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Chapter 4

Introduction

Scientific computing has traditionally required the highest performance, yet domain experts have largely moved to
slower dynamic languages for daily work. We believe there are many good reasons to prefer dynamic languages for
these applications, and we do not expect their use to diminish. Fortunately, modern language design and compiler
techniques make it possible to mostly eliminate the performance trade-off and provide a single environment productive
enough for prototyping and efficient enough for deploying performance-intensive applications. The Julia programming
language fills this role: it is a flexible dynamic language, appropriate for scientific and numerical computing, with
performance comparable to traditional statically-typed languages.

Because Julia’s compiler is different from the interpreters used for languages like Python or R, you may find that Julia’s
performance is unintuitive at first. If you find that something is slow, we highly recommend reading through the
Performance Tips section before trying anything else. Once you understand how Julia works, it's easy to write code
that’s nearly as fast as C.

Julia features optional typing, multiple dispatch, and good performance, achieved using type inference and just-in-
time (JIT) compilation, implemented using LLVM. It is multi-paradigm, combining features of imperative, functional,
and object-oriented programming. Julia provides ease and expressiveness for high-level numerical computing, in the
same way as languages such as R, MATLAB, and Python, but also supports general programming. To achieve this,
Julia builds upon the lineage of mathematical programming languages, but also borrows much from popular dynamic
languages, including Lisp, Perl, Python, Lua, and Ruby.

The most significant departures of Julia from typical dynamic languages are:
o The core language imposes very little; the standard library is written in Julia itself, including primitive operations
like integer arithmetic

e Arich language of types for constructing and describing objects, that can also optionally be used to make type
declarations

¢ The ability to define function behavior across many combinations of argument types via multiple dispatch

o Automatic generation of efficient, specialized code for different argument types

e Good performance, approaching that of statically-compiled languages like C
Although one sometimes speaks of dynamic languages as being "typeless”, they are definitely not: every object,
whether primitive or user-defined, has a type. The lack of type declarations in most dynamic languages, however,
means that one cannot instruct the compiler about the types of values, and often cannot explicitly talk about types at
all. In static languages, on the other hand, while one can - and usually must - annotate types for the compiler, types

exist only at compile time and cannot be manipulated or expressed at run time. In Julia, types are themselves run-time
objects, and can also be used to convey information to the compiler.
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While the casual programmer need not explicitly use types or multiple dispatch, they are the core unifying features
of Julia: functions are defined on different combinations of argument types, and applied by dispatching to the most
specific matching definition. This model is a good fit for mathematical programming, where it is unnatural for the first
argument to "own” an operation as in traditional object-oriented dispatch. Operators are just functions with special
notation - to extend addition to new user-defined data types, you define new methods for the + function. Existing
code then seamlessly applies to the new data types.

Partly because of run-time type inference (augmented by optional type annotations), and partly because of a strong
focus on performance from the inception of the project, Julia’'s computational efficiency exceeds that of other dynamic
languages, and even rivals that of statically-compiled languages. For large scale numerical problems, speed always has
been, continues to be, and probably always will be crucial: the amount of data being processed has easily kept pace
with Moore’s Law over the past decades.

Julia aims to create an unprecedented combination of ease-of-use, power, and efficiency in a single language. In
addition to the above, some advantages of Julia over comparable systems include:

e Free and open source (MIT licensed)

e User-defined types are as fast and compact as built-ins

e No need to vectorize code for performance; devectorized code is fast

o Designed for parallelism and distributed computation

o Lightweight "green” threading (coroutines)

e Unobtrusive yet powerful type system

e Elegant and extensible conversions and promotions for numeric and other types

o Efficient support for Unicode, including but not limited to UTF-8

e Call C functions directly (no wrappers or special APIs needed)

o Powerful shell-like capabilities for managing other processes

o Lisp-like macros and other metaprogramming facilities
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Getting Started

Juliainstallation is straightforward, whether using precompiled binaries or compiling from source. Download and install
Julia by following the instructions at https:/julialang.org/downloads/.

The easiest way to learn and experiment with Julia is by starting an interactive session (also known as a read-eval-print
loop or "repl”) by double-clicking the Julia executable or running julia from the command line:

$ julia

- - _(:)_
1O Q)

| A fresh approach to technical computing
| Documentation: https://docs.julialang.org
[ I | Type "?help" for help.
FLrrrs -0
| Version 0.5.0-dev+2440 (2016-02-081 ©2:22 UTC)
| Commit 2bb94d6 (11 days old master)
|

x86_64-apple-darwin13.1.0

|
[ e I I e
(1A VR iy [ V|

julia> 1 + 2
3

julia> ans
3

To exit the interactive session, type 2D - the control key together with the d key or type quit(). When run in
interactive mode, julia displays a banner and prompts the user for input. Once the user has entered a complete
expression, such as 1 + 2, and hits enter, the interactive session evaluates the expression and shows its value. If an
expression is entered into an interactive session with a trailing semicolon, its value is not shown. The variable ans
is bound to the value of the last evaluated expression whether it is shown or not. The ans variable is only bound in
interactive sessions, not when Julia code is run in other ways.

To evaluate expressions written in a source file file. j1, write include("file.j1").

To run code in a file non-interactively, you can give it as the first argument to the julia command:

‘S julia script.jl argl arg2...

As the example implies, the following command-line arguments to julia are taken as command-line arguments to
the program script.jl, passed in the global constant ARGS. The name of the script itself is passed in as the global
PROGRAM_FILE. Note that ARGS is also set when script code is given using the -e option on the command line (see

the julia help output below) but PROGRAM_FILE will be empty. For example, to just print the arguments given to a
script, you could do this:

‘S julia -e 'println(PROGRAM_FILE); for x in ARGS; println(x); end' foo bar

15
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foo
bar

Or you could put that code into a script and run it:

$ echo 'println(PROGRAM_FILE); for x in ARGS; println(x); end' > script.jl
$ julia script.jl foo bar

script.jl

foo

bar

The - - delimiter can be used to separate command-line args to the scriptfile from args to Julia:

‘S julia --color=yes -0 -- foo.jl argl arg2..

Julia can be started in parallel mode with either the -p or the --machinefile options. -p n will launch an additional
n worker processes, while --machinefile file will launch aworker for each linein file file. The machines defined
in file must be accessible via a passwordless ssh login, with Julia installed at the same location as the current host.
Each machine definition takes the form [count*][user@]host[ :port] [bind_addr|[:port]] . user defaults
to current user, port to the standard ssh port. count is the number of workers to spawn on the node, and defaults
to 1. The optional bind-to bind_addr[ :port] specifies the ip-address and port that other workers should use to
connect to this worker.

If you have code that you want executed whenever Julia is run, you can putitin ~/.juliarc.jl:
$ echo 'println("Greetings!
$ julia

Greetings! ! ?

1 ?2")" > ~/.juliarc.jl

There are various ways to run Julia code and provide options, similar to those available for the perland ruby programs:

julia [switches] -- [programfile] [args...]

-v, --version Display version information

-h, --help Print this message

-J, --sysimage <file> Start up with the given system image file

--precompiled={yes|no} Use precompiled code from system image if available

--compilecache={yes|no}
-H, --home <dir>
--startup-file={yes|no}
--handle-signals={yes|no}

-e, --eval <expr>
-E, --print <expr>
-L, --load <file>
-p, --procs {N|auto}

--machinefile <file>

-i

-q, --quiet
--color={yes|no}
--history-file={yes|no}

Enable/disable incremental precompilation of modules
Set location of “julia® executable

Load ~/.juliarc.jl

Enable or disable Julia's default signal handlers

Evaluate <expr>
Evaluate and show <expr>
Load <file> immediately on all processors

Integer value N launches N additional local worker processes
"auto" launches as many workers as the number of local cores
Run processes on hosts listed in <file>

Interactive mode; REPL runs and isinteractive() is true
Quiet startup (no banner)

Enable or disable color text

Load or save history
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--compile={yes|no|all|min}Enable or disable JIT compiler, or request exhaustive compilation

-C, --cpu-target <target> Limit usage of cpu features up to <target>

-0, --optimize={0,1,2,3} Set the optimization level (default is 2 if unspecified or 3 if
specified as -0)

-g, -g <level> Enable / Set the level of debug info generation (default is 1 if
unspecified or 2 if specified as -g)

@inline)
--check-bounds={yes|no} Emit bounds checks always or never (ignoring declarations)
--math-mode={ieee, fast} Disallow or enable unsafe floating point optimizations (overrides
@fastmath declaration)

--depwarn={yes|no|error} Enable or disable syntax and method deprecation warnings (“"error"
turns warnings into errors)

--output-o name Generate an object file (including system image data)
--output-ji name Generate a system image data file (.ji)
--output-bc name Generate LLVM bitcode (.bc)

--output-incremental=no Generate an incremental output file (rather than complete)

--code-coverage={none|user|all}, --code-coverage
Count executions of source lines (omitting setting is equivalent to
user”
--track-allocation={none|user|all}, --track-allocation
Count bytes allocated by each source line

5.1 Resources

In addition to this manual, there are various other resources that may help new users get started with Julia:

e Julia and Julia cheatsheet

e Learn Julia in a few minutes

e Learn Julia the Hard Way

e Julia by Example

e Hands-on Julia

e Tutorial for Homer Reid’s numerical analysis class
e An introductory presentation

¢ Videos from the Julia tutorial at MIT

e YouTube videos from the JuliaCons

17

--inline={yes|no} Control whether inlining is permitted (overrides functions declared as


http://math.mit.edu/{~}stevenj/Julia-cheatsheet.pdf
https://learnxinyminutes.com/docs/julia/
https://github.com/chrisvoncsefalvay/learn-julia-the-hard-way
http://samuelcolvin.github.io/JuliaByExample/
https://github.com/dpsanders/hands_on_julia
http://homerreid.dyndns.org/teaching/18.330/JuliaProgramming.shtml
https://raw.githubusercontent.com/ViralBShah/julia-presentations/master/Fifth-Elephant-2013/Fifth-Elephant-2013.pdf
https://julialang.org/blog/2013/03/julia-tutorial-MIT
https://www.youtube.com/user/JuliaLanguage/playlists




Chapter 6

Variables

A variable, in Julia, is a name associated (or bound) to a value. It's useful when you want to store a value (that you
obtained after some math, for example) for later use. For example:

# Assign the value 10 to the variable x
julia> x = 10
10

# Doing math with x's value
julia> x + 1
11

# Reassign x's value
julia> x = 1 + 1
2

# You can assign values of other types, like strings of text
julia> x = "Hello World!"
"Hello World!"

Julia provides an extremely flexible system for naming variables. Variable names are case-sensitive, and have no se-
mantic meaning (that is, the language will not treat variables differently based on their names).

julia> x = 1.0
1.0

julia> y = -3
-3

julia> Z = "My string"
"My string”

julia> customary_phrase = "Hello world!"
"Hello world!"

W

julia> UniversalDeclarationOfHumanRightsStart =

o

Unicode names (in UTF-8 encoding) are allowed:

19
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julia> &6 = 0.00001
1.0e-5

julia> = "Hello"
"Hello"

In the Julia REPL and several other Julia editing environments, you can type many Unicode math symbols by typing
the backslashed LaTeX symbol name followed by tab. For example, the variable name & can be entered by typing
\delta-tab, or even a by \alpha-tab-\hat- tab-\_2-tab. (If you find a symbol somewhere, e.g. in someone else’s
code, that you don’t know how to type, the REPL help will tell you: just type ? and then paste the symbol.)

Julia will even let you redefine built-in constants and functions if needed:

julia> pi
n = 3.1415926535897. ..

julia> pi = 3
WARNING: imported binding for pi overwritten in module Main
3

julia> pi
3

julia> sqrt(100)
10.0

julia> sqrt = 4
WARNING: imported binding for sqrt overwritten in module Main
4

However, this is obviously not recommended to avoid potential confusion.

6.1 Allowed Variable Names

Variable names must begin with a letter (A-Z or a-z), underscore, or a subset of Unicode code points greater than
00AO; in particular, Unicode character categories Lu/LI/Lt/Lm/Lo/NI (letters), Sc/So (currency and other symbols), and
a few other letter-like characters (e.g. a subset of the Sm math symbols) are allowed. Subsequent characters may also
include ! and digits (0-9 and other characters in categories Nd/No), as well as other Unicode code points: diacritics
and other modifying marks (categories Mn/Mc/Me/Sk), some punctuation connectors (category Pc), primes, and a few
other characters.

Operators like + are also valid identifiers, but are parsed specially. In some contexts, operators can be used just like
variables; for example (+) refers to the addition function, and (+) = f will reassign it. Most of the Unicode infix
operators (in category Sm), such as, are parsed as infix operators and are available for user-defined methods (e.g. you
canuse const = kron to define as an infix Kronecker product).

The only explicitly disallowed names for variables are the names of built-in statements:

julia> else = false
ERROR: syntax: unexpected "else"

julia> try = "No"
ERROR: syntax: unexpected "="


http://www.fileformat.info/info/unicode/category/index.htm
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Some Unicode characters are considered to be equivalent in identifiers. Different ways of entering Unicode combining
characters (e.g., accents) are treated as equivalent (specifically, Julia identifiers are NFC-normalized). The Unicode char-
acters (U+025B: Latin small letter open €) and p (U+00B5: micro sign) are treated as equivalent to the corresponding
Greek letters, because the former are easily accessible via some input methods.

6.2 Stylistic Conventions

While Julia imposes few restrictions on valid names, it has become useful to adopt the following conventions:

e Names of variables are in lower case.

e Word separation can be indicated by underscores (' _"), but use of underscores is discouraged unless the name
would be hard to read otherwise.

o Names of Types and Modules begin with a capital letter and word separation is shown with upper camel case
instead of underscores.

e Names of functions and macros are in lower case, without underscores.

e Functions that write to their arguments have names that end in !. These are sometimes called "mutating” or "in-
place” functions because they are intended to produce changes in their arguments after the function is called,
not just return a value.

For more information about stylistic conventions, see the Style Guide.






Chapter 7

Integers and Floating-Point Numbers

Integers and floating-point values are the basic building blocks of arithmetic and computation. Built-in representations
of such values are called numeric primitives, while representations of integers and floating-point numbers as immediate
values in code are known as numeric literals. For example, 1 is an integer literal, while 1.0 is a floating-point literal;
their binary in-memory representations as objects are numeric primitives.

Julia provides a broad range of primitive numeric types, and a full complement of arithmetic and bitwise operators as
well as standard mathematical functions are defined over them. These map directly onto numeric types and opera-
tions that are natively supported on modern computers, thus allowing Julia to take full advantage of computational
resources. Additionally, Julia provides software support for Arbitrary Precision Arithmetic, which can handle opera-
tions on numeric values that cannot be represented effectively in native hardware representations, but at the cost of
relatively slower performance.

The following are Julia’s primitive numeric types:

¢ Integer types:

Type Signed? | Number of bits | Smallest value | Largest value
Int8 8 =277 287 -1
UInt8 8 0 278 -1
Int16 16 -2715 275-1
UInt16 16 0 2716 -1
Int32 32 -2731 27°31-1
UInt32 32 0 2732 -1
Int64 64 -2763 27263 -1
UInt64 64 0 2764 - 1
Int128 128 -27M27 2727 -1
UInt128 128 0 27128 -1
Bool N/A 8 false (0) true (1)

¢ Floating-point types:

Additionally, full support for Complex and Rational Numbers is built on top of these primitive numeric types. All
numeric types interoperate naturally without explicit casting, thanks to a flexible, user-extensible type promotion
system.
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Type Precision | Number of bits
Float16 | half 16
Float32 | single 32
Float64 | double 64
7.1 Integers

Literal integers are represented in the standard manner:

julia> 1
1

julia> 1234
1234
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The default type for an integer literal depends on whether the target system has a 32-bit architecture or a 64-bit

architecture:

Int32

Int64

# 32-bit system:
julia> typeof(1)

# 64-bit system:
julia> typeof (1)

The Julia internal variable Sys . WORD_SIZE indicates whether the target system is 32-bit or 64-bit:

32

64

# 32-bit system:
julia> Sys.WORD_SIZE

# 64-bit system:
julia> Sys.WORD_SIZE

Julia also defines the types Int and UInt, which are aliases for the system’s signed and unsigned native integer types

respectively:

julia> Int
Int32
julia> UInt
UInt32

julia> Int
Int64
julia> UInt
UInto64

# 32-bit system:

# 64-bit system:


https://en.wikipedia.org/wiki/Half-precision_floating-point_format
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Larger integer literals that cannot be represented using only 32 bits but can be represented in 64 bits always create
64-bit integers, regardless of the system type:

# 32-bit or 64-bit system:
julia> typeof(3000000000)
Int64

Unsigned integers are input and output using the 8x prefix and hexadecimal (base 16) digits 0-9a-f (the capitalized
digits A-F also work for input). The size of the unsigned value is determined by the number of hex digits used:

julia> 0x1
0x01

julia> typeof(ans)
UInt8

julia> 0x123
0x0123

julia> typeof(ans)
UInt16

julia> 0x1234567
0x01234567

julia> typeof(ans)
UInt32

julia> 0x123456789abcdef
0x0123456789abcdef

julia> typeof(ans)
UInt64

This behavior is based on the observation that when one uses unsigned hex literals for integer values, one typically is
using them to represent a fixed numeric byte sequence, rather than just an integer value.

Recall that the variable ans is set to the value of the last expression evaluated in an interactive session. This does not
occur when Julia code is run in other ways.

Binary and octal literals are also supported:

julia> 0b10
0x02

julia> typeof(ans)
UInt8

julia> 0010
0x08

julia> typeof(ans)
UInt8
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The minimum and maximum representable values of primitive numeric types such as integers are given by the type-
min() and typemax() functions:

julia> (typemin(Int32), typemax(Int32))
(-2147483648, 2147483647)

julia> for T in [Int8,Int16,Int32,Int64,Int128,UInt8,UInt16,UInt32,UInt64,UInt128]
println("$(1lpad(T,7)): [$(typemin(T)),S$(typemax(T))]")

UInt64:
UInt128:

0,18446744073709551615]
0,340282366920938463463374607431768211455]

end
Int8: [-128,127]
Int16: [-32768,32767]
Int32: [-2147483648,2147483647]
Int64: [-9223372036854775808,9223372036854775807]
Int128: [-170141183460469231731687303715884105728,1706141183460469231731687303715884105727]
UInt8: [@,255]
UInt16: [0,65535]
UInt32: [@,4294967295]
[
[

The values returned by typemin() and typemax() are always of the given argument type. (The above expression
uses several features we have yet to introduce, including for loops, Strings, and Interpolation, but should be easy
enough to understand for users with some existing programming experience.)

