From 8fcbec2b034f99de343714754804b172e4cbe854 Mon Sep 17 00:00:00 2001 From: Fredrik Ekre Date: Sun, 9 Jul 2017 03:32:53 +0200 Subject: [PATCH] parametrize Diagonal on the wrapped vector type --- NEWS.md | 6 ++++++ base/linalg/diagonal.jl | 27 ++++++++++++++------------- test/linalg/diagonal.jl | 6 +++--- test/show.jl | 2 +- 4 files changed, 24 insertions(+), 17 deletions(-) diff --git a/NEWS.md b/NEWS.md index 1c356a33be8b5..3bd9aaab6716b 100644 --- a/NEWS.md +++ b/NEWS.md @@ -60,6 +60,9 @@ This section lists changes that do not have deprecation warnings. longer present. Use `first(R)` and `last(R)` to obtain start/stop. ([#20974]) + * The `Diagonal` type definition has changed from `Diagonal{T}` to + `Diagonal{T,V<:AbstractVector{T}}` ([#22718]). + Library improvements -------------------- @@ -110,6 +113,9 @@ Library improvements * `Char`s can now be concatenated with `String`s and/or other `Char`s using `*` ([#22532]). + * `Diagonal` is now parameterized on the type of the wrapped vector. This allows + for `Diagonal` matrices with arbitrary `AbstractVector`s ([#22718]). + Compiler/Runtime improvements ----------------------------- diff --git a/base/linalg/diagonal.jl b/base/linalg/diagonal.jl index b93f3a0232cd9..f146773d7e9b0 100644 --- a/base/linalg/diagonal.jl +++ b/base/linalg/diagonal.jl @@ -2,16 +2,15 @@ ## Diagonal matrices -struct Diagonal{T} <: AbstractMatrix{T} - diag::Vector{T} +struct Diagonal{T,V<:AbstractVector{T}} <: AbstractMatrix{T} + diag::V end """ Diagonal(A::AbstractMatrix) -Constructs a matrix from the diagonal of `A`. - -# Example +Construct a matrix from the diagonal of `A`. +# Examples ```jldoctest julia> A = [1 2 3; 4 5 6; 7 8 9] 3×3 Array{Int64,2}: @@ -20,36 +19,38 @@ julia> A = [1 2 3; 4 5 6; 7 8 9] 7 8 9 julia> Diagonal(A) -3×3 Diagonal{Int64}: +3×3 Diagonal{Int64,Array{Int64,1}}: 1 ⋅ ⋅ ⋅ 5 ⋅ ⋅ ⋅ 9 ``` """ Diagonal(A::AbstractMatrix) = Diagonal(diag(A)) + """ Diagonal(V::AbstractVector) -Constructs a matrix with `V` as its diagonal. - -# Example +Construct a matrix with `V` as its diagonal. +# Examples ```jldoctest -julia> V = [1; 2] +julia> V = [1, 2] 2-element Array{Int64,1}: 1 2 julia> Diagonal(V) -2×2 Diagonal{Int64}: +2×2 Diagonal{Int64,Array{Int64,1}}: 1 ⋅ ⋅ 2 ``` """ -Diagonal(V::AbstractVector) = Diagonal(collect(V)) +Diagonal(V::AbstractVector{T}) where {T} = Diagonal{T,typeof(V)}(V) +Diagonal{T}(V::AbstractVector{T}) where {T} = Diagonal{T,typeof(V)}(V) +Diagonal{T}(V::AbstractVector) where {T} = Diagonal{T}(convert(AbstractVector{T}, V)) convert(::Type{Diagonal{T}}, D::Diagonal{T}) where {T} = D -convert(::Type{Diagonal{T}}, D::Diagonal) where {T} = Diagonal{T}(convert(Vector{T}, D.diag)) +convert(::Type{Diagonal{T}}, D::Diagonal) where {T} = Diagonal{T}(convert(AbstractVector{T}, D.diag)) convert(::Type{AbstractMatrix{T}}, D::Diagonal) where {T} = convert(Diagonal{T}, D) convert(::Type{Matrix}, D::Diagonal) = diagm(D.diag) convert(::Type{Array}, D::Diagonal) = convert(Matrix, D) diff --git a/test/linalg/diagonal.jl b/test/linalg/diagonal.jl index 64c6de02af80b..40194a5f20a39 100644 --- a/test/linalg/diagonal.jl +++ b/test/linalg/diagonal.jl @@ -21,8 +21,8 @@ srand(1) @testset "Basic properties" begin @test eye(Diagonal{elty},n) == Diagonal(ones(elty,n)) @test_throws ArgumentError size(D,0) - @test typeof(convert(Diagonal{Complex64},D)) == Diagonal{Complex64} - @test typeof(convert(AbstractMatrix{Complex64},D)) == Diagonal{Complex64} + @test typeof(convert(Diagonal{Complex64},D)) <: Diagonal{Complex64} + @test typeof(convert(AbstractMatrix{Complex64},D)) <: Diagonal{Complex64} @test Array(real(D)) == real(DM) @test Array(abs.(D)) == abs.(DM) @@ -312,7 +312,7 @@ end end # allow construct from range -@test Diagonal(linspace(1,3,3)) == Diagonal([1.,2.,3.]) +@test all(Diagonal(linspace(1,3,3)) .== Diagonal([1.0,2.0,3.0])) # Issue 12803 for t in (Float32, Float64, Int, Complex{Float64}, Rational{Int}) diff --git a/test/show.jl b/test/show.jl index e53b98ba63130..1dd14e81c2b89 100644 --- a/test/show.jl +++ b/test/show.jl @@ -547,7 +547,7 @@ end # test structured zero matrix printing for select structured types A = reshape(1:16,4,4) -@test replstr(Diagonal(A)) == "4×4 Diagonal{$Int}:\n 1 ⋅ ⋅ ⋅\n ⋅ 6 ⋅ ⋅\n ⋅ ⋅ 11 ⋅\n ⋅ ⋅ ⋅ 16" +@test replstr(Diagonal(A)) == "4×4 Diagonal{$(Int),Array{$(Int),1}}:\n 1 ⋅ ⋅ ⋅\n ⋅ 6 ⋅ ⋅\n ⋅ ⋅ 11 ⋅\n ⋅ ⋅ ⋅ 16" @test replstr(Bidiagonal(A,:U)) == "4×4 Bidiagonal{$Int}:\n 1 5 ⋅ ⋅\n ⋅ 6 10 ⋅\n ⋅ ⋅ 11 15\n ⋅ ⋅ ⋅ 16" @test replstr(Bidiagonal(A,:L)) == "4×4 Bidiagonal{$Int}:\n 1 ⋅ ⋅ ⋅\n 2 6 ⋅ ⋅\n ⋅ 7 11 ⋅\n ⋅ ⋅ 12 16" @test replstr(SymTridiagonal(A+A')) == "4×4 SymTridiagonal{$Int}:\n 2 7 ⋅ ⋅\n 7 12 17 ⋅\n ⋅ 17 22 27\n ⋅ ⋅ 27 32"