Skip to content
This repository has been archived by the owner on Mar 13, 2024. It is now read-only.

Latest commit

 

History

History
99 lines (82 loc) · 7.51 KB

File metadata and controls

99 lines (82 loc) · 7.51 KB

ReinforcementLearningDatasets

A package to create, manage, store and retrieve datasets for Offline Reinforcement Learning. This package uses DataDeps.jl to fetch and track datasets. For more details refer to the documentation.

It supports an extensive number of datasets and also supports google-research/deep_ope d4rl policies.

Install

pkg> add ReinforcementLearningDatasets

Examples

D4RL dataset

julia> using ReinforcementLearningDatasets

julia> ds = dataset("hopper-medium-replay-v0"; repo="d4rl")
D4RLDataSet{Random.MersenneTwister}(Dict{Symbol, Any}(:reward => Float32[0.9236555, 0.8713692, 0.92237693, 0.9839225, 0.91540813, 0.8331875, 0.8102179, 0.78385466, 0.7304337, 0.6942671  …  5.0350657, 5.005931, 4.998442, 4.986662, 4.9730926, 4.9638906, 4.9503803, 4.9326644, 4.8952913, 4.8448896], :state => Float32[1.2521756 1.
...

julia> samples = Iterators.take(ds)
Base.Iterators.Take{D4RLDataSet{Random.MersenneTwister}}(D4RLDataSet{Random.MersenneTwister}(Dict{Symbol, Any}(:reward => Float32[0.9236555, 0.8713692, 0.92237693, 0.9839225, 0.91540813, 0.8331875, 0.8102179, 0.78385466, 0.7304337, 0.6942671  …  5.0350657, 5.005931, 4.998442, 4.986662, 4.9730926, 4.9638906, 4.9503803, 4.9326644, 4.8952913, 4.8448896], :state => Float32[1.2521756 1.2519351 … 
...

ds is of the type D4RLDataset which consists of the entire dataset along with some other information about the dataset. samples are in the form of SARTS with batchsize 256.

RL Unplugged

julia> using ReinforcementLearningDatasets

julia> ds = rl_unplugged_atari_dataset("pong", 1, [1, 2])
[ Info: Loading the shards [1, 2] in 1 run of pong with 1 threads
Progress: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| Time: 0:00:13
RingBuffer{ReinforcementLearningDatasets.AtariRLTransition}(Channel{ReinforcementLearningDatasets.AtariRLTransition}(12), ReinforcementLearningDatasets.AtariRLTransition(UInt8[0x00 0x00 … 0x00 0x00; 0x00 0x00 … 0x00 0x00; … ; 0x00 0x00 … 0x00 0x00; 0x00 0x00 … 0x00 0x00]
...

julia> samples = take!(ds, 2)
ReinforcementLearningDatasets.AtariRLTransition(UInt8[0x34 0x34 … 0x57 0x57; 0x57 0x57 … 0x57 0x57; … ; 0xec 0xec … 0xec 0xec; 0xec 0xec … 0xec 0xec]

UInt8[0x34 0x34 … 0x57 0x57; 0x57 0x57 … 0x57 0x57; … ; 0xec 0xec … 0xec 0xec; 0xec 0xec … 0xec 0xec]
...
499684941823, -2724510648791728127, 4553719765411037185, -3513317882744274943, -8544304859447295999, -1756940416348848127, 186459579884765185, -9154762511281553407, -1410303982529675263, -5170686526081728511], Float32[18.0, 17.0, 19.0, 18.0, 16.0, 18.0, 12.0, 19.0, 21.0, 21.0  …  20.0, 18.0, 18.0, 21.0, -2.0, -18.0, 14.0, 9.0, -21.0, -15.0])

ds is a Channel{AtariRLTransition} that returns batches of type AtariRLTransition when take! is used.

Deep OPE

julia> using ReinforcementLearningDatasets
julia> model = d4rl_policy("ant", "online", 10)
D4RLGaussianNetwork{Flux.Chain{Tuple{Flux.Dense{typeof(NNlib.relu), Matrix{Float32}, Vector{Float32}}, Flux.Dense{typeof(NNlib.relu), Matrix{Float32}, Vector{Float32}}}}, Flux.Chain{Tuple{Flux.Dense{typeof(identity), Matrix{Float32}, Vector{Float32}}}}, Flux.Chain{Tuple{Flux.Dense{typeof(identity), Matrix{Float32}, Vector{Float32}}}}}(Chain(Dense(111, 256, relu), Dense(256, 256, relu)), Chain(Dense(256, 8)), Chain(Dense(256, 8)))

julia> env = GymEnv("ant-medium-v0")

julia> a = state(env) |> model 
([0.4033523672563252, 0.2595324728828865, -0.5570708932001185, -0.5522664630767464, -0.9880830678905399, 0.26941818745211277, 2.1526997615143517, -0.09209516788500087], [0.1891864047269633, -0.08529361693109125, -0.744898545155567, -0.6052428389550205, -0.8887611225758812, 0.37303904310491376, 1.8524731056470352, -0.08358713385474797])

julia> plt = deep_ope_d4rl_evaluate("halfcheetah", "online", 10; num_evaluations=100)
Progress: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| Time: 0:00:17
                      halfcheetah-medium-v0 scores              
               +----------------------------------------+       
         12000 |    .       ...  ...         ..         | scores
               |: .::':..:.:'':::'''.::::::''::'::':'::.|       
               |::::' ::::''  '::    ::      ::  : ' '  |       
               |::::  :::      ::    ::      ::         |       
               |::::  ::'      ':    ''      ::         |       
               |::::  ::                     ::         |       
               |::::   :                     ::         |       
   score       | ::    :                     ::         |       
               | ::    :                     ::         |       
               | ::    :                     ::         |       
               | ::    :                     ::         |       
               | ::    '                     ::         |       
               | ::                          ::         |       
               | ::                          ::         |       
          1000 |                                        |       
               +----------------------------------------+       
                0                                    100        
                                 episode    

d4rl_policy returns a model that yields a Tuple containing a(actions) and μ(the mean).

Supported Datasets

Supported Models for OPE

Note: The package is under active development and support for a few datasets are left. Support for GymEnv for the datasets will also be given soon.