Overflow behavior

In Julia, exceeding the maximum representable value of a given type results in a wraparound behavior:

julia> x = typemax(Int64)
9223372036854775807

julia> x + 1
-9223372036854775808

julia> x + 1 == typemin(Inté64)
true

Thus, arithmetic with Julia integers is actually a form of modular arithmetic. This reflects the characteristics of the
underlying arithmetic of integers as implemented on modern computers. In applications where overflow is possible,
explicit checking for wraparound produced by overflow is essential; otherwise, the BigInt type in Arbitrary Precision
Arithmetic is recommended instead.

Division errors

Integer division (the div function) has two exceptional cases: dividing by zero, and dividing the lowest negative number
(typemin()) by -1. Both of these cases throw a DivideError. The remainder and modulus functions (rem and mod)
throw a DivideError when their second argument is zero.

7.2 Floating-Point Numbers

Literal floating-point numbers are represented in the standard formats:
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julia> 1.0
1.0

julia> 1.
1.0

julia> 0.5
0.5

julia> .5
0.5

julia> -1.23
-1.23

julia> 1e10
1.0e10

julia> 2.5e-4
0.00025

The above results are all Float64 values. Literal Float32 values can be entered by writing an f in place of e:

julia> 0.5f0
0.5f0

julia> typeof(ans)
Float32

julia> 2.5f-4
0.00025f0

Values can be converted to Float32 easily:

julia> Float32(-1.5)
-1.5fe@

julia> typeof(ans)
Float32

Hexadecimal floating-point literals are also valid, but only as Float64 values:

julia> 0x1p@
1.0

julia> 0x1.8p3
12.0

julia> Ox.4p-1
0.125

julia> typeof(ans)
Float64

27
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Half-precision floating-point numbers are also supported (Float16), but they are implemented in software and use
Float32 for calculations.

julia> sizeof(Float16(4.))
2

julia> 2*Float16(4.)
Float16(8.0)

The underscore _ can be used as digit separator:

julia> 10_000, 0.000_000_005, Oxdead_beef, 0b1011_0010
(10000, 5.0e-9, Oxdeadbeef, Bxb2)

Floating-point zero

Floating-point numbers have two zeros, positive zero and negative zero. They are equal to each other but have dif-
ferent binary representations, as can be seen using the bits function: :

julia> 0.0 == -0.0
true

julia> bits(0.0)
"0000000000000000000000000000000000000000000000000000000000000000"

julia> bits(-0.0)
"1000000000000000000000000000000000000000000000000000000000000000"

Special floating-point values

There are three specified standard floating-point values that do not correspond to any point on the real number line:

Float16 | Float32 | Float64 | Name Description
Inf16 Inf32 Inf positive infinity | a value greater than all finite floating-point values
-Inf16 -Inf32 -Inf negative a value less than all finite floating-point values
infinity
NaN16 NaN32 NaN not a number a value not == to any floating-point value (including
itself)

For further discussion of how these non-finite floating-point values are ordered with respect to each other and other
floats, see Numeric Comparisons. By the IEEE 754 standard, these floating-point values are the results of certain
arithmetic operations:

julia> 1/Inf
0.0

julia> 1/0
Inf

julia> -5/0
-Inf
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julia> 0.000001/0
Inf

julia> 0/0
NaN

julia> 5600 + Inf
Inf

julia> 5600 - Inf
-Inf

julia> Inf + Inf
Inf

julia> Inf - Inf
NaN

julia> Inf * Inf
Inf

julia> Inf / Inf
NaN

julia> 0 * Inf
NaN

The typemin() and typemax () functions also apply to floating-point types:

julia> (typemin(Float16), typemax(Float16))
(-Inf16, Inf16)

julia> (typemin(Float32),typemax(Float32))
(-Inf32, Inf32)

julia> (typemin(Float64), typemax(Float64))
(-Inf, Inf)

Machine epsilon

Most real numbers cannot be represented exactly with floating-point numbers, and so for many purposes it is important
to know the distance between two adjacent representable floating-point numbers, which is often known as machine
epsilon.

Julia provides eps (), which gives the distance between 1.0 and the next larger representable floating-point value:

julia> eps(Float32)
1.1920929f-7

julia> eps(Float64)
2.220446049250313e-16

julia> eps() # same as eps(Float64)
2.220446049250313e-16
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These values are 2.0%-23 and 2.06*-52 as Float32 and Float64 values, respectively. The eps() function can
also take a floating-point value as an argument, and gives the absolute difference between that value and the next
representable floating point value. That is, eps(x) yields a value of the same type as x such that x + eps(x) is the
next representable floating-point value larger than x:

julia> eps(1.0)
2.220446049250313e-16

julia> eps(1000.)
1.1368683772161603e-13

julia> eps(le-27)
1.793662034335766e-43

julia> eps(0.0)
5.0e-324

The distance between two adjacent representable floating-point numbers is not constant, but is smaller for smaller
values and larger for larger values. In other words, the representable floating-point numbers are densest in the real
number line near zero, and grow sparser exponentially as one moves farther away from zero. By definition, eps(1.0)
is the same as eps(Float64) since 1.0 is a 64-bit floating-point value.

Julia also provides the nextfloat() and prevfloat() functions which return the next largest or smallest repre-
sentable floating-point number to the argument respectively:

julia> x = 1.25f0
1.25f0

julia> nextfloat(x)
1.2500001f0

julia> prevfloat(x)
1.2499999f0

julia> bits(prevfloat(x))
"00111111100111111111111111111111"

julia> bits(x)
"00111111101000000000000000000000"

julia> bits(nextfloat(x))
"00111111101000000000000000000001"

This example highlights the general principle that the adjacent representable floating-point numbers also have adjacent
binary integer representations.
Rounding modes

If a number doesn't have an exact floating-point representation, it must be rounded to an appropriate representable
value, however, if wanted, the manner in which this rounding is done can be changed according to the rounding modes
presented in the IEEE 754 standard.

julia> x = 1.1; y = 0.1;
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julia> x + vy
1.2000000000000002

julia> setrounding(Float64,RoundDown) do

X +y
end

The default mode used is always RoundNearest, which rounds to the nearest representable value, with ties rounded
towards the nearest value with an even least significant bit.

Warning

Rounding is generally only correct for basic arithmetic functions (+(), - (), *(), /() and sqrt()) and
type conversion operations. Many other functions assume the default RoundNearest mode is set, and
can give erroneous results when operating under other rounding modes.

Background and References

Floating-point arithmetic entails many subtleties which can be surprising to users who are unfamiliar with the low-level
implementation details. However, these subtleties are described in detail in most books on scientific computation, and
also in the following references:

7.3

The definitive guide to floating point arithmetic is the IEEE 754-2008 Standard; however, it is not available for
free online.

For a brief but lucid presentation of how floating-point numbers are represented, see John D. Cook’s article
on the subject as well as his introduction to some of the issues arising from how this representation differs in
behavior from the idealized abstraction of real numbers.

Also recommended is Bruce Dawson'’s series of blog posts on floating-point numbers.

For an excellent, in-depth discussion of floating-point numbers and issues of numerical accuracy encountered
when computing with them, see David Goldberg’s paper What Every Computer Scientist Should Know About
Floating-Point Arithmetic.

For even more extensive documentation of the history of, rationale for, and issues with floating-point numbers,
as well as discussion of many other topics in numerical computing, see the collected writings of William Kahan,
commonly known as the "Father of Floating-Point”. Of particular interest may be An Interview with the Old
Man of Floating-Point.

Arbitrary Precision Arithmetic

To allow computations with arbitrary-precision integers and floating point numbers, Julia wraps the GNU Multiple
Precision Arithmetic Library (GMP) and the GNU MPFR Library, respectively. The BigInt and BigFloat types are
available in Julia for arbitrary precision integer and floating point numbers respectively.

Constructors exist to create these types from primitive numerical types, and parse () can be used to construct them
from AbstractStrings. Once created, they participate in arithmetic with all other numeric types thanks to Julia’s
type promotion and conversion mechanism:

julia> BigInt(typemax(Int64)) + 1
9223372036854775808


http://standards.ieee.org/findstds/standard/754-2008.html
https://www.johndcook.com/blog/2009/04/06/anatomy-of-a-floating-point-number/
https://www.johndcook.com/blog/2009/04/06/numbers-are-a-leaky-abstraction/
https://randomascii.wordpress.com/2012/05/20/thats-not-normalthe-performance-of-odd-floats/
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.22.6768&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.22.6768&rep=rep1&type=pdf
https://people.eecs.berkeley.edu/{~}wkahan/
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https://people.eecs.berkeley.edu/{~}wkahan/ieee754status/754story.html
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http://www.mpfr.org
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julia> parse(BigInt, "123456789012345678901234567890") + 1
123456789012345678901234567891

julia> parse(BigFloat, "1.23456789012345678901")
1.234567890123456789010000000000000000000000000000000000000000000000000000000004

julia> BigFloat(2.0%66) / 3
2.459565876494606882133333333333333333333333333333333333333333333333333333333344e+19

julia> factorial(BigInt(40))
815915283247897734345611269596115894272000000000

However, type promotion between the primitive types above and BigInt/BigFloat is not automatic and must be
explicitly stated.

julia> x = typemin(Int64)
-9223372036854775808

julia> x = x - 1
9223372036854775807

julia> typeof(x)
Int64

julia> y = BigInt(typemin(Int64))
-9223372036854775808

julia> y =y - 1
-9223372036854775809

julia> typeof(y)
BigInt

The default precision (in number of bits of the significand) and rounding mode of BigFloat operations can be changed
globally by calling setprecision() and setrounding(), and all further calculations will take these changes in ac-
count. Alternatively, the precision or the rounding can be changed only within the execution of a particular block of
code by using the same functions with a do block:

julia> setrounding(BigFloat, RoundUp) do
BigFloat(1) + parse(BigFloat, "0.1")
end
1.100000000000000000000000000000000000000000000000000000000000000VBVOBOOVOBB3

julia> setrounding(BigFloat, RoundDown) do
BigFloat(1) + parse(BigFloat, "0.1")
end
1.099999999999999999999999999999999999999999999999999999999999999999999999999986

julia> setprecision(40) do
BigFloat(1) + parse(BigFloat, "0.1")
end
1.1000000000004
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7.4 Numeric Literal Coefficients

To make common numeric formulas and expressions clearer, Julia allows variables to be immediately preceded by a
numeric literal, implying multiplication. This makes writing polynomial expressions much cleaner:

julia> x = 3

3

julia> 2x%2 - 3x + 1
10

julia> 1.5x"*2 - .5x + 1
13.0
It also makes writing exponential functions more elegant:

julia> 242x
64

The precedence of numeric literal coefficients is the same as that of unary operators such as negation. So 243x is
parsed as 24 (3x), and 2x*3 is parsed as 2*(x"3).

Numeric literals also work as coefficients to parenthesized expressions:

julia> 2(x-1)%2 - 3(x-1) + 1
3

Additionally, parenthesized expressions can be used as coefficients to variables, implying multiplication of the expres-
sion by the variable:

julia> (x-1)x
6

Neither juxtaposition of two parenthesized expressions, nor placing a variable before a parenthesized expression,
however, can be used to imply multiplication:

julia> (x-1)(x+1)
ERROR: MethodError: objects of type Int64 are not callable

julia> x(x+1)
ERROR: MethodError: objects of type Int64 are not callable

Both expressions are interpreted as function application: any expression that is not a numeric literal, when immediately
followed by a parenthetical, is interpreted as a function applied to the values in parentheses (see Functions for more
about functions). Thus, in both of these cases, an error occurs since the left-hand value is not a function.

The above syntactic enhancements significantly reduce the visual noise incurred when writing common mathematical
formulae. Note that no whitespace may come between a numeric literal coefficient and the identifier or parenthesized
expression which it multiplies.

Syntax Conflicts

Juxtaposed literal coefficient syntax may conflict with two numeric literal syntaxes: hexadecimal integer literals and
engineering notation for floating-point literals. Here are some situations where syntactic conflicts arise:

o The hexadecimal integer literal expression 8xff could be interpreted as the numeric literal 8 multiplied by the
variable xff.
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e The floating-point literal expression 1e10 could be interpreted as the numeric literal 1 multiplied by the variable
€10, and similarly with the equivalent E form.

In both cases, we resolve the ambiguity in favor of interpretation as a numeric literals:

o Expressions starting with 8x are always hexadecimal literals.

e Expressions starting with a numeric literal followed by e or E are always floating-point literals.

7.5 Literal zero and one

Julia provides functions which return literal O and 1 corresponding to a specified type or the type of a given variable.

Function | Description
zero(x) | Literal zero of type x or type of variable x
one(x) Literal one of type x or type of variable x

These functions are useful in Numeric Comparisons to avoid overhead from unnecessary type conversion.

Examples:

julia> zero(Float32)
0.0f0

julia> zero(1.0)
0.0

julia> one(Int32)
1

julia> one(BigFloat)
1.000000000000000000000000000000000000000000000VVBVOOVVVVOOBVOVBVNBOBLNBBOAO




Chapter 8

Mathematical Operations and Elementary Functions

Julia provides a complete collection of basic arithmetic and bitwise operators across all of its numeric primitive types,
as well as providing portable, efficient implementations of a comprehensive collection of standard mathematical func-
tions.

8.1 Arithmetic Operators

The following arithmetic operators are supported on all primitive numeric types:

Expression | Name Description

+X unary plus the identity operation

-X unary minus maps values to their additive inverses
X +y binary plus performs addition

X -y binary minus performs subtraction

X *y times performs multiplication

x/y divide performs division

x\y inverse divide | equivalenttoy / x

X ANy power raises x to the yth power

X%y remainder equivalent to rem(x,y)

as well as the negation on Bool types:

Expression | Name Description
Ix negation | changes true to false and vice versa

Julia’s promotion system makes arithmetic operations on mixtures of argument types "just work” naturally and auto-
matically. See Conversion and Promotion for details of the promotion system.

Here are some simple examples using arithmetic operators:

julia> 1 + 2 + 3
6

julia> 1 - 2
-1

julia> 3%2/12
0.5

35
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(By convention, we tend to space operators more tightly if they get applied before other nearby operators. Forinstance,
we would generally write -x + 2 to reflect that first x gets negated, and then 2 is added to that result.)

8.2 Bitwise Operators

The following bitwise operators are supported on all primitive integer types:

Expression | Name

~X bitwise not

X &y bitwise and

X |y bitwise or

Xy bitwise xor (exclusive or)
X >>> y logical shift right

X >>y arithmetic shift right

X <<y logical/arithmetic shift left

Here are some examples with bitwise operators:

julia> ~123
-124

julia> 123 & 234
106

julia> 123 | 234
251

julia> 123 234
145

julia> xor (123, 234)
145

julia> ~UInt32(123)
oxffffffg4

julia> ~UInt8(123)
0x84

8.3 Updating operators

Every binary arithmetic and bitwise operator also has an updating version that assigns the result of the operation
back into its left operand. The updating version of the binary operator is formed by placing a = immediately after the
operator. For example, writing x += 3 is equivalent to writing x = x + 3:

julia> x = 1
1

julia> x += 3
4

julia> x
4
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The updating versions of all the binary arithmetic and bitwise operators are:

‘+= -= %= [= \= = %= M= &= |= = >>>= >>= <<=

Note
An updating operator rebinds the variable on the left-hand side. As a result, the type of the variable may

change.

julia> x = 0x01; typeof(x)
UInt8

julia> x *= 2 # Same as x = x * 2
2

julia> typeof(x)
Int64

8.4 Vectorized "dot” operators

For every binary operation like 2, there is a corresponding "dot” operation . * that is automatically defined to perform
A element-by-element on arrays. For example, [1,2,3] * 3 is not defined, since there is no standard mathematical
meaning to "cubing” an array, but [1,2,3] .* 3 is defined as computing the elementwise (or "vectorized”) result
[123, 243, 373]. Similarly for unary operators like ! or v, there is a corresponding .v that applies the operator
elementwise.

julia> [1,2,3] .~ 3
3-element Array{Int64,1}:
1
8
27

More specifically,a .* bisparsedasthe "dot” call (*). (a, b), which performs a broadcast operation: it can combine
arrays and scalars, arrays of the same size (performing the operation elementwise), and even arrays of different shapes
(e.g. combining row and column vectors to produce a matrix). Moreover, like all vectorized "dot calls,” these "dot
operators” are fusing. For example, if you compute 2 .* A.*2 .+ sin.(A) (or equivalently @. 2A*2 + sin(A),
using the @. macro) for an array A, it performs a single loop over A, computing 2a*2 + sin(a) for each element of
A. In particular, nested dot calls like . (g. (x)) are fused, and "adjacent” binary operators like x .+ 3 .* x.*2are
equivalent to nested dot calls (+) . (x, (*).(3, (*).(x, 2))).

Furthermore, "dotted” updating operators like a .+= b (or@. a += b)areparsedasa .= a .+ b,where .=isa
fused in-place assignment operation (see the dot syntax documentation).

Note the dot syntax is also applicable to user-defined operators. For example, if you define (A,B) = kron(A,B)
to give a convenient infix syntax A B for Kronecker products (kron), then [A,B] . [C, D] will compute [AC, BD]
with no additional coding.

8.5 Numeric Comparisons

Standard comparison operations are defined for all the primitive numeric types:

Here are some simple examples:



38 CHAPTER 8. MATHEMATICAL OPERATIONS AND ELEMENTARY FUNCTIONS

Operator | Name

== equality

I=, = inequality

< less than

<=, < less than or equal to

> greater than

>=, > greater than or equal to
julia> 1 == 1

true

julia> 1 == 2
false

julia> 1 !'= 2
true

julia> 1 == 1.0
true

julia> 1 < 2
true

julia> 1.0 > 3
false

julia> 1 >= 1.0
true

julia> -1 <=1
true

julia> -1 <= -1
true

julia> -1 <= -2
false

julia> 3 < -0.5
false

Integers are compared in the standard manner - by comparison of bits. Floating-point numbers are compared according
to the IEEE 754 standard:

o Finite numbers are ordered in the usual manner.

e Positive zero is equal but not greater than negative zero.

e Inf is equal to itself and greater than everything else except NaN.

e -Inf is equal to itself and less then everything else except NaN.

e NaN is not equal to, not less than, and not greater than anything, including itself.


https://en.wikipedia.org/wiki/IEEE_754-2008
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The last point is potentially surprising and thus worth noting:

julia> NaN == NaN
false

julia> NaN != NaN
true

julia> NaN < NaN
false

julia> NaN > NaN
false

and can cause especial headaches with Arrays:

julia> [1 NaN] == [1 NaN]
false

Julia provides additional functions to test numbers for special values, which can be useful in situations like hash key
comparisons:

Function Tests if
isequal(x, y) | xandy areidentical
isfinite(x) x is a finite number
isinf(x) X is infinite
isnan(x) x is not a number

isequal() considers NaNs equal to each other:

julia> isequal(NaN, NaN)
true

julia> isequal([1 NaN], [1 NaN])
true

julia> isequal(NaN, NaN32)
true

isequal() can also be used to distinguish signed zeros:

julia> -0.0 == 0.0
true

julia> isequal(-0.0, 0.0)
false

Mixed-type comparisons between signed integers, unsigned integers, and floats can be tricky. A great deal of care has
been taken to ensure that Julia does them correctly.

For other types, isequal() defaults to calling ==( ), so if you want to define equality for your own types then you
only need to add a ==( ) method. If you define your own equality function, you should probably define a corresponding
hash() method to ensure that isequal(x,y) implies hash(x) == hash(y).
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Chaining comparisons

Unlike most languages, with the notable exception of Python, comparisons can be arbitrarily chained:

julia> 1 < 2 <=2 <3 ==3>2>=17==1<31!=5
true

Chaining comparisons is often quite convenient in numerical code. Chained comparisons use the && operator for scalar
comparisons, and the & operator for elementwise comparisons, which allows them to work on arrays. For example, 0
.< A .< 1 gives a boolean array whose entries are true where the corresponding elements of A are between 0 and
1.

Note the evaluation behavior of chained comparisons:

julia> v(x) = (println(x); x)
v (generic function with 1 method)

julia> v(1) < v(2) <= v(3)
2

1

3

true

julia> v(1) > v(2) <= v(3)
2

1

false

The middle expression is only evaluated once, rather than twice as it would be if the expression were written as v (1)
< v(2) && v(2) <= v(3). However, the order of evaluations in a chained comparison is undefined. It is strongly
recommended not to use expressions with side effects (such as printing) in chained comparisons. If side effects are
required, the short-circuit && operator should be used explicitly (see Short-Circuit Evaluation).

Elementary Functions

Julia provides a comprehensive collection of mathematical functions and operators. These mathematical operations
are defined over as broad a class of numerical values as permit sensible definitions, including integers, floating-point
numbers, rationals, and complex numbers, wherever such definitions make sense.

Moreover, these functions (like any Julia function) can be applied in "vectorized” fashion to arrays and other collections
with the dot syntax f. (A), e.g. sin. (A) will compute the sine of each element of an array A.

8.6 Operator Precedence

Julia applies the following order of operations, from highest precedence to lowest:
For a complete list of every Julia operator’s precedence, see the top of this file: src/julia-parser.scm

You can also find the numerical precedence for any given operator via the built-in function Base.operator_prece-
dence, where higher numbers take precedence:

julia> Base.operator_precedence(:+), Base.operator_precedence(:*), Base.operator_precedence(:.)
(9, 11, 15)


https://en.wikipedia.org/wiki/Python_syntax_and_semantics#Comparison_operators
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Category Operators

Syntax . followed by ::

Exponentiation | #

Fractions //

Multiplication * / % &\

Bitshifts << >> >>>

Addition + -

Syntax : .. followed by |>
Comparisons > < >= <= == === l= l== <
Control flow && followed by | | followed by ?
Assignments = 4= -= %= /= [[/= \= A= = %= |= &= = <<= >>= >>>=

julia> Base.operator_precedence(:+=), Base.operator_precedence(:(=)) # (Note the necessary parens
— on ‘:(=)")

(1, 1)

8.7 Numerical Conversions

Julia supports three forms of numerical conversion, which differ in their handling of inexact conversions.

e The notation T(x) or convert(T, x) converts x to a value of type T.

- If T is a floating-point type, the result is the nearest representable value, which could be positive or
negative infinity.

- If Tis an integer type, an InexactError is raised if x is not representable by T.

e x % T converts an integer x to a value of integer type T congruent to x modulo 24n, where n is the number of
bits in T. In other words, the binary representation is truncated to fit.

e The Rounding functions take a type T as an optional argument. For example, round (Int, x) is a shorthand for
Int(round(x)).

The following examples show the different forms.

julia> Int8(127)
127

julia> Int8(128)
ERROR: InexactError()
Stacktrace:
[1] Int8(::Int64) at ./sysimg.jl:24

julia> Int8(127.0)
127

julia> Int8(3.14)

ERROR: InexactError()

Stacktrace:

[1] convert(::Type{Int8}, ::Float64) at ./float.jl:658
[2] Int8(::Float64) at ./sysimg.jl:24
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julia> Int8(128.0)

ERROR: InexactError()

Stacktrace:
[1] convert(::Type{Int8}, ::Float64) at ./float.jl:658
[2] Int8(::Float64) at ./sysimg.jl:24

julia> 127 % Int8
127

julia> 128 % Int8
-128

julia> round(Int8,127.4)
127

julia> round(Int8,127.6)

ERROR: InexactError()

Stacktrace:

[1] trunc(::Type{Int8}, ::Float64) at ./float.jl:651
[2] round(::Type{Int8}, ::Float64) at ./float.jl:337

See Conversion and Promotion for how to define your own conversions and promotions.

Rounding functions

Function Description Return type
round(x) round x to the nearest integer | typeof(x)
round(T, x) | round x to the nearest integer | T
floor(x) round x towards -Inf typeof (x)
floor (T, x) | round x towards -Inf T
ceil(x) round x towards +Inf typeof(x)
ceil(T, x) round x towards +Inf T
trunc(x) round x towards zero typeof(x)
trunc(T, x) | round x towards zero T

Division functions
Sign and absolute value functions

Powers, logs and roots

For an overview of why functions like hypot (), expm1(),and 1log1p() are necessary and useful, see John D. Cook’s
excellent pair of blog posts on the subject: expm1, loglp, erfc, and hypot.

Trigonometric and hyperbolic functions
All the standard trigonometric and hyperbolic functions are also defined:

sin cos tan cot sec csc
sinh cosh tanh coth sech csch
asin acos atan acot asec acsc
asinh acosh atanh acoth asech acsch
sinc cosc atan2


https://www.johndcook.com/blog/2010/06/07/math-library-functions-that-seem-unnecessary/
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8.7. NUMERICAL CONVERSIONS 43

Function Description

div(x,y) truncated division; quotient rounded towards zero

fld(x,y) floored division; quotient rounded towards -Inf

cld(x,y) ceiling division; quotient rounded towards +Inf

rem(x,y) remainder; satisfies x == div(x,y)*y + rem(x,Yy); sign matches x

mod(x,Yy) modulus; satisfies x == fld(x,y)*y + mod(x,y);sign matchesy

mod1(x,y) mod () with offset 1; returns r (0, y] fory>0 or r[y, 8) for y<0, where mod(r, y) ==
mod(x, y)

mod2pi(x) modulus with respect to 2pi; 8 <= mod2pi(x) < 2pi

di- returns (div(x,y), rem(x,y))

vrem(x,y)

fld- returns (f1d(x,y),mod(x,y))

mod(Xx,Yy)

gcd(x,y...) | greatest positive common divisor of x, y,...
lem(x,y...) | least positive common multiple of x, v,...

Function Description

abs(x) a positive value with the magnitude of x

abs2(x) the squared magnitude of x

sign(x) indicates the sign of x, returning -1, 0, or +1
signbit(x) indicates whether the sign bit is on (true) or off (false)
copysign(x,y) | avalue with the magnitude of x and the sign of y
flipsign(x,y) | avalue with the magnitude of x and the sign of x*y

Function Description

sqrt(x), vx square root of x

cbrt(x), x cube root of x

hypot(x,y) hypotenuse of right-angled triangle with other sides of length x and y
exp(x) natural exponential function at x

expm1(x) accurate exp (x)-1 for x near zero

ldexp(x,n) x*2An computed efficiently for integer values of n

log(x) natural logarithm of x

log(b, x) base b logarithm of x

log2(x) base 2 logarithm of x

log10(x) base 10 logarithm of x

log1p(x) accurate log(1+x) for x near zero

exponent(x) binary exponent of x

significand(x) | binary significand (a.k.a. mantissa) of a floating-point number x

These are all single-argument functions, with the exception of atan2, which gives the angle in radians between the
x-axis and the point specified by its arguments, interpreted as x and y coordinates.

Additionally, sinpi(x) and cospi(x) are provided for more accurate computations of sin(pi*x) and cos(pi*x)
respectively.

In order to compute trigonometric functions with degrees instead of radians, suffix the function with d. For example,
sind(x) computes the sine of x where x is specified in degrees. The complete list of trigonometric functions with
degree variants is:

sind cosd tand cotd secd cscd
asind acosd atand acotd asecd acscd


https://en.wikipedia.org/wiki/Atan2
https://en.wikipedia.org/wiki/Radian
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Special functions

Function Description

gamma (x) gamma function at x

lgamma(x) accurate log(gamma(x)) for large x

1fact(x) accurate log(factorial(x)) for large x; same as 1gamma(x+1) for x > 1, zero otherwise
beta(x,y) beta function at x, y

lbeta(x,y) | accurate log(beta(x,y)) forlarge x ory



https://en.wikipedia.org/wiki/Gamma_function
https://en.wikipedia.org/wiki/Beta_function

Chapter 9

Complex and Rational Numbers

Julia ships with predefined types representing both complex and rational numbers, and supports all standard Mathe-
matical Operations and Elementary Functions on them. Conversion and Promotion are defined so that operations on
any combination of predefined numeric types, whether primitive or composite, behave as expected.

9.1 Complex Numbers

The global constant im is bound to the complex number i, representing the principal square root of -1. It was deemed
harmful to co-opt the name i for a global constant, since it is such a popular index variable name. Since Julia allows
numeric literals to be juxtaposed with identifiers as coefficients, this binding suffices to provide convenient syntax for
complex numbers, similar to the traditional mathematical notation:

julia> 1 + 2im
1 + 2im

You can perform all the standard arithmetic operations with complex numbers:

julia> (1 + 2im)*(2 - 3im)
8 + 1im

julia> (1 + 2im)/(1 - 2im)
-0.6 + 0.8im

julia> (1 + 2im) + (1 - 2im)
2 + 0im

julia> (-3 + 2im) - (5 - 1im)
-8 + 3im

julia> (-1 + 2im)"2
-3 - 4im

julia> (-1 + 2im)*2.5
2.7296244647840084 - 6.9606644595718981im

julia> (-1 + 2im)"*(1 + 1im)
-0.27910381075826657 + 0.087080534141024281im

julia> 3(2 - 5im)

45
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6 - 15im

julia> 3(2 - 5im)*2
-63 - 60im

julia> 3(2 - 5im)*-1.0
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0.20689655172413796 + 0.51724137931034491im

The promotion mechanism ensures that combinations of operands of different types just work:

julia> 2(1 - 1im)
2 - 2im

julia> (2 + 3im) - 1
1 + 3im

julia> (1 + 2im) + 0.5
1.5 + 2.0im

julia> (2 + 3im) - 0.5im
2.0 + 2.5im

julia> 0.75(1 + 2im)
0.75 + 1.5im

julia> (2 + 3im) / 2
1.0 + 1.5im

julia> (1 - 3im) / (2 + 2im)
-0.5 - 1.0im

julia> 2im”2
-2 + 0@im

julia> 1 + 3/4im
1.0 - 0.75im

Note that 3/4im == 3/(4%im) ==

-(3/4%1im), since a literal coefficient binds more tightly than division.

Standard functions to manipulate complex values are provided:

julia> z = 1 + 2im
1 + 2im

julia> real(1 + 2im) # real part of z

1

julia> imag(1 + 2im) # imaginary part of z

2

julia> conj(1 + 2im) # complex conjugate of z

1 - 2im

julia> abs(1 + 2im) # absolute value of z

2.23606797749979
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julia> abs2(1 + 2im) # squared absolute value
5

julia> angle(1 + 2im) # phase angle in radians
1.1071487177940904

As usual, the absolute value (abs()) of a complex number is its distance from zero. abs2() gives the square of the
absolute value, and is of particular use for complex numbers where it avoids taking a square root. angle() returns
the phase angle in radians (also known as the argument or arg function). The full gamut of other Elementary Functions
is also defined for complex numbers:

julia> sqrt(1im)
0.7071067811865476 + 0.70710678118654751m

julia> sqrt(1 + 2im)
1.272019649514069 + 0.78615137775742331im

julia> cos(1 + 2im)
2.0327230070196656 - 3.05189779915181im

julia> exp(1 + 2im)
-1.1312043837568135 + 2.47172667200481881im

julia> sinh(1 + 2im)
-0.4890562590412937 + 1.40311925062204051m

Note that mathematical functions typically return real values when applied to real numbers and complex values when
applied to complex numbers. For example, sqrt () behaves differently when applied to -1 versus -1 + 0im even
though -1 == -1 + @im:

julia> sqrt(-1)
ERROR: DomainError:
sqrt will only return a complex result if called with a complex argument. Try sqrt(complex(x)).
Stacktrace:
[1] sqrt(::Int64) at ./math.jl:434

julia> sqrt(-1 + 0im)
0.0 + 1.0im

The literal numeric coefficient notation does not work when constructing a complex number from variables. Instead,
the multiplication must be explicitly written out:

julia> a = 1; b = 2; a + b*im
1 + 2im

However, this is not recommended; Use the complex () function instead to construct a complex value directly from
its real and imaginary parts:

julia> a = 1; b = 2; complex(a, b)
1 + 2im
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This construction avoids the multiplication and addition operations.

Inf and NaN propagate through complex numbers in the real and imaginary parts of a complex number as described
in the Special floating-point values section:

julia> 1 + Infxim
1.0 + Infxim

julia> 1 + NaNxim
1.0 + NaNxim

9.2 Rational Numbers

Julia has a rational number type to represent exact ratios of integers. Rationals are constructed using the // operator:

julia> 2//3
2//3

If the numerator and denominator of a rational have common factors, they are reduced to lowest terms such that the
denominator is non-negative:

julia> 6//9
2//3

julia> -4//8
-1//2

julia> 5//-15
-1//3

julia> -4//-12
1//3

This normalized form for a ratio of integers is unique, so equality of rational values can be tested by checking for
equality of the numerator and denominator. The standardized numerator and denominator of a rational value can be
extracted using the numerator () and denominator () functions:

julia> numerator(2//3)
2

julia> denominator(2//3)
3

Direct comparison of the numerator and denominator is generally not necessary, since the standard arithmetic and
comparison operations are defined for rational values:

julia> 2//3 == 6//9
true

julia> 2//3 == 9//27
false
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julia> 3//7 < 1//2
true

julia> 3//4 > 2//3
true

julia> 2//4 + 1//6
2//3

julia> 5//12 - 1//4
1/1/6

julia> 5//8 = 3//12
5//32

julia> 6//5 / 10//7
2171725

Rationals can be easily converted to floating-point numbers:

julia> float(3//4)
0.75
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Conversion from rational to floating-point respects the following identity for any integral values of a and b, with the

exception of thecasea == Bandb == @:

julia> a = 1; b = 2;

julia> isequal(float(a//b), a/b)
true

Constructing infinite rational values is acceptable:

julia> 5//0
1//0

julia> -3//0
-1//0

julia> typeof(ans)
Rational{Int64}

Trying to construct a NaN rational value, however, is not:

julia> 0//0
ERROR: ArgumentError: invalid rational: zero(Int64)//zero(Int64)
Stacktrace:

[1] Rational{Int64}(::Int64, ::Int64) at ./rational.jl:13

[2] //(::Int64, ::Int64) at ./rational.jl:40

As usual, the promotion system makes interactions with other numeric types effortless:



50

julia> 3//5 + 1
8//5

julia> 3//5 - 0.5
0.09999999999999998

julia> 2//7 * (1 + 2im)
2//7 + 4//7*im

julia> 2//7 * (1.5 + 2im)
0.42857142857142855 + 0.5714285714285714im

julia> 3//2 / (1 + 2im)
3//10 - 3//5%im

julia> 1//2 + 2im
1//2 + 2//1%im

julia> 1 + 2//3im
1//1 - 2//3*im

julia> 0.5 == 1//2
true

julia> ©0.33 == 1//3
false

julia> ©.33 < 1//3
true

julia> 1//3 - 0.33
0.0033333333333332993
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Chapter 10

Strings

Strings are finite sequences of characters. Of course, the real trouble comes when one asks what a character is. The
characters that English speakers are familiar with are the letters A, B, C, etc., together with numerals and common
punctuation symbols. These characters are standardized together with a mapping to integer values between 0 and
127 by the ASCII standard. There are, of course, many other characters used in non-English languages, including
variants of the ASCII characters with accents and other modifications, related scripts such as Cyrillic and Greek, and
scripts completely unrelated to ASCIl and English, including Arabic, Chinese, Hebrew, Hindi, Japanese, and Korean. The
Unicode standard tackles the complexities of what exactly a character is, and is generally accepted as the definitive
standard addressing this problem. Depending on your needs, you can either ignore these complexities entirely and
just pretend that only ASCII characters exist, or you can write code that can handle any of the characters or encodings
that one may encounter when handling non-ASCII text. Julia makes dealing with plain ASCII text simple and efficient,
and handling Unicode is as simple and efficient as possible. In particular, you can write C-style string code to process
ASCII strings, and they will work as expected, both in terms of performance and semantics. If such code encounters
non-ASCII text, it will gracefully fail with a clear error message, rather than silently introducing corrupt results. When
this happens, modifying the code to handle non-ASCII data is straightforward.

There are a few noteworthy high-level features about Julia’s strings:

e The built-in concrete type used for strings (and string literals) in Julia is String. This supports the full range of
Unicode characters via the UTF-8 encoding. (A transcode () function is provided to convert to/from other
Unicode encodings.)

o All string types are subtypes of the abstract type AbstractString, and external packages define additional
AbstractString subtypes (e.g. for other encodings). If you define a function expecting a string argument,
you should declare the type as AbstractString in order to accept any string type.

e Like C and Java, but unlike most dynamic languages, Julia has a first-class type representing a single character,
called Char. This is just a special kind of 32-bit primitive type whose numeric value represents a Unicode code
point.

e Asin Java, strings are immutable: the value of an AbstractString object cannot be changed. To construct a
different string value, you construct a new string from parts of other strings.

e Conceptually, a string is a partial function from indices to characters: for some index values, no character value
is returned, and instead an exception is thrown. This allows for efficient indexing into strings by the byte index
of an encoded representation rather than by a character index, which cannot be implemented both efficiently
and simply for variable-width encodings of Unicode strings.
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10.1 Characters

A Char value represents a single character: it is just a 32-bit primitive type with a special literal representation and
appropriate arithmetic behaviors, whose numeric value is interpreted as a Unicode code point. Here is how Char
values are input and shown:

julia> 'x'

"x': ASCII/Unicode U+B078 (category L1l: Letter, lowercase)

julia> typeof(ans)
Char

You can convert a Char to its integer value, i.e. code point, easily:

julia> Int('x")
120

julia> typeof(ans)
Int64

On 32-bit architectures, typeof (ans) will be Int32. You can convert an integer value back to a Char just as easily:

julia> Char(120)
"x': ASCII/Unicode U+0078 (category L1l: Letter, lowercase)

Not all integer values are valid Unicode code points, but for performance, the Char () conversion does not check that
every character value is valid. If you want to check that each converted value is a valid code point, use the isvalid()
function:

julia> Char(0x110000)
'\U110000"' : Unicode U+110000 (category Cn: Other, not assigned)

julia> isvalid(Char, 0x110000)
false

As of this writing, the valid Unicode code points are U+80 through U+d7ff and U+e800 through U+18ffff. These
have not all been assigned intelligible meanings yet, nor are they necessarily interpretable by applications, but all of
these values are considered to be valid Unicode characters.

You can input any Unicode character in single quotes using \u followed by up to four hexadecimal digits or \U followed
by up to eight hexadecimal digits (the longest valid value only requires six):

julia> "\u@'
"\@': ASCII/Unicode U+0000 (category Cc: Other, control)

julia> '\u78’
"x': ASCII/Unicode U+0078 (category L1l: Letter, lowercase)

julia> '\u2200'
"': Unicode U+2200 (category Sm: Symbol, math)

julia> '"\UTGBffff’
"\U1effff': Unicode U+10ffff (category Cn: Other, not assigned)
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Julia uses your system'’s locale and language settings to determine which characters can be printed as-is and which
must be output using the generic, escaped \u or \U input forms. In addition to these Unicode escape forms, all of C’s
traditional escaped input forms can also be used:

julia> Int('\0')
(4]

julia> Int('\t')
9

julia> Int('\n')
10

julia> Int('\e')
27

julia> Int('\x7f")
127

julia> Int('\177")
127

julia> Int('\xff")
255

You can do comparisons and a limited amount of arithmetic with Char values:
julia> 'A' < 'a
true

julia> 'A' <= 'a' <= 'Z'
false

julia> 'A' <= 'X' <= 'Z'
true

julia> 'x' - 'a
23

julia> 'A" + 1
'B': ASCII/Unicode U+0042 (category Lu: Letter, uppercase)

10.2 String Basics

String literals are delimited by double quotes or triple double quotes:

julia> str = "Hello, world.\n"
"Hello, world.\n"

W

julia> """Contains "quote" characters
"Contains \"quote\" characters"

If you want to extract a character from a string, you index into it:


https://en.wikipedia.org/wiki/C_syntax#Backslash_escapes
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julia> str[1]
'"H': ASCII/Unicode U+08048 (category Lu: Letter, uppercase)

julia> str[6]

,' 1 ASCII/Unicode U+0802c (category Po: Punctuation, other)

julia> str[end]
"\n': ASCII/Unicode U+0@0a (category Cc: Other, control)

All indexing in Julia is 1-based: the first element of any integer-indexed object is found at index 1. (As we will see
below, this does not necessarily mean that the last element is found at index n, where n is the length of the string.)

In any indexing expression, the keyword end can be used as a shorthand for the last index (computed by endof (str)).
You can perform arithmetic and other operations with end, just like a normal value:

julia> str[end-1]
".': ASCII/Unicode U+002e (category Po: Punctuation, other)

julia> str[end=2]
' ': ASCII/Unicode U+0020 (category Zs: Separator, space)

Using an index less than 1 or greater than end raises an error:

julia> str[0]
ERROR: BoundsError: attempt to access "Hello, world.\n"
at index [@]

[...]

julia> str[end+1]

ERROR: BoundsError: attempt to access "Hello, world.\n"
at index [15]

[...]

You can also extract a substring using range indexing:

julia> str[4:9]
"lo, wo"

Notice that the expressions str[k] and str[k:k] do not give the same result:

julia> str[6]

,': ASCII/Unicode U+002c (category Po: Punctuation, other)

julia> str[6:6]

The former is a single character value of type Char, while the latter is a string value that happens to contain only a
single character. In Julia these are very different things.

10.3 Unicode and UTF-8

Julia fully supports Unicode characters and strings. As discussed above, in character literals, Unicode code points can
be represented using Unicode \u and \U escape sequences, as well as all the standard C escape sequences. These can
likewise be used to write string literals:

julia> s = "\u2200 x \u2203 y"

Xy
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Whether these Unicode characters are displayed as escapes or shown as special characters depends on your terminal’s
locale settings and its support for Unicode. String literals are encoded using the UTF-8 encoding. UTF-8 is a variable-
width encoding, meaning that not all characters are encoded in the same number of bytes. In UTF-8, ASCII characters
- i.e. those with code points less than 0x80 (128) - are encoded as they are in ASCII, using a single byte, while code
points Ox80 and above are encoded using multiple bytes - up to four per character. This means that not every byte
index into a UTF-8 string is necessarily a valid index for a character. If you index into a string at such an invalid byte
index, an error is thrown:

julia> s[1]
'': Unicode U+2200 (category Sm: Symbol, math)

julia> s[2]
ERROR: UnicodeError: invalid character index

[...]

julia> s[3]
ERROR: UnicodeError: invalid character index

[...]

julia> s[4]
': ASCII/Unicode U+0020 (category Zs: Separator, space)

In this case, the character is a three-byte character, so the indices 2 and 3 are invalid and the next character’s index is
4, this next valid index can be computed by nextind(s, 1), and the next index after that by nextind(s, 4) and so
on.

Because of variable-length encodings, the number of characters in a string (given by length(s)) is not always the
same as the last index. If you iterate through the indices 1 through endof(s) and index into s, the sequence of
characters returned when errors aren’t thrown is the sequence of characters comprising the string s. Thus we have
the identity that length(s) <= endof(s), since each character in a string must have its own index. The following
is an inefficient and verbose way to iterate through the characters of s:

julia> for i = 1:endof(s)

try

println(s[i])
catch

# ignore the index error
end

end

The blank lines actually have spaces on them. Fortunately, the above awkward idiom is unnecessary for iterating
through the characters in a string, since you can just use the string as an iterable object, no exception handling required:

julia> for c in s
println(c)
end
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Julia uses the UTF-8 encoding by default, and support for new encodings can be added by packages. For example,
the LegacyStrings.jl package implements UTF16String and UTF32String types. Additional discussion of other en-
codings and how to implement support for them is beyond the scope of this document for the time being. For further
discussion of UTF-8 encoding issues, see the section below on byte array literals. The transcode () function is pro-
vided to convert data between the various UTF-xx encodings, primarily for working with external data and libraries.

10.4 Concatenation

One of the most common and useful string operations is concatenation:

julia> greet = "Hello"

"Hello"

julia> whom = "world"

"world"

julia> string(greet, ", ", whom, ".\n")
"Hello, world.\n"

Julia also provides * for string concatenation:

* whom * ".\n"

" "
’

julia> greet *
"Hello, world.\n"

While * may seem like a surprising choice to users of languages that provide + for string concatenation, this use of *
has precedent in mathematics, particularly in abstract algebra.

In mathematics, + usually denotes a commutative operation, where the order of the operands does not matter. An
example of this is matrix addition, where A + B == B + A for any matrices A and B that have the same shape. In
contrast, * typically denotes a noncommutative operation, where the order of the operands does matter. An example
of this is matrix multiplication, where in general A * B !'= B * A. As with matrix multiplication, string concatena-
tion is noncommutative: greet * whom != whom * greet. As such, * is a more natural choice for an infix string
concatenation operator, consistent with common mathematical use.

More precisely, the set of all finite-length strings S together with the string concatenation operator * forms a free
monoid (S, *). The identity element of this set is the empty string, "". Whenever a free monoid is not commutative,
the operation is typically represented as \cdot, *, or a similar symbol, rather than +, which as stated usually implies
commutativity.

10.5 Interpolation

Constructing strings using concatenation can become a bit cumbersome, however. To reduce the need for these
verbose calls to string() or repeated multiplications, Julia allows interpolation into string literals using $, as in Perl:
julia> "$greet, Swhom.\n"

"Hello, world.\n"

This is more readable and convenient and equivalent to the above string concatenation - the system rewrites this
apparent single string literal into a concatenation of string literals with variables.

The shortest complete expression after the $ is taken as the expression whose value is to be interpolated into the
string. Thus, you can interpolate any expression into a string using parentheses:


https://github.com/JuliaArchive/LegacyStrings.jl
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julia> "1 + 2 = §(1 + 2)"
"1+ 2 = 3"

Both concatenation and string interpolation call string () to convert objects into string form. Most non-AbstractString
objects are converted to strings closely corresponding to how they are entered as literal expressions:

julia> v = [1,2,3]
3-element Array{Int64,1}:
1

2

3

julia> "v: Sv"
"v: [1, 2, 3]"

string() is the identity for AbstractString and Char values, so these are interpolated into strings as themselves,
unquoted and unescaped:

julia> ¢ = 'x'
"x': ASCII/Unicode U+B078 (category L1l: Letter, lowercase)

julia> "hi, Sc"
"hi, x"

To include a literal $ in a string literal, escape it with a backslash:

julia> print("I have \$100 in my account.\n")
I have $100 in my account.

10.6 Triple-Quoted String Literals

When strings are created using triple-quotes (""" ...""") they have some special behavior that can be useful for
creating longer blocks of text. First, if the opening """ is followed by a newline, the newline is stripped from the
resulting string.

‘"””hello””“

is equivalent to

hello"""

but

hello"""

will contain a literal newline at the beginning. Trailing whitespace is left unaltered. They can contain " symbols without
escaping. Triple-quoted strings are also dedented to the level of the least-indented line. This is useful for defining
strings within code that is indented. For example:
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julia> str =
Hello,
world.

Hello,\n world.\n"

In this case the final (empty) line before the closing sets the indentation level.

Note that line breaks in literal strings, whether single- or triple-quoted, result in a newline (LF) character \n in the
string, even if your editor uses a carriage return \ r (CR) or CRLF combination to end lines. To include a CR in a string,
use an explicit escape \r; for example, you can enter the literal string "a CRLF line ending\r\n".

10.7 Common Operations

You can lexicographically compare strings using the standard comparison operators:

julia> "abracadabra" < "xylophone"

true

julia> "abracadabra" == "xylophone"

false

julia> "Hello, world." !'= "Goodbye, world."
true

julia> "1 + 2 =3" == "1 + 2 = §(1 + 2)"
true

You can search for the index of a particular character using the search() function:

julia> search("xylophone", 'x')
]
julia> search("xylophone", 'p')
5
julia> search("xylophone", 'z')
0

You can start the search for a character at a given offset by providing a third argument:

julia> search("xylophone"”, 'o0')

4

julia> search("xylophone"”, 'o', 5)
7

julia> search("xylophone"”, 'o', 8)
0

You can use the contains() function to check if a substring is contained in a string:
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julia> contains("Hello, world.", "world")

true

julia> contains("Xylophon", "o0")

true

julia> contains("Xylophon", "a")

false

julia> contains("Xylophon", 'o0")

ERROR: MethodError: no method matching contains(::String, ::Char)

Closest candidates are:
contains(!Matched: :Function, ::Any, !Matched::Any) at reduce.jl:664
contains(::AbstractString, !Matched::AbstractString) at strings/search.jl:378

The last error is because 'o' is a character literal, and contains() is a generic function that looks for subsequences.
To look for an element in a sequence, you must use in( ) instead.

Two other handy string functions are repeat() and join():

julia> repeat(".:Z:.", 10)

YA AN AT AN A SNV ANV A S SRV A S Y AN

julia> join(["apples", "bananas", "pineapples"], ", ", " and ")
"apples, bananas and pineapples”

Some other useful functions include:

e endof(str) gives the maximal (byte) index that can be used to index into str.
e length(str) the number of charactersin str.
e i = start(str) gives the first valid index at which a character can be found in str (typically 1).

e c, j = next(str,1i) returns next character at or after the index i and the next valid character index follow-
ing that. With start() and endof (), can be used to iterate through the characters in str.

e ind2chr(str, i) gives the number of characters in str up to and including any at index i.

e chr2ind(str, j) gives the index at which the jth character in str occurs.

10.8 Non-Standard String Literals

There are situations when you want to construct a string or use string semantics, but the behavior of the standard string
construct is not quite what is needed. For these kinds of situations, Julia provides non-standard string literals. A non-
standard string literal looks like a regular double-quoted string literal, but is immediately prefixed by an identifier, and
doesn’t behave quite like a normal string literal. Regular expressions, byte array literals and version number literals, as
described below, are some examples of non-standard string literals. Other examples are given in the Metaprogramming
section.
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10.9 Regular Expressions

Julia has Perl-compatible regular expressions (regexes), as provided by the PCRE library. Regular expressions are related
to strings in two ways: the obvious connection is that regular expressions are used to find regular patterns in strings;
the other connection is that regular expressions are themselves input as strings, which are parsed into a state machine
that can be used to efficiently search for patterns in strings. In Julia, regular expressions are input using non-standard
string literals prefixed with various identifiers beginning with r. The most basic regular expression literal without any

options turned on just uses r" .. .":

julia> r""\sx(?:#|8)"
r'Msx(?2:#|$)"

julia> typeof(ans)
Regex

To check if a regex matches a string, use ismatch():

julia> ismatch(r“ \s*(?:#|$)", "not a comment")
false

julia> ismatch(r" \s=(?:#|$)", "# a comment")
true

As one can see here, ismatch () simply returns true or false, indicating whether the given regex matches the string or
not. Commonly, however, one wants to know not just whether a string matched, but also how it matched. To capture
this information about a match, use the match () function instead:

julia> match(r"*\sx(?:#|S)", "not a comment")

julia> match(r""\s*(?:#[S$)", "# a comment")
RegexMatch("#")

If the regular expression does not match the given string, match() returns nothing - a special value that does not
print anything at the interactive prompt. Other than not printing, it is a completely normal value and you can test for
it programmatically:

m = match(r""\sx(?:#|8)", line)
if m === nothing

println("not a comment")
else

println("blank or comment")
end

If a regular expression does match, the value returned by match () is a RegexMatch object. These objects record how
the expression matches, including the substring that the pattern matches and any captured substrings, if there are any.
This example only captures the portion of the substring that matches, but perhaps we want to capture any non-blank
text after the comment character. We could do the following:

julia> m = match(r"*\s*(?:#\s*x(.*?)\sx$|$)", "# a comment ")
RegexMatch("# a comment ", 1="a comment")


http://www.pcre.org/

10.9. REGULAR EXPRESSIONS 61

When calling match (), you have the option to specify an index at which to start the search. For example:

julia> m = match(r"[0-9]", "aaaalaaaa2aaaa3”, 1)
RegexMatch("1")

julia> m = match(r"[0-9]", "aaaalaaaa2aaaa3",6)
RegexMatch("2")

julia> m = match(r"[0-9]", "aaaalaaaa2aaaa3",11)
RegexMatch("3")

You can extract the following info from a RegexMatch object:

e the entire substring matched: m.match
e the captured substrings as an array of strings: m.captures
o the offset at which the whole match begins: m.offset

o the offsets of the captured substrings as a vector: m.offsets

For when a capture doesn’t match, instead of a substring, m. captures contains nothing in that position,andm.off-
sets has a zero offset (recall that indices in Julia are 1-based, so a zero offset into a string is invalid). Here is a pair of
somewhat contrived examples:

julia> m = match(r"(a|b)(c)?(d)", "acd")
RegexMatch("acd", 1="a", 2="c", 3="d")

julia> m.match
"acd”

julia> m.captures
3-element Array{Union{SubString{String}, Void},1}:

a

Cc
g

julia> m.offset
1

julia> m.offsets
3-element Array{Int64,1}:
1

2

3

julia> m = match(r"(a|b)(c)?(d)", "ad")
RegexMatch("ad", 1="a", 2=nothing, 3="d")

julia> m.match
"ad"

julia> m.captures
3-element Array{Union{SubString{String}, Void},1}:

a
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nothing
ngn

julia> m.offset
1

julia> m.offsets
3-element Array{Int64,1}:
1

0

2

It is convenient to have captures returned as an array so that one can use destructuring syntax to bind them to local
variables:

julia> first, second, third = m.captures; first

a

Captures can also be accessed by indexing the RegexMatch object with the number or name of the capture group:

julia> m=match(r"(?<hour>\d+):(?<minute>\d+)","12:45")
RegexMatch("12:45", hour="12", minute="45")

julia> m[ :minute]
ia5

julia> m[2]
v a5n

Captures can be referenced in a substitution string when using replace() by using \n to refer to the nth capture
group and prefixing the subsitution string with s. Capture group O refers to the entire match object. Named capture
groups can be referenced in the substitution with g<groupname>. For example:

julia> replace("first second", r"(\w+) (?<agroup>\w+)", s"\g<agroup> \1")
"second first"

Numbered capture groups can also be referenced as \g<n> for disambiguation, as in:

julia> replace("a", r".", s"\g<0>1")
haqn

You can modify the behavior of regular expressions by some combination of the flags i, m, s, and x after the closing
double quote mark. These flags have the same meaning as they do in Perl, as explained in this excerpt from the perlre
manpage:

i Do case-insensitive pattern matching.

If locale matching rules are in effect, the case map is taken
from the current locale for code points less than 255, and
from Unicode rules for larger code points. However, matches
that would cross the Unicode rules/non-Unicode rules boundary
(ords 255/256) will not succeed.

m Treat string as multiple lines. That is, change "*" and "S$"



http://perldoc.perl.org/perlre.html#Modifiers
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from matching the start or end of the string to matching the
start or end of any line anywhere within the string.
s Treat string as single line. That is, change "." to match any
character whatsoever, even a newline, which normally it would
not match.
Used together, as r""ms, they let the "." match any character
whatsoever, while still allowing "A" and "$" to match,
respectively, just after and just before newlines within the
string.

x  Tells the regular expression parser to ignore most whitespace
that is neither backslashed nor within a character class. You
can use this to break up your regular expression into
(slightly) more readable parts. The '#' character is also
treated as a metacharacter introducing a comment, just as in
ordinary code.

For example, the following regex has all three flags turned on:

julia> r"a+.*b+.%x?dS"ism
r'a+.*b+.%?d$"ims

julia> match(r"a+.*b+.*?2dS"ism, "Goodbye, \nOh, angry, \nBad world\n")

RegexMatch("angry, \nBad world")
Triple-quoted regex strings, of the form r""" .. .""", are also supported (and may be convenient for regular expres-
sions containing quotation marks or newlines).

10.10 Byte Array Literals

Another useful non-standard string literal is the byte-array string literal: b" . . . ". This form lets you use string notation
to express literal byte arrays - i.e. arrays of ULnt8 values. The rules for byte array literals are the following:

e ASCII characters and ASCII escapes produce a single byte.
e \x and octal escape sequences produce the byte corresponding to the escape value.

¢ Unicode escape sequences produce a sequence of bytes encoding that code point in UTF-8.

There is some overlap between these rules since the behavior of \ x and octal escapes less than 0x80 (128) are covered
by both of the first two rules, but here these rules agree. Together, these rules allow one to easily use ASCII characters,
arbitrary byte values, and UTF-8 sequences to produce arrays of bytes. Here is an example using all three:

julia> b"DATA\xff\u2260"
8-element Array{UInt8,1}:
0x44
0x41
0x54
0x41
oxff
Oxe2
0x88
0x80
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The ASCII string "DATA” corresponds to the bytes 68, 65, 84, 65. \xff produces the single byte 255. The Unicode
escape \u2200 is encoded in UTF-8 as the three bytes 226, 136, 128. Note that the resulting byte array does not
correspond to a valid UTF-8 string - if you try to use this as a regular string literal, you will get a syntax error:

julia> "DATA\xff\u22600"
ERROR: syntax: invalid UTF-8 sequence

Also observe the significant distinction between \xff and \uff: the former escape sequence encodes the byte 255,
whereas the latter escape sequence represents the code point 255, which is encoded as two bytes in UTF-8:

julia> b"\xff"
1-element Array{UInt8,1}:
oxff

julia> b"\uff"

2-element Array{UInt8,1}:
oxc3

Oxbf

In character literals, this distinction is glossed over and \xff is allowed to represent the code point 255, because
characters always represent code points. In strings, however, \x escapes always represent bytes, not code points,
whereas \u and \U escapes always represent code points, which are encoded in one or more bytes. For code points less
than \u8, it happens that the UTF-8 encoding of each code point is just the single byte produced by the corresponding
\ X escape, so the distinction can safely be ignored. For the escapes \x80 through \xff as compared to \u80 through
\uff, however, there is a major difference: the former escapes all encode single bytes, which - unless followed by
very specific continuation bytes - do not form valid UTF-8 data, whereas the latter escapes all represent Unicode code
points with two-byte encodings.

If this is all extremely confusing, try reading "The Absolute Minimum Every Software Developer Absolutely, Positively
Must Know About Unicode and Character Sets”. It's an excellent introduction to Unicode and UTF-8, and may help
alleviate some confusion regarding the matter.

10.11 Version Number Literals

Version numbers can easily be expressed with non-standard string literals of the form v" . . . ". Version number literals
create VersionNumber objects which follow the specifications of semantic versioning, and therefore are composed
of major, minor and patch numeric values, followed by pre-release and build alpha-numeric annotations. For example,
v"0.2.1-rc1+win64" is broken into major version 8, minor version 2, patch version 1, pre-release rc1 and build
win64. When entering a version literal, everything except the major version number is optional, thereforee.g. v'0.2"
is equivalent to v"0.2.0" (with empty pre-release/build annotations), v"2" is equivalent to v"2.0.08", and so on.

VersionNumber objects are mostly useful to easily and correctly compare two (or more) versions. For example, the
constant VERSION holds Julia version number as a VersionNumber object, and therefore one can define some version-
specific behavior using simple statements as:

if v"0.2" <= VERSION < v"0.3-"
# do something specific to 0.2 release series
end

Note that in the above example the non-standard version number v"0.3-" is used, with a trailing -: this notation is a
Julia extension of the standard, and it's used to indicate a version which is lower than any 0. 3 release, including all of
its pre-releases. So in the above example the code would only run with stable 8.2 versions, and exclude such versions


https://www.joelonsoftware.com/2003/10/08/the-absolute-minimum-every-software-developer-absolutely-positively-must-know-about-unicode-and-character-sets-no-excuses/
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http://semver.org

10.12. RAW STRING LITERALS 65

asv"0.3.08-rc1". In order to also allow for unstable (i.e. pre-release) 0.2 versions, the lower bound check should
be modified like this: v"0.2-" <= VERSION.

Another non-standard version specification extension allows one to use a trailing + to express an upper limit on build
versions, e.g. VERSION > v"0.2-rc1+" can be used to mean any version above 8.2-rc1 and any of its builds: it
will return false for version v"0.2-rc1+winé4" and true forv"0.2-rc2".

It is good practice to use such special versions in comparisons (particularly, the trailing - should always be used on
upper bounds unless there’s a good reason not to), but they must not be used as the actual version number of anything,
as they are invalid in the semantic versioning scheme.

Besides being used for the VERSION constant, VersionNumber objects are widely used in the Pkg module, to specify
packages versions and their dependencies.

10.12 Raw String Literals

Raw strings without interpolation or unescaping can be expressed with non-standard string literals of the form raw" . . . ".
Raw string literals create ordinary String objects which contain the enclosed contents exactly as entered with no in-
terpolation or unescaping. This is useful for strings which contain code or markup in other languages which use $ or
\ as special characters. The exception is quotation marks that still must be escaped, e.g. raw"\"" is equivalent to
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Functions

In Julia, a function is an object that maps a tuple of argument values to a return value. Julia functions are not pure
mathematical functions, in the sense that functions can alter and be affected by the global state of the program. The
basic syntax for defining functions in Julia is:

julia> function f(x,y)
X +y
end
f (generic function with 1 method)

There is a second, more terse syntax for defining a function in Julia. The traditional function declaration syntax demon-
strated above is equivalent to the following compact "assignment form”:

julia> f(x,y) = x +y

f (generic function with 1 method)

In the assignment form, the body of the function must be a single expression, although it can be a compound expression
(see Compound Expressions). Short, simple function definitions are common in Julia. The short function syntax is
accordingly quite idiomatic, considerably reducing both typing and visual noise.

A function is called using the traditional parenthesis syntax:

julia> f(2,3)

5

Without parentheses, the expression f refers to the function object, and can be passed around like any value:
julia> g = f;

julia> g(2,3)
5

As with variables, Unicode can also be used for function names:

julia> J(x,y) = x + Yy
> (generic function with 1 method)

julia> 5(2, 3)
5

67
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11.1 Argument Passing Behavior

Julia function arguments follow a convention sometimes called "pass-by-sharing”, which means that values are not
copied when they are passed to functions. Function arguments themselves act as new variable bindings (new locations
that can refer to values), but the values they refer to are identical to the passed values. Modifications to mutable values
(such as Arrays) made within a function will be visible to the caller. This is the same behavior found in Scheme, most
Lisps, Python, Ruby and Perl, among other dynamic languages.

11.2 The return Keyword

The value returned by a function is the value of the last expression evaluated, which, by default, is the last expression
in the body of the function definition. In the example function, f, from the previous section this is the value of the
expression x + y. Asin C and most other imperative or functional languages, the return keyword causes a function
to return immediately, providing an expression whose value is returned:

function g(x,y)
return x * y
X +y

end

Since function definitions can be entered into interactive sessions, it is easy to compare these definitions:

julia> f(x,y) = x +y
f (generic function with 1 method)

julia> function g(x,y)
return x * y
X +y
end
g (generic function with 1 method)

julia> f(2,3)
5

julia> g(2,3)
6

Of course, in a purely linear function body like g, the usage of return is pointless since the expression x + vy is never
evaluated and we could simply make x * y the last expression in the function and omit the return. In conjunction
with other control flow, however, return is of real use. Here, for example, is a function that computes the hypotenuse
length of a right triangle with sides of length x and y, avoiding overflow:

julia> function hypot(x,y)
x = abs(x)
y = abs(y)
if x >y
r =y/x
return x*sqrt(1+r*r)
end
if y ==
return zero(x)
end
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r = x/y
return y*sqrt(1+r*r)
end

hypot (generic function with 1 method)

julia> hypot(3, 4)
5.0

There are three possible points of return from this function, returning the values of three different expressions, de-
pending on the values of x and y. The return on the last line could be omitted since it is the last expression.

11.3 Operators Are Functions

In Julia, most operators are just functions with support for special syntax. (The exceptions are operators with special
evaluation semantics like && and | |. These operators cannot be functions since Short-Circuit Evaluation requires
that their operands are not evaluated before evaluation of the operator.) Accordingly, you can also apply them using
parenthesized argument lists, just as you would any other function:

julia> 1 + 2 + 3
6

julia> +(1,2,3)
6

The infix form is exactly equivalent to the function application form - in fact the former is parsed to produce the
function call internally. This also means that you can assign and pass around operators such as +( ) and * () just like
you would with other function values:

julia> f = +;

julia> f(1,2,3)
6

Under the name f, the function does not support infix notation, however.

11.4 Operators With Special Names

A few special expressions correspond to calls to functions with non-obvious names. These are:

Expression Calls

[ABC ...] hcat()

[A; B; C; N vecat()

[A B; CD; .1 | hvecat()

A' ctranspose()
A transpose()
1:n colon()

Ali] getindex()
Alil=x setindex! ()

These functions are included in the Base .Operators module even though they do not have operator-like names.
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11.5 Anonymous Functions

Functions in Julia are first-class objects: they can be assigned to variables, and called using the standard function call
syntax from the variable they have been assigned to. They can be used as arguments, and they can be returned as
values. They can also be created anonymously, without being given a name, using either of these syntaxes:

julia> x -> x*2 + 2x - 1
(::#1) (generic function with 1 method)

julia> function (x)
Xh2 4+ 2x - 1
end
(::#3) (generic function with 1 method)

This creates a function taking one argument x and returning the value of the polynomial x*2 + 2x - 1 at that value.
Notice that the result is a generic function, but with a compiler-generated name based on consecutive numbering.

The primary use for anonymous functions is passing them to functions which take other functions as arguments. A
classic example is map (), which applies a function to each value of an array and returns a new array containing the
resulting values:

julia> map(round, [1.2,3.5,1.7])
3-element Array{Float64,1}:

1.0

4.0

2.0

This is fine if a named function effecting the transform one wants already exists to pass as the first argument tomap ().
Often, however, a ready-to-use, named function does not exist. In these situations, the anonymous function construct
allows easy creation of a single-use function object without needing a name:

julia> map(x -> x*2 + 2x - 1, [1,3,-1])
3-element Array{Int64,1}:

2

14

-2

An anonymous function accepting multiple arguments can be written using the syntax (x,y, z)->2x+y-z. A zero-
argument anonymous function is written as () ->3. The idea of a function with no arguments may seem strange, but
is useful for "delaying” a computation. In this usage, a block of code is wrapped in a zero-argument function, which is
later invoked by calling it as f ().

11.6 Multiple Return Values

In Julia, one returns a tuple of values to simulate returning multiple values. However, tuples can be created and
destructured without needing parentheses, thereby providing anillusion that multiple values are being returned, rather
than a single tuple value. For example, the following function returns a pair of values:

julia> function foo(a,b)
a+b, ax*b
end
foo (generic function with 1 method)
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If you call it in an interactive session without assigning the return value anywhere, you will see the tuple returned:

julia> foo(2,3)
(5, 6)

A typical usage of such a pair of return values, however, extracts each value into a variable. Julia supports simple tuple
"destructuring” that facilitates this:

julia> x, y = foo(2,3)

(5, 6)

julia> x
5

julia> y
6

You can also return multiple values via an explicit usage of the return keyword:

function foo(a,b)
return a+b, ax*b
end

This has the exact same effect as the previous definition of foo.

11.7 Varargs Functions

It is often convenient to be able to write functions taking an arbitrary number of arguments. Such functions are
traditionally known as "varargs” functions, which is short for "variable number of arguments”. You can define a varargs
function by following the last argument with an ellipsis:

julia> bar(a,b,x...) = (a,b,x)

bar (generic function with 1 method)

The variables a and b are bound to the first two argument values as usual, and the variable x is bound to an iterable
collection of the zero or more values passed to bar after its first two arguments:

julia> bar(1,2)

(1, 2, ()

julia> bar(1,2,3)
(1, 2, (3,))

julia> bar(1, 2, 3, 4)
(1, 2, (3, 4))

julia> bar(1,2,3,4,5,6)
(1, 2, (3, 4, 5, 6))

In all these cases, x is bound to a tuple of the trailing values passed to bar.

Itis possible to constrain the number of values passed as a variable argument; this will be discussed later in Parametrically-
constrained Varargs methods.

On the flip side, it is often handy to "splice” the values contained in an iterable collection into a function call as individual
arguments. To do this, one also uses . . . but in the function call instead:
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julia> x = (3, 4)
(3, 4)

julia> bar(1,2,x...)
(1, 2, (3, 4))
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In this case a tuple of values is spliced into a varargs call precisely where the variable number of arguments go. This

need not be the case, however:

julia> x = (2, 3, 4)
(2, 3, 4)

julia> bar(1,x...)
(1, 2, (3, 4))

julia> x = (1, 2, 3, 4)
(1, 2, 3, 4)

julia> bar(x...)
(1, 2, (3, 4))

julia> x = [3,4]
2-element Array{Int64,1}:
3

4

julia> bar(1,2,x...)
(1, 2, (3, 4))

julia> x = [1,2,3,4]
4-element Array{Int64,1}:
1

2
3
4
julia> bar(x...)
(1, 2, (3, 4))

Furthermore, the iterable object spliced into a function call need not be a tuple:

Also, the function that arguments are spliced into need not be a varargs function (although it often is):

julia> baz(a,b) = a + b;

julia> args = [1,2]
2-element Array{Int64,1}:
1
2

julia> baz(args...)
3

julia> args = [1,2,3]
3-element Array{Int64,1}:
1




11.8. OPTIONALARGUMENTS 73

julia> baz(args...)
ERROR: MethodError: no method matching baz(::Int64, ::Int64, ::Int64)
Closest candidates are:

baz(::Any, ::Any) at none:1

As you can seg, if the wrong number of elements are in the spliced container, then the function call will fail, just as it
would if too many arguments were given explicitly.

11.8 Optional Arguments

In many cases, function arguments have sensible default values and therefore might not need to be passed explicitly
in every call. For example, the library function parse(T, num, base) interprets a string as a number in some base.
The base argument defaults to 10. This behavior can be expressed concisely as:

function parse(type, num, base=10)
#H#H
end

With this definition, the function can be called with either two or three arguments, and 10 is automatically passed
when a third argument is not specified:

julia> parse(Int,"12",10)
12

julia> parse(Int,"12",3)
5

julia> parse(Int,"12")
12

Optional arguments are actually just a convenient syntax for writing multiple method definitions with different numbers
of arguments (see Note on Optional and keyword Arguments).

11.9 Keyword Arguments

Some functions need a large number of arguments, or have a large number of behaviors. Remembering how to call
such functions can be difficult. Keyword arguments can make these complex interfaces easier to use and extend by
allowing arguments to be identified by name instead of only by position.

For example, consider a function plot that plots a line. This function might have many options, for controlling line
style, width, color, and so on. If it accepts keyword arguments, a possible call might look like plot(x, y, width=2),
where we have chosen to specify only line width. Notice that this serves two purposes. The call is easier to read,
since we can label an argument with its meaning. It also becomes possible to pass any subset of a large number of
arguments, in any order.

Functions with keyword arguments are defined using a semicolon in the signature:
function plot(x, y; style="solid", width=1, color="black")

2HE
end
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When the function is called, the semicolon is optional: one can either call plot(x, y, width=2) or plot(x, y;
width=2), butthe former style is more common. An explicit semicolon is required only for passing varargs or computed
keywords as described below.

Keyword argument default values are evaluated only when necessary (when a corresponding keyword argument is not
passed), and in left-to-right order. Therefore default expressions may refer to prior keyword arguments.

The types of keyword arguments can be made explicit as follows:

function f(;x::Int64=1)
###
end

Extra keyword arguments can be collected using . . ., as in varargs functions:

function f(x; y=0, kwargs...)
s
end

Inside f, kwargs will be a collection of (key, value) tuples, where each key is a symbol. Such collections can be
passed as keyword arguments using a semicolon in a call, e.g. f(x, z=1; kwargs...). Dictionaries can also be
used for this purpose.

One can also pass (key, value) tuples, or any iterable expression (such as a => pair) that can be assigned to such a
tuple, explicitly after a semicolon. For example, plot(x, y; (:width,2)) and plot(x, y; :width => 2) are
equivalent to plot(x, y, width=2). Thisis useful in situations where the keyword name is computed at runtime.

The nature of keyword arguments makes it possible to specify the same argument more than once. For example, in the
callplot(x, y; options..., width=2) itis possible thatthe options structure also contains a value for width.
In such a case the rightmost occurrence takes precedence; in this example, width is certain to have the value 2.

11.10 Evaluation Scope of Default Values

Optional and keyword arguments differ slightly in how their default values are evaluated. When optional argument
default expressions are evaluated, only previous arguments are in scope. In contrast, all the arguments are in scope
when keyword arguments default expressions are evaluated. For example, given this definition:

function f(x, a=b, b=1)
#HH
end

the b in a=b refers to a b in an outer scope, not the subsequent argument b. However, if a and b were keyword
arguments instead, then both would be created in the same scope and the b in a=b would refer to the subsequent
argument b (shadowing any b in an outer scope), which would result in an undefined variable error (since the default
expressions are evaluated left-to-right, and b has not been assigned yet).

11.11 Do-Block Syntax for Function Arguments

Passing functions as arguments to other functions is a powerful technique, but the syntax for it is not always conve-
nient. Such calls are especially awkward to write when the function argument requires multiple lines. As an example,
consider calling map () on a function with several cases:
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map (x->begin
if x < 0 && iseven(x)

return 0
elseif x ==
return 1
else
return x
end
end,
[A, B, C])

Julia provides a reserved word do for rewriting this code more clearly:

map([A, B, C]) do x
if x < 0 && iseven(x)
return ©
elseif x ==
return 1
else
return x
end
end

The do x syntax creates an anonymous function with argument x and passes it as the first argument to map (). Simi-
larly, do a, b would create a two-argument anonymous function, and a plain do would declare that what follows is an
anonymous function of the form () ->

How these arguments are initialized depends on the "outer” function; here, map () will sequentially set x to A, B, C,
calling the anonymous function on each, just as would happen in the syntax map (func, [A, B, C]).

This syntax makes it easier to use functions to effectively extend the language, since calls look like normal code blocks.
There are many possible uses quite different from map (), such as managing system state. For example, there is a
version of open () that runs code ensuring that the opened file is eventually closed:

open("outfile", "w") do io
write(io, data)
end

This is accomplished by the following definition:

function open(f::Function, args...)
io = open(args...)
try
f(io)
finally
close(io)
end
end

Here, open () first opens the file for writing and then passes the resulting output stream to the anonymous function
you defined in the do ... end block. After your function exits, open() will make sure that the stream is properly
closed, regardless of whether your function exited normally or threw an exception. (The try/finally construct will
be described in Control Flow.)

With the do block syntax, it helps to check the documentation or implementation to know how the arguments of the
user function are initialized.
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11.12 Dot Syntax for Vectorizing Functions

In technical-computing languages, it is common to have "vectorized” versions of functions, which simply apply a given
function f(x) to each element of an array A to yield a new array via f(A). This kind of syntax is convenient for
data processing, but in other languages vectorization is also often required for performance: if loops are slow, the
"vectorized” version of a function can call fast library code written in a low-level language. In Julia, vectorized functions
are not required for performance, and indeed it is often beneficial to write your own loops (see Performance Tips), but
they can still be convenient. Therefore, any Julia function f can be applied elementwise to any array (or other collection)
with the syntax f. (A). For example sin can be applied to all elements in the vector A, like so:

julia> A = [1.0, 2.0, 3.0]
3-element Array{Float64,1}:
1.0

2.0

3.0

julia> sin.(A)

3-element Array{Float64,1}:
0.841471

0.909297

0.14112

Of course, you can omit the dot if you write a specialized "vector” method of f, e.g. via f(A: :AbstractArray) =
map (f, A),and thisisjust as efficientas f. (A). But that approach requires you to decide in advance which functions
you want to vectorize.

More generally, . (args...) is actually equivalent to broadcast(f, args...), which allows you to operate on
multiple arrays (even of different shapes), or a mix of arrays and scalars (see Broadcasting). For example, if you have
f(x,y) = 3x + 4y, then f.(pi, A) will return a new array consisting of f(pi,a) for each ain A, and f. (vec-
tor1, vector2) will return a new vector consisting of f (vector1[i], vector2[i]) for each index i (throwing an
exception if the vectors have different length).

julia> f(x,y) = 3x + 4y;
julia> A = [1.0, 2.0, 3.0];
julia> B = [4.0, 5.0, 6.0];

julia> f.(pi, A)
3-element Array{Float64,1}:
13.4248

17.4248

21.4248

julia> f.(A, B)

3-element Array{Float64,1}:
19.0

26.0

33.0

Moreover, nested f. (args...) calls are fused into a single broadcast loop. For example, sin. (cos. (X)) is equiv-
alentto broadcast(x -> sin(cos(x)), X),similarto [sin(cos(x)) for x in X]: thereis only a single loop
over X, and a single array is allocated for the result. [In contrast, sin(cos(X)) in a typical "vectorized” language
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would first allocate one temporary array for tmp=cos(X), and then compute sin(tmp) in a separate loop, allocating
a second array.] This loop fusion is not a compiler optimization that may or may not occur, it is a syntactic guarantee
whenever nested f. (args. ..) calls are encountered. Technically, the fusion stops as soon as a "non-dot” function
call is encountered; for example, in sin. (sort(cos. (X)) ) the sin and cos loops cannot be merged because of the
intervening sort function.

Finally, the maximum efficiency is typically achieved when the output array of a vectorized operation is pre-allocated,
so that repeated calls do not allocate new arrays over and over again for the results (Pre-allocating outputs:). A
convenient syntax for this is X .= ..., which is equivalent to broadcast! (identity, X, ...) except that, as
above, the broadcast! loop is fused with any nested "dot” calls. For example, X .= sin.(Y) is equivalent to
broadcast! (sin, X, Y), overwriting X with sin. (Y) in-place. If the left-hand side is an array-indexing expres-
sion, e.g. X[2:end] .= sin.(Y), then it translates to broadcast! on aview, e.g. broadcast! (sin, view(X,
2:endof (X)), Y),so that the left-hand side is updated in-place.

Since adding dots to many operations and function calls in an expression can be tedious and lead to code that is dif-
ficult to read, the macro @. is provided to convert every function call, operation, and assignment in an expression into
the "dotted” version.

julia> Y = [1.0, 2.0, 3.0, 4.0];
julia> X = similar(Y); # pre-allocate output array

julia> . X = sin(cos(Y)) # equivalent to X .= sin.(cos.(Y))
4-element Array{Float64,1}:
0.514395
-0.404239
-0.836022
-0.608083

Binary (or unary) operators like .+ are handled with the same mechanism: they are equivalent to broadcast calls
and are fused with other nested "dot” calls. X .+= Y etceterais equivalentto X .= X .+ Y and results in a fused
in-place assignment; see also dot operators.

11.13 Further Reading

We should mention here that this is far from a complete picture of defining functions. Julia has a sophisticated type
system and allows multiple dispatch on argument types. None of the examples given here provide any type annotations
on their arguments, meaning that they are applicable to all types of arguments. The type system is described in Types
and defining a function in terms of methods chosen by multiple dispatch on run-time argument types is described in
Methods.
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Control Flow

Julia provides a variety of control flow constructs:

e Compound Expressions: beginand ( ;).

e Conditional Evaluation: if-elseif-else and ?: (ternary operator).

e Short-Circuit Evaluation: &&, | | and chained comparisons.

e Repeated Evaluation: Loops: while and for.

e Exception Handling: try-catch, error() and throw().

e Tasks (aka Coroutines): yieldto().
The first five control flow mechanisms are standard to high-level programming languages. Tasks are not so standard:
they provide non-local control flow, making it possible to switch between temporarily-suspended computations. This
is a powerful construct: both exception handling and cooperative multitasking are implemented in Julia using tasks.
Everyday programming requires no direct usage of tasks, but certain problems can be solved much more easily by using
tasks.

12.1 Compound Expressions

Sometimes it is convenient to have a single expression which evaluates several subexpressions in order, returning the
value of the last subexpression as its value. There are two Julia constructs that accomplish this: begin blocks and ( ;)
chains. The value of both compound expression constructs is that of the last subexpression. Here's an example of a
begin block:

julia> z = begin

X =1
y =2
X +y

end

Since these are fairly small, simple expressions, they could easily be placed onto a single line, which is where the ( ;)
chain syntax comes in handy:

79
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julia> z = (x = 1; y = 2; x +Yy)
3

This syntax is particularly useful with the terse single-line function definition form introduced in Functions. Although
it is typical, there is no requirement that begin blocks be multiline or that ( ;) chains be single-line:

julia> begin x = 1; y = 2; x + y end
3

julia> (x
y = 2;
X +y)

n
-

12.2 Conditional Evaluation

Conditional evaluation allows portions of code to be evaluated or not evaluated depending on the value of a boolean
expression. Here is the anatomy of the if-elseif-else conditional syntax:

if x <y

println("x is less than y")
elseif x >y

println("x is greater than y")
else

println("x is equal to y")
end

If the condition expression x < yis true, then the corresponding block is evaluated; otherwise the condition expres-
sion x > Yy is evaluated, and if it is true, the corresponding block is evaluated; if neither expression is true, the else
block is evaluated. Here it is in action:

julia> function test(x, y)
if x <y
println("x is less than y")
elseif x >y
println("x is greater than y")
else
println("x is equal to y")
end
end
test (generic function with 1 method)

julia> test(1, 2)
x is less than y

julia> test(2, 1)
x 1s greater than y

julia> test(1, 1)
x is equal to y
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The elseif and else blocks are optional, and as many elseif blocks as desired can be used. The condition expres-
sions in the if-elseif-else construct are evaluated until the first one evaluates to true, after which the associated
block is evaluated, and no further condition expressions or blocks are evaluated.

if blocks are "leaky”, i.e. they do not introduce a local scope. This means that new variables defined inside the if
clauses can be used after the if block, even if they weren't defined before. So, we could have defined the test
function above as

julia> function test(x,y)

if x <y
relation = "less than"
elseif x ==y
relation = "equal to"
else
relation = "greater than"
end
println("x is ", relation, " y.")

end
test (generic function with 1 method)

julia> test(2, 1)
X is greater than y.

The variable relation is declared inside the if block, but used outside. However, when depending on this behavior,
make sure all possible code paths define a value for the variable. The following change to the above function results
in a runtime error

julia> function test(x,y)

if x <y
relation = "less than"
elseif x ==y
relation = "equal to"
end
println("x is ", relation, " y.")

end
test (generic function with 1 method)

julia> test(1,2)
x is less than y.

julia> test(2,1)
ERROR: UndefVarError: relation not defined
Stacktrace:

[1] test(::Int64, ::Int64) at ./none:7

if blocks also return a value, which may seem unintuitive to users coming from many other languages. This value is
simply the return value of the last executed statement in the branch that was chosen, so

julia> x = 3
3

julia> if x > 0@
"positive!"
else
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"negative..."
end
"positive!”

Note that very short conditional statements (one-liners) are frequently expressed using Short-Circuit Evaluation in
Julia, as outlined in the next section.

Unlike C, MATLAB, Perl, Python, and Ruby - but like Java, and a few other stricter, typed languages - it is an error if
the value of a conditional expression is anything but true or false:

julia> if 1
println("true")
end
ERROR: TypeError: non-boolean (Int64) used in boolean context

This error indicates that the conditional was of the wrong type: Int64 rather than the required Bool.

The so-called "ternary operator”, ? :, is closely related to the if-elseif-else syntax, but is used where a conditional
choice between single expression values is required, as opposed to conditional execution of longer blocks of code. It
gets its name from being the only operator in most languages taking three operands:

‘a ?b :c

The expression a, before the ?, is a condition expression, and the ternary operation evaluates the expression b, before
the :, if the condition a is true or the expression c, after the :, ifitis false.

The easiest way to understand this behavior is to see an example. In the previous example, the print1ln call is shared
by all three branches: the only real choice is which literal string to print. This could be written more concisely using
the ternary operator. For the sake of clarity, let's try a two-way version first:

julia> x = 1; y = 2;

julia> println(x <y ? "less than" : "not less than")
less than

julia> x = 1; y = 0;

julia> println(x <y ? "less than" : "not less than")
not less than

If the expression x < y is true, the entire ternary operator expression evaluates to the string "less than" and
otherwise it evaluates to the string "not less than". The original three-way example requires chaining multiple
uses of the ternary operator together:

julia> test(x, y) = println(x <y ? "x is less than y"
X >y ? "x is greater than y" : "x is equal to y")
test (generic function with 1 method)

julia> test(1, 2)
x is less than y

julia> test(2, 1)
x 1is greater than y
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julia> test(1, 1)
X is equal to vy

To facilitate chaining, the operator associates from right to left.

It is significant that like if-elseif-else, the expressions before and after the : are only evaluated if the condition
expression evaluates to true or false, respectively:

julia> v(x) = (println(x); x)
v (generic function with 1 method)

julia> 1 < 2 ? v("yes") : v("no")
yes
"ves"

julia> 1 > 2 ? v("yes") : v("no")
no

"no"

12.3 Short-Circuit Evaluation

Short-circuit evaluation is quite similar to conditional evaluation. The behavior is found in most imperative program-
ming languages having the && and | | boolean operators: in a series of boolean expressions connected by these op-
erators, only the minimum number of expressions are evaluated as are necessary to determine the final boolean value
of the entire chain. Explicitly, this means that:

e In the expression a && b, the subexpression b is only evaluated if a evaluates to true.

e Inthe expressiona || b, the subexpression b is only evaluated if a evaluates to false.

The reasoning is that a && b must be false if a is false, regardless of the value of b, and likewise, the value of a
| | b must be true if a is true, regardless of the value of b. Both && and | | associate to the right, but && has higher
precedence than | | does. It's easy to experiment with this behavior:

julia> t(x) = (println(x); true)
t (generic function with 1 method)

julia> f(x) = (println(x); false)
f (generic function with 1 method)

julia> t(1) && t(2)
1

2

true

julia> t(1) && f(2)
1

2

false

julia> f(1) && t(2)
1
false
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julia> f(1) && f(2)
1
false

julia> t(1) || t(2)
1
true

julia> t(1) || f(2)
1
true

julia> f(1) || t(2)
1

2

true

julia> f(1) || f(2)
1

2

false
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You can easily experiment in the same way with the associativity and precedence of various combinations of && and

| | operators.

This behavior is frequently used in Julia to form an alternative to very short if statements. Instead of if <cond>
<statement> end, one can write <cond> && <statement> (which could be read as: <cond> and then <state-
ment>). Similarly, instead of if ! <cond> <statement> end, one can write <cond> || <statement> (which

could be read as: <cond> or else <statement>).

For example, a recursive factorial routine could be defined like this:

julia> function fact(n::Int)

n == 0 && return 1
n * fact(n-1)
end
fact (generic function with 1 method)

julia> fact(5)
120

julia> fact(0)
1

julia> fact(-1)
ERROR: n must be non-negative
Stacktrace:

[1] fact(::Int64) at ./none:2

n>=0 || error("n must be non-negative")

Boolean operations without short-circuit evaluation can be done with the bitwise boolean operators introduced in
Mathematical Operations and Elementary Functions: & and |. These are normal functions, which happen to support

infix operator syntax, but always evaluate their arguments:

julia> f(1) & t(2)
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1
2
false

julia> t(1) | t(2)
1

2

true

Just like condition expressions used in if, elseif or the ternary operator, the operands of && or | | must be boolean
values (true or false). Using a non-boolean value anywhere except for the last entry in a conditional chain is an
error:

julia> 1 && true
ERROR: TypeError: non-boolean (Int64) used in boolean context

On the other hand, any type of expression can be used at the end of a conditional chain. It will be evaluated and
returned depending on the preceding conditionals:

julia> true && (x = (1, 2, 3))
(1, 2, 3)

julia> false && (x = (1, 2, 3))
false

12.4 Repeated Evaluation: Loops

There are two constructs for repeated evaluation of expressions: the while loop and the for loop. Here is an example
of awhile loop:

julia> i = 1;

julia> while i <= 5
println(i)
i+=1

end

a b WwN =

The while loop evaluates the condition expression (i <= 5 in this case), and as long it remains true, keeps also
evaluating the body of the while loop. If the condition expression is false when the while loop is first reached, the
body is never evaluated.

The for loop makes common repeated evaluation idioms easier to write. Since counting up and down like the above
while loop does is so common, it can be expressed more concisely with a for loop:

julia> for i = 1:5
println(i)
end
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a b WN =

Here the 1:5 is a Range object, representing the sequence of numbers 1, 2, 3, 4, 5. The for loop iterates through
these values, assigning each one in turn to the variable i. One rather important distinction between the previous
while loop form and the for loop form is the scope during which the variable is visible. If the variable i has not been
introduced in an other scope, in the for loop form, it is visible only inside of the for loop, and not afterwards. You'll
either need a new interactive session instance or a different variable name to test this:

julia> for j = 1:5
println(j)
end

a b~ W N =

julia> j
ERROR: UndefVarError: j not defined

See Scope of Variables for a detailed explanation of variable scope and how it works in Julia.

In general, the for loop construct can iterate over any container. In these cases, the alternative (but fully equivalent)
keyword in or is typically used instead of =, since it makes the code read more clearly:

julia> for i in [1,4,0]
println(i)
end

julia> for s ["foo","bar", "baz"]
println(s)
end
foo
bar
baz

Various types of iterable containers will be introduced and discussed in later sections of the manual (see, e.g., Multi-
dimensional Arrays).

It is sometimes convenient to terminate the repetition of a while before the test condition is falsified or stop iterating
in a for loop before the end of the iterable object is reached. This can be accomplished with the break keyword:

julia> i = 1;

julia> while true
println(i)
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if 1 >= 5
break

end

i+=1

end

a b~ WN =

julia> for i = 1:1000
println(i)
if i >= 5
break
end
end

a b W N =

Without the break keyword, the above while loop would never terminate on its own, and the for loop would iterate
up to 1000. These loops are both exited early by using break.

In other circumstances, it is handy to be able to stop an iteration and move on to the next one immediately. The
continue keyword accomplishes this:

julia> for i = 1:10
ifi %3 !'=90

continue
end
println(i)
end
3
6
9

This is a somewhat contrived example since we could produce the same behavior more clearly by negating the condi-
tion and placing the println call inside the if block. In realistic usage there is more code to be evaluated after the
continue, and often there are multiple points from which one calls continue.

Multiple nested for loops can be combined into a single outer loop, forming the cartesian product of its iterables:
julia> for i = 1:2, j = 3:4

println((i, j))
end

[N
AW AW
o - - —

—~ o~~~

A break statement inside such a loop exits the entire nest of loops, not just the inner one.
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12.5 Exception Handling

When an unexpected condition occurs, a function may be unable to return a reasonable value to its caller. In such cases,
it may be best for the exceptional condition to either terminate the program, printing a diagnostic error message, or if
the programmer has provided code to handle such exceptional circumstances, allow that code to take the appropriate
action.

Built-in Exceptions

Exceptions are thrown when an unexpected condition has occurred. The built-in Exceptions listed below all inter-
rupt the normal flow of control.

Exception
ArgumentError
BoundsError
CompositeException
DivideError

DomainError
EOFError
ErrorException
InexactError

InitError

InterruptException
InvalidStateException
KeyError

LoadError
OutOfMemoryError
ReadOnlyMemoryError
RemoteException
MethodError
OverflowError

ParseError
SystemError
TypeError
UndefRefError
UndefVarError
UnicodeError

For example, the sqrt () function throws a DomainError if applied to a negative real value:

julia> sqrt(-1)
ERROR: DomainError:
sqrt will only return a complex result if called with a complex argument. Try sqrt(complex(x)).
Stacktrace:
[1] sqrt(::Int64) at ./math.jl:434

You may define your own exceptions in the following way:

julia> struct MyCustomException <: Exception end
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The throw() function

Exceptions can be created explicitly with throw(). For example, a function defined only for nonnegative numbers
could be written to throw() a DomainError if the argument is negative:

julia> f(x) = x>=0 ? exp(-x) : throw(DomainError())
f (generic function with 1 method)

julia> f(1)
0.36787944117144233

julia> f(-1)

ERROR: DomainError:
Stacktrace:

[1] f(::Int64) at ./none:1

Note that DomainError without parentheses is not an exception, but a type of exception. It needs to be called to
obtain an Exception object:

julia> typeof(DomainError()) <: Exception
true

julia> typeof(DomainError) <: Exception
false

Additionally, some exception types take one or more arguments that are used for error reporting:

julia> throw(UndefVarError(:x))
ERROR: UndefVarError: x not defined

This mechanism can be implemented easily by custom exception types following the way UndefVarError is written:

julia> struct MyUndefVarError <: Exception

var: :Symbol
end
julia> Base.showerror(io::I0, e::MyUndefVarError) = print(io, e.var, " not defined")
Note

When writing an error message, it is preferred to make the first word lowercase. For example, size(A)
== size(B) || throw(DimensionMismatch("size of A not equal to size of B"))

is preferred over
size(A) == size(B) || throw(DimensionMismatch("Size of A not equal to size of B")).

However, sometimes it makes sense to keep the uppercase first letter, for instance if an argument to
a function is a capital letter: size(A,1) == size(B,2) || throw(DimensionMismatch("A has
first dimension...")).
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Errors
The error () function is used to produce an ErrorException that interrupts the normal flow of control.

Suppose we want to stop execution immediately if the square root of a negative number is taken. To do this, we can
define a fussy version of the sqrt () function that raises an error if its argument is negative:

julia> fussy_sqrt(x) = x >= 0 ? sqrt(x) : error("negative x not allowed")
fussy_sqrt (generic function with 1 method)

julia> fussy_sqrt(2)
1.4142135623730951

julia> fussy_sqrt(-1)
ERROR: negative x not allowed
Stacktrace:

[1] fussy_sqrt(::Int64) at ./none:1

If fussy_sqrt is called with a negative value from another function, instead of trying to continue execution of the
calling function, it returns immediately, displaying the error message in the interactive session:

julia> function verbose_fussy_sqrt(x)
println("before fussy_sqrt")
r = fussy_sqrt(x)
println("after fussy_sqrt")
return r
end
verbose_fussy_sqrt (generic function with 1 method)

julia> verbose_fussy_sqrt(2)
before fussy_sqrt

after fussy_sqrt
1.4142135623730951

julia> verbose_fussy_sqrt(-1)
before fussy_sqrt
ERROR: negative x not allowed
Stacktrace:
[1] fussy_sqgrt at ./none:1 [inlined]
[2] verbose_fussy_sqrt(::Int64) at ./none:3

Warnings and informational messages

Julia also provides other functions that write messages to the standard error 1/0O, but do not throw any Exceptions
and hence do not interrupt execution:

julia> info("Hi"); 1+1
INFO: Hi
2

julia> warn("Hi"); 1+1
WARNING: Hi
2

julia> error("Hi"); 1+1
ERROR: Hi
Stacktrace:
[1] error(::String) at ./error.jl:21
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The try/catch statement

The try/catch statement allows for Exceptions to be tested for. For example, a customized square root function
can be written to automatically call either the real or complex square root method on demand using Exceptions:

julia> f(x) = try
sqrt(x)
catch
sqrt(complex(x, 0))
end
f (generic function with 1 method)

julia> f(1)
1.0

julia> f(-1)
0.0 + 1.0im

It is important to note that in real code computing this function, one would compare x to zero instead of catching an
exception. The exception is much slower than simply comparing and branching.

try/catch statements also allow the Exception to be saved in a variable. In this contrived example, the following
example calculates the square root of the second element of x if x is indexable, otherwise assumes x is a real number
and returns its square root:

julia> sqrt_second(x) = try
sqrt(x[2])
catch y
if isa(y, DomainError)
sqrt(complex(x[2], 0))
elseif isa(y, BoundsError)
sqrt(x)
end
end
sqrt_second (generic function with 1 method)

julia> sqrt_second([1 4])
2.0

julia> sqrt_second([1 -4])
0.0 + 2.0im

julia> sqrt_second(9)
3.0

julia> sqrt_second(-9)
ERROR: DomainError:
Stacktrace:
[1] sqrt_second(::Int64) at ./none:7

Note that the symbol following catch will always be interpreted as a name for the exception, so care is needed when
writing try/catch expressions on a single line. The following code will not work to return the value of x in case of
an error:

try bad() catch x end
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Instead, use a semicolon or insert a line break after catch:

try bad() catch; x end

try bad()
catch

X
end

The catch clause is not strictly necessary; when omitted, the default return value is nothing.
julia> try error() end # Returns nothing

The power of the try/catch construct lies in the ability to unwind a deeply nested computation immediately to a
much higher level in the stack of calling functions. There are situations where no error has occurred, but the ability
to unwind the stack and pass a value to a higher level is desirable. Julia provides the rethrow(), backtrace() and
catch_backtrace() functions for more advanced error handling.

finally Clauses

In code that performs state changes or uses resources like files, there is typically clean-up work (such as closing files)
that needs to be done when the code is finished. Exceptions potentially complicate this task, since they can cause a
block of code to exit before reaching its normal end. The finally keyword provides a way to run some code when a
given block of code exits, regardless of how it exits.

For example, here is how we can guarantee that an opened file is closed:

f = open("file")
try
# operate on file f
finally
close(f)
end

When control leaves the try block (for example due to a return, or just finishing normally), close (f) will be ex-
ecuted. If the try block exits due to an exception, the exception will continue propagating. A catch block may be
combined with try and finally as well. In this case the finally block will run after catch has handled the error.

12.6 Tasks (aka Coroutines)

Tasks are a control flow feature that allows computations to be suspended and resumed in a flexible manner. This fea-
ture is sometimes called by other names, such as symmetric coroutines, lightweight threads, cooperative multitasking,
or one-shot continuations.

When a piece of computing work (in practice, executing a particular function) is designated as a Task, it becomes
possible to interrupt it by switching to another Task. The original Task can later be resumed, at which point it will
pick up right where it left off. At first, this may seem similar to a function call. However there are two key differences.
First, switching tasks does not use any space, so any number of task switches can occur without consuming the call
stack. Second, switching among tasks can occur in any order, unlike function calls, where the called function must
finish executing before control returns to the calling function.

This kind of control flow can make it much easier to solve certain problems. In some problems, the various pieces of
required work are not naturally related by function calls; there is no obvious "caller” or "callee” among the jobs that
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need to be done. An example is the producer-consumer problem, where one complex procedure is generating values
and another complex procedure is consuming them. The consumer cannot simply call a producer function to get a
value, because the producer may have more values to generate and so might not yet be ready to return. With tasks,
the producer and consumer can both run as long as they need to, passing values back and forth as necessary.

Julia provides a Channel mechanism for solving this problem. A Channel is a waitable first-in first-out queue which
can have multiple tasks reading from and writing to it.

Let's define a producer task, which produces values via the put! call. To consume values, we need to schedule the
producer to run in a new task. A special Channel constructor which accepts a 1-arg function as an argument can be
used to run a task bound to a channel. We can then take! () values repeatedly from the channel object:

julia> function producer(c::Channel)
put!(c, "start")
for n=1:4
put!(c, 2n)
end
put!(c, "stop")
end;

julia> chnl = Channel(producer);

julia> take!(chnl)
"start"”

julia> take!(chnl)
2

julia> take!(chnl)
4

julia> take!(chnl)
6

julia> take!(chnl)
8

julia> take!(chnl)
"stop"

One way to think of this behavior is that producer was able to return multiple times. Between calls to put! (), the
producer’s execution is suspended and the consumer has control.

The returned Channel can be used as an iterable object in a for loop, in which case the loop variable takes on all the
produced values. The loop is terminated when the channel is closed.

julia> for x in Channel(producer)
println(x)
end
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Note that we did not have to explicitly close the channel in the producer. This is because the act of binding a Channel
to a Task() associates the open lifetime of a channel with that of the bound task. The channel object is closed
automatically when the task terminates. Multiple channels can be bound to a task, and vice-versa.

While the Task () constructor expects a 0-argument function, the Channel() method which creates a channel bound
task expects a function that accepts a single argument of type Channel. A common pattern is for the producer to be
parameterized, in which case a partial function application is needed to create a O or 1 argument anonymous function.

For Task () objects this can be done either directly or by use of a convenience macro:

function mytask(myarg)
end
taskHdl = Task(() -> mytask(7))

# or, equivalently
taskHdl = @task mytask(7)

To orchestrate more advanced work distribution patterns, bind () and schedule() can be used in conjunction with
Task() and Channel() constructors to explicitly link a set of channels with a set of producer/consumer tasks.

Note that currently Julia tasks are not scheduled to run on separate CPU cores. True kernel threads are discussed
under the topic of Parallel Computing.

Core task operations

Let us explore the low level construct yieldto( ) to underestand how task switching works. yieldto(task, value)
suspends the current task, switches to the specified task, and causes that task’s last yieldto() call to return the
specified value. Notice that yieldto() is the only operation required to use task-style control flow; instead of
calling and returning we are always just switching to a different task. This is why this feature is also called "symmetric
coroutines”; each task is switched to and from using the same mechanism.

yieldto() is powerful, but most uses of tasks do not invoke it directly. Consider why this might be. If you switch
away from the current task, you will probably want to switch back to it at some point, but knowing when to switch
back, and knowing which task has the responsibility of switching back, can require considerable coordination. For
example, put! () and take! () are blocking operations, which, when used in the context of channels maintain state
to remember who the consumers are. Not needing to manually keep track of the consuming task is what makes put! ()
easier to use than the low-level yieldto().

In addition to yieldto( ), a few other basic functions are needed to use tasks effectively.

e current_task() gets a reference to the currently-running task.
e istaskdone() queries whether a task has exited.
e istaskstarted() queries whether a task has run yet.

e task_local_storage() manipulates a key-value store specific to the current task.

Tasks and events

Most task switches occur as a result of waiting for events such as I/O requests, and are performed by a scheduler
included in the standard library. The scheduler maintains a queue of runnable tasks, and executes an event loop that
restarts tasks based on external events such as message arrival.
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The basic function for waiting for an event is wait (). Several objects implement wait (); for example, given a Pro-
cess object, wait () will wait for it to exit. wait () is often implicit; for example, a wait () can happen inside a call
to read() to wait for data to be available.

In all of these cases, wait () ultimately operates on a Condition object, which is in charge of queueing and restarting
tasks. When a task callswait () onaCondition, the task is marked as non-runnable, added to the condition’s queue,
and switches to the scheduler. The scheduler will then pick another task to run, or block waiting for external events.
If all goes well, eventually an event handler will call notify () on the condition, which causes tasks waiting for that
condition to become runnable again.

A task created explicitly by calling Task is initially not known to the scheduler. This allows you to manage tasks
manually using yieldto() if you wish. However, when such a task waits for an event, it still gets restarted automat-
ically when the event happens, as you would expect. It is also possible to make the scheduler run a task whenever
it can, without necessarily waiting for any events. This is done by calling schedule(), or using the @schedule or
@async macros (see Parallel Computing for more details).

Task states

Tasks have a state field that describes their execution status. A Task state is one of the following symbols:

Symbol Meaning

:runnable | Currently running, or available to be switched to
:waiting Blocked waiting for a specific event

:queued In the scheduler’s run queue about to be restarted
:done Successfully finished executing

:failed Finished with an uncaught exception
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Scope of Variables

The scope of a variable is the region of code within which a variable is visible. Variable scoping helps avoid variable
naming conflicts. The concept is intuitive: two functions can both have arguments called x without the two x’s referring
to the same thing. Similarly there are many other cases where different blocks of code can use the same name without
referring to the same thing. The rules for when the same variable name does or doesn't refer to the same thing are
called scope rules; this section spells them out in detail.

Certain constructs in the language introduce scope blocks, which are regions of code that are eligible to be the scope
of some set of variables. The scope of a variable cannot be an arbitrary set of source lines; instead, it will always line
up with one of these blocks. There are two main types of scopes in Julia, global scope and local scope, the latter can be
nested. The constructs introducing scope blocks are:

Scope name block/construct introducing this kind of scope
Global Scope | module, baremodule, at interactive prompt (REPL)
Local Scope Soft Local Scope: for, while, comprehensions, try-catch-finally, let

Local Scope Hard Local Scope: functions (either syntax, anonymous & do-blocks), struct, macro

Notably missing from this table are begin blocks and if blocks, which do not introduce new scope blocks. All three
types of scopes follow somewhat different rules which will be explained below as well as some extra rules for certain
blocks.

Julia uses lexical scoping, meaning that a function’s scope does not inherit from its caller’s scope, but from the scope
in which the function was defined. For example, in the following code the x inside foo refers to the x in the global
scope of its module Bar:

julia> module Bar
X =1
foo() = x
end;

and not a x in the scope where foo is used:

julia> import .Bar
julia> x = -1;

julia> Bar.foo()
1

Thus lexical scope means that the scope of variables can be inferred from the source code alone.
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13.1 Global Scope

Each module introduces a new global scope, separate from the global scope of all other modules; there is no all-encompassing
global scope. Modules can introduce variables of other modules into their scope through the using or import state-
ments or through qualified access using the dot-notation, i.e. each module is a so-called namespace. Note that variable
bindings can only be changed within their global scope and not from an outside module.

julia> module A
a =1 # a global in A's scope
end;

julia> module B

module C
c =2

end

b==C.c # can access the namespace of a nested global scope

# through a qualified access
import ..A # makes module A available
d=A.a
end;

julia> module D
b = a # errors as D's global scope is separate from A's
end;
ERROR: UndefVarError: a not defined

julia> module E
import ..A # make module A available
Ala =2 # throws below error
end;
ERROR: cannot assign variables in other modules

Note that the interactive prompt (aka REPL) is in the global scope of the module Main.

13.2 Local Scope

A new local scope is introduced by most code-blocks, see above table for a complete list. A local scope usually inherits
all the variables from its parent scope, both for reading and writing. There are two subtypes of local scopes, hard and
soft, with slightly different rules concerning what variables are inherited. Unlike global scopes, local scopes are not
namespaces, thus variables in an inner scope cannot be retrieved from the parent scope through some sort of qualified
access.

The following rules and examples pertain to both hard and soft local scopes. A newly introduced variable in a local
scope does not back-propagate to its parent scope. For example, here the z is not introduced into the top-level scope:

julia> for i = 1:10
z =1
end

julia> z
ERROR: UndefVarError: z not defined

(Note, in this and all following examples it is assumed that their top-level is a global scope with a clean workspace, for
instance a newly started REPL.)
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Inside a local scope a variable can be forced to be a local variable using the 1local keyword:

julia> x = 0;

julia> for i = 1:10
local x
X =1+1
end

julia> x
0

Inside a local scope a new global variable can be defined using the keyword global:

julia> for i = 1:10
global z
z =1
end

julia> z
10

The location of both the 1ocal and global keywords within the scope block is irrelevant. The following is equivalent
to the last example (although stylistically worse):

julia> for i = 1:10
z =1
global z
end

julia> z
10

Soft Local Scope

In a soft local scope, all variables are inherited from its parent scope unless a variable is specifically marked
with the keyword local.

Soft local scopes are introduced by for-loops, while-loops, comprehensions, try-catch-finally-blocks, and let-blocks.
There are some extra rules for Let Blocks and for For Loops and Comprehensions.

In the following example the x and y refer always to the same variables as the soft local scope inherits both read and
write variables:

julia> x, y =0, 1;

julia> for i = 1:10
X =1+y+1
end

julia> x
12
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Within soft scopes, the global keyword is never necessary, although allowed. The only case when it would change the
semantics is (currently) a syntax error:

julia> let
local j =2
let
global j = 3
end
end
ERROR: syntax: ‘global j': j is local variable in the enclosing scope

Hard Local Scope

Hard local scopes are introduced by function definitions (in all their forms), struct type definition blocks, and macro-
definitions.

In a hard local scope, all variables are inherited from its parent scope unless:

e an assignment would result in a modified global variable, or

e avariable is specifically marked with the keyword local.

Thus global variables are only inherited for reading but not for writing:

julia> x, y = 1, 2;

julia> function foo()
X = 2 # assignment introduces a new local
return x + y # y refers to the global
end;

julia> foo()
4

julia> x
1

An explicit global is needed to assign to a global variable:

julia> x = 1;
julia> function foobar()
global x = 2
end;

julia> foobar();

julia> x

Note that nested functions can behave differently to functions defined in the global scope as they can modify their
parent scope’s local variables:
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julia> x, y = 1, 2;

julia> function baz()
X = 2 # introduces a new local
function bar()
x = 10 # modifies the parent's x
return x + y # y is global
end
return bar() + x # 12 + 10 (x is modified in call of bar())
end;

julia> baz()
22

julia> x
(1, 2)

<

The distinction between inheriting global and local variables for assignment can lead to some slight differences be-
tween functions defined in local vs. global scopes. Consider the modification of the last example by moving bar to
the global scope:

julia> x, y = 1, 2;

julia> function bar()
x = 10 # local
return x +y
end;

julia> function quz()
x = 2 # local
return bar() + x # 12 + 2 (x is not modified)
end;

julia> quz()
14

julia> x, y
(1, 2)

Note that above subtlety does not pertain to type and macro definitions as they can only appear at the global scope.
There are special scoping rules concerning the evaluation of default and keyword function arguments which are de-
scribed in the Function section.

An assignment introducing a variable used inside a function, type or macro definition need not come before its inner
usage:

julia> f =y ->y + a
(::#1) (generic function with 1 method)

julia> f(3)
ERROR: UndefVarError: a not defined
Stacktrace:

[1] (::##1#2)(::Int64) at ./none:1
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julia> a = 1
1

julia> f(3)
4

This behavior may seem slightly odd for a normal variable, but allows for named functions - which are just normal
variables holding function objects - to be used before they are defined. This allows functions to be defined in whatever
order is intuitive and convenient, rather than forcing bottom up ordering or requiring forward declarations, as long as
they are defined by the time they are actually called. As an example, here is an inefficient, mutually recursive way to
test if positive integers are even or odd:

julia> even(n) = n == 0 ? true : odd(n-1);

julia> odd(n) = n == 0 ? false : even(n-1);

julia> even(3)
false

julia> odd(3)
true

Julia provides built-in, efficient functions to test for oddness and evenness called iseven() and isodd() so the
above definitions should only be taken as examples.

Hard vs. Soft Local Scope

Blocks which introduce a soft local scope, such as loops, are generally used to manipulate the variables in their parent
scope. Thus their default is to fully access all variables in their parent scope.

Conversely, the code inside blocks which introduce a hard local scope (function, type, and macro definitions) can be
executed at any place in a program. Remotely changing the state of global variables in other modules should be done
with care and thus this is an opt-in feature requiring the global keyword.

The reason to allow modifying local variables of parent scopes in nested functions is to allow constructing closures
which have a private state, for instance the state variable in the following example:

julia> let
state = 0
global counter
counter() = state += 1
end;

julia> counter()
1

julia> counter()
2

See also the closures in the examples in the next two sections.
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Let Blocks

Unlike assignments to local variables, 1et statements allocate new variable bindings each time they run. An assignment
modifies an existing value location, and let creates new locations. This difference is usually not important, and is only
detectable in the case of variables that outlive their scope via closures. The let syntax accepts a comma-separated
series of assignments and variable names:

julia> x, y, z = -1, -1, -1;

julia> let x = 1, z
println("x: $x, y: Sy") # x is local variable, y the global
println("z: $z") # errors as z has not been assigned yet but is local
end
x: 1, y: -1
ERROR: UndefVarError: z not defined

The assignments are evaluated in order, with each right-hand side evaluated in the scope before the new variable on
the left-hand side has been introduced. Therefore it makes sense to write something like 1et x = x since the two x
variables are distinct and have separate storage. Here is an example where the behavior of let is needed:

julia> Fs = Array{Any}(2); i = 1;
julia> while i <= 2

Fs[i] = ()->1i

i+=1

end

julia> Fs[1]()

julia> Fs[2]()

Here we create and store two closures that return variable i. However, it is always the same variable i, so the two
closures behave identically. We can use let to create a new binding for i:

julia> Fs = Array{Any}(2); i = 1;

julia> while i <= 2
let i =1
Fs[i] = ()->1
end
i+=1
end

julia> Fs[1]()

julia> Fs[2]()

Since the begin construct does not introduce a new scope, it can be useful to use a zero-argument let to just intro-
duce a new scope block without creating any new bindings:



104 CHAPTER 13. SCOPE OF VARIABLES

julia> let
local x = 1
let
local x = 2
end
X
end

Since let introduces a new scope block, the inner local x is a different variable than the outer local x.

For Loops and Comprehensions

for loops and Comprehensions have the following behavior: any new variables introduced in their body scopes are
freshly allocated for each loop iteration. This is in contrast to while loops which reuse the variables for all iterations.
Therefore these constructs are similar to while loops with let blocks inside:

julia> Fs = Array{Any}(2);
julia> for j = 1:2
Fs[i] = ()->3

end

julia> Fs[1]()

julia> Fs[2]()

for loops will reuse existing variables for its iteration variable:

julia> i = 9;

julia> for i = 1:3
end

julia> i
3

However, comprehensions do not do this, and always freshly allocate their iteration variables:

julia> x = 0;
julia> [ x for x = 1:3 |;

julia> x
%]

13.3 Constants

A common use of variables is giving names to specific, unchanging values. Such variables are only assigned once. This
intent can be conveyed to the compiler using the const keyword:
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julia> const e = 2.71828182845904523536;

julia> const pi = 3.14159265358979323846;

The const declaration is allowed on both global and local variables, but is especially useful for globals. It is difficult
for the compiler to optimize code involving global variables, since their values (or even their types) might change at
almost any time. If a global variable will not change, adding a const declaration solves this performance problem.

Local constants are quite different. The compiler is able to determine automatically when a local variable is constant,
so local constant declarations are not necessary for performance purposes.

Special top-level assignments, such as those performed by the function and struct keywords, are constant by
default.

Note that const only affects the variable binding; the variable may be bound to a mutable object (such as an array),
and that object may still be modified.
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Types

Type systems have traditionally fallen into two quite different camps: static type systems, where every program ex-
pression must have a type computable before the execution of the program, and dynamic type systems, where nothing
is known about types until run time, when the actual values manipulated by the program are available. Object orienta-
tion allows some flexibility in statically typed languages by letting code be written without the precise types of values
being known at compile time. The ability to write code that can operate on different types is called polymorphism. All
code in classic dynamically typed languages is polymorphic: only by explicitly checking types, or when objects fail to
support operations at run-time, are the types of any values ever restricted.

Julia’s type system is dynamic, but gains some of the advantages of static type systems by making it possible to indicate
that certain values are of specific types. This can be of great assistance in generating efficient code, but even more
significantly, it allows method dispatch on the types of function arguments to be deeply integrated with the language.
Method dispatch is explored in detail in Methods, but is rooted in the type system presented here.

The default behavior in Julia when types are omitted is to allow values to be of any type. Thus, one can write many
useful Julia programs without ever explicitly using types. When additional expressiveness is needed, however, it is
easy to gradually introduce explicit type annotations into previously "untyped” code. Doing so will typically increase
both the performance and robustness of these systems, and perhaps somewhat counterintuitively, often significantly
simplify them.

Describing Julia in the lingo of type systems, it is: dynamic, nominative and parametric. Generic types can be param-
eterized, and the hierarchical relationships between types are explicitly declared, rather than implied by compatible
structure. One particularly distinctive feature of Julia’s type system is that concrete types may not subtype each other:
all concrete types are final and may only have abstract types as their supertypes. While this might at first seem unduly
restrictive, it has many beneficial consequences with surprisingly few drawbacks. It turns out that being able to inherit
behavior is much more important than being able to inherit structure, and inheriting both causes significant difficulties
in traditional object-oriented languages. Other high-level aspects of Julia’s type system that should be mentioned up
front are:

e There is no division between object and non-object values: all values in Julia are true objects having a type that
belongs to a single, fully connected type graph, all nodes of which are equally first-class as types.

e There is no meaningful concept of a "compile-time type”: the only type a value has is its actual type when the
program is running. This is called a "run-time type” in object-oriented languages where the combination of static
compilation with polymorphism makes this distinction significant.

e Only values, not variables, have types - variables are simply names bound to values.

e Both abstract and concrete types can be parameterized by other types. They can also be parameterized by
symbols, by values of any type for which isbits() returns true (essentially, things like numbers and bools that
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are stored like C types or structs with no pointers to other objects), and also by tuples thereof. Type parameters
may be omitted when they do not need to be referenced or restricted.

Julia’s type system is designed to be powerful and expressive, yet clear, intuitive and unobtrusive. Many Julia program-
mers may never feel the need to write code that explicitly uses types. Some kinds of programming, however, become
clearer, simpler, faster and more robust with declared types.

14.1 Type Declarations

The :: operator can be used to attach type annotations to expressions and variables in programs. There are two
primary reasons to do this:

1. As an assertion to help confirm that your program works the way you expect,

2. To provide extra type information to the compiler, which can then improve performance in some cases

When appended to an expression computing a value, the :: operator is read as "is an instance of”. It can be used
anywhere to assert that the value of the expression on the left is an instance of the type on the right. When the type
on the right is concrete, the value on the left must have that type as its implementation - recall that all concrete types
are final, so no implementation is a subtype of any other. When the type is abstract, it suffices for the value to be
implemented by a concrete type that is a subtype of the abstract type. If the type assertion is not true, an exception
is thrown, otherwise, the left-hand value is returned:

julia> (1+2)::AbstractFloat
ERROR: TypeError: typeassert: expected AbstractFloat, got Int64

julia> (1+2)::Int
3

This allows a type assertion to be attached to any expression in-place.

When appended to a variable on the left-hand side of an assignment, or as part of a 1ocal declaration, the : : operator
means something a bit different: it declares the variable to always have the specified type, like a type declaration in a
statically-typed language such as C. Every value assigned to the variable will be converted to the declared type using
convert():

julia> function foo()
x::Int8 = 100
X
end
foo (generic function with 1 method)

julia> foo()
100

julia> typeof(ans)
Int8

This feature is useful for avoiding performance "gotchas” that could occur if one of the assignments to a variable
changed its type unexpectedly.

This "declaration” behavior only occurs in specific contexts:
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local x::Int8 # in a local declaration
x::Int8 = 10 # as the left-hand side of an assignment

and applies to the whole current scope, even before the declaration. Currently, type declarations cannot be used in
global scope, e.g. in the REPL, since Julia does not yet have constant-type globals.

Declarations can also be attached to function definitions:

function sinc(x)::Float64
if x ==
return 1
end
return sin(pixx)/(pi*x)
end

Returning from this function behaves just like an assignment to a variable with a declared type: the value is always
converted to Float64.

14.2 Abstract Types

Abstract types cannot be instantiated, and serve only as nodes in the type graph, thereby describing sets of related
concrete types: those concrete types which are their descendants. We begin with abstract types even though they
have no instantiation because they are the backbone of the type system: they form the conceptual hierarchy which
makes Julia's type system more than just a collection of object implementations.

Recall that in Integers and Floating-Point Numbers, we introduced a variety of concrete types of numeric values:
Int8,UINnt8,Int16,UInt16,Int32,UInt32,Int64,UInt64,Int128,UInt128,Float16,Float32,and Float64.
Although they have different representation sizes, Int8, Int16, Int32, Int64 and Int128 all have in common that
they are signed integer types. Likewise UInt8, UInt16,UInt32, UInt64 and UInt128 are all unsigned integer types,
while Float16, Float32 and Float64 are distinct in being floating-point types rather than integers. It is common
for a piece of code to make sense, for example, only if its arguments are some kind of integer, but not really depend
on what particular kind of integer. For example, the greatest common denominator algorithm works for all kinds of
integers, but will not work for floating-point numbers. Abstract types allow the construction of a hierarchy of types,
providing a context into which concrete types can fit. This allows you, for example, to easily program to any type that
is an integer, without restricting an algorithm to a specific type of integer.

Abstract types are declared using the abstract type keyword. The general syntaxes for declaring an abstract type
are:

abstract type «name» end
abstract type «name» <: «supertype» end

The abstract type keyword introduces a new abstract type, whose name is given by «name». This name can be
optionally followed by <: and an already-existing type, indicating that the newly declared abstract type is a subtype
of this "parent” type.

When no supertype is given, the default supertype is Any - a predefined abstract type that all objects are instances of
and all types are subtypes of. In type theory, Any is commonly called "top” because it is at the apex of the type graph.
Julia also has a predefined abstract "bottom” type, at the nadir of the type graph, which is written as Union{}. Itis
the exact opposite of Any: no object is an instance of Union{} and all types are supertypes of Union{}.

Let’s consider some of the abstract types that make up Julia’s numerical hierarchy:
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abstract type Number end

abstract type Real <: Number end
abstract type AbstractFloat <: Real end
abstract type Integer <: Real end
abstract type Signed <: Integer end
abstract type Unsigned <: Integer end

The Number type is a direct child type of Any, and Real is its child. In turn, Real has two children (it has more, but
only two are shown here; we'll get to the others later): Integer and AbstractFloat, separating the world into
representations of integers and representations of real numbers. Representations of real numbers include, of course,
floating-point types, but also include other types, such as rationals. Hence, AbstractFloat is a proper subtype of
Real, including only floating-point representations of real numbers. Integers are further subdivided into Signed and
Unsigned varieties.

The <: operator in general means "is a subtype of”, and, used in declarations like this, declares the right-hand type to
be an immediate supertype of the newly declared type. It can also be used in expressions as a subtype operator which
returns true when its left operand is a subtype of its right operand:

julia> Integer <: Number
true

julia> Integer <: AbstractFloat
false

An important use of abstract types is to provide default implementations for concrete types. To give a simple example,
consider:

function myplus(x,y)
X+y
end

The first thing to note is that the above argument declarations are equivalent to x : : Any and y : : Any. When this func-
tion is invoked, say as myplus(2, 5), the dispatcher chooses the most specific method named myplus that matches
the given arguments. (See Methods for more information on multiple dispatch.)

Assuming no method more specific than the above is found, Julia next internally defines and compiles a method called
myplus specifically for two Int arguments based on the generic function given above, i.e., it implicitly defines and
compiles:

function myplus(x::Int,y::Int)
x+y
end

and finally, it invokes this specific method.

Thus, abstract types allow programmers to write generic functions that can later be used as the default method by
many combinations of concrete types. Thanks to multiple dispatch, the programmer has full control over whether the
default or more specific method is used.

An important point to note is that there is no loss in performance if the programmer relies on a function whose
arguments are abstract types, because it is recompiled for each tuple of argument concrete types with which it is
invoked. (There may be a performance issue, however, in the case of function arguments that are containers of abstract
types; see Performance Tips.)
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14.3 Primitive Types

A primitive type is a concrete type whose data consists of plain old bits. Classic examples of primitive types are integers
and floating-point values. Unlike most languages, Julia lets you declare your own primitive types, rather than providing
only a fixed set of built-in ones. In fact, the standard primitive types are all defined in the language itself:

primitive type Float16 <: AbstractFloat 16 end
primitive type Float32 <: AbstractFloat 32 end
primitive type Float64 <: AbstractFloat 64 end

primitive type Bool <: Integer 8 end
primitive type Char 32 end

primitive type Int8 <: Signed 8 end

primitive type UInt8 <: Unsigned 8 end

primitive type Int16 <: Signed 16 end
primitive type UInt16 <: Unsigned 16 end
primitive type Int32 <: Signed 32 end
primitive type UInt32 <: Unsigned 32 end
primitive type Int64 <: Signed 64 end
primitive type UInt6é4 <: Unsigned 64 end
primitive type Int128 <: Signed 128 end
primitive type UInt128 <: Unsigned 128 end

The general syntaxes for declaring a primitive type are:

primitive type «name» «bits» end
primitive type «name» <: «supertype» «bits» end

The number of bits indicates how much storage the type requires and the name gives the new type a name. A primitive
type can optionally be declared to be a subtype of some supertype. If a supertype is omitted, then the type defaults
to having Any as its immediate supertype. The declaration of Bool above therefore means that a boolean value takes
eight bits to store, and has Integer as its immediate supertype. Currently, only sizes that are multiples of 8 bits are
supported. Therefore, boolean values, although they really need just a single bit, cannot be declared to be any smaller
than eight bits.

The types Bool, Int8 and UInt8 all have identical representations: they are eight-bit chunks of memory. Since Julia’s
type system is nominative, however, they are not interchangeable despite having identical structure. A fundamental
difference between them is that they have different supertypes: Bool's direct supertypeis Integer, Int8'sis Signed,
and UInt8’s is Unsigned. All other differences between Bool, Int8, and UInt8 are matters of behavior - the way
functions are defined to act when given objects of these types as arguments. This is why a nominative type system
is necessary: if structure determined type, which in turn dictates behavior, then it would be impossible to make Bool
behave any differently than Int8 or ULnt8.

14.4 Composite Types

Composite types are called records, structs, or objects in various languages. A composite type is a collection of named
fields, an instance of which can be treated as a single value. In many languages, composite types are the only kind of
user-definable type, and they are by far the most commonly used user-defined type in Julia as well.

In mainstream object oriented languages, such as C++, Java, Python and Ruby, composite types also have named
functions associated with them, and the combination is called an "object”. In purer object-oriented languages, such as
Ruby or Smalltalk, all values are objects whether they are composites or not. In less pure object oriented languages,
including C++ and Java, some values, such as integers and floating-point values, are not objects, while instances of
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user-defined composite types are true objects with associated methods. In Julia, all values are objects, but functions
are not bundled with the objects they operate on. This is necessary since Julia chooses which method of a function
to use by multiple dispatch, meaning that the types of all of a function’s arguments are considered when selecting a
method, rather than just the first one (see Methods for more information on methods and dispatch). Thus, it would be
inappropriate for functions to "belong” to only their first argument. Organizing methods into function objects rather
than having named bags of methods "inside” each object ends up being a highly beneficial aspect of the language
design.

Composite types are introduced with the struct keyword followed by a block of field names, optionally annotated
with types using the : : operator:

julia> struct Foo
bar
baz::Int
qux::Float64
end

Fields with no type annotation default to Any, and can accordingly hold any type of value.
New objects of type Foo are created by applying the Foo type object like a function to values for its fields:

julia> foo = Foo("Hello, world.", 23, 1.5)
Foo("Hello, world.", 23, 1.5)

julia> typeof(foo)
Foo

When a type is applied like a function it is called a constructor. Two constructors are generated automatically (these
are called default constructors). One accepts any arguments and calls convert () to convert them to the types of the
fields, and the other accepts arguments that match the field types exactly. The reason both of these are generated is
that this makes it easier to add new definitions without inadvertently replacing a default constructor.

Since the bar field is unconstrained in type, any value will do. However, the value for baz must be convertible to Int:

julia> Foo((), 23.5, 1)

ERROR: InexactError()

Stacktrace:

[1] convert(::Type{Int64}, ::Float64) at ./float.jl:679
[2] Foo(::Tuple{}, ::Float64, ::Int64) at ./none:2

You may find a list of field names using the fieldnames function.

julia> fieldnames(foo)
3-element Array{Symbