.set_yticks(np.linspace(0,1,11))
plt.grid()
plt.xlabel("number of iterations in K(1.0 means 1000)")
plt.ylabel("precision/recall value. Ideally should be 1")
#plt.figtext(0.95,0.9, "High recall means detect most of the fires cases. \n Low precision means a lot of misalarm")
savefig(args.output_file)
plt.show()
if __name__ == "__main__":
main(sys.argv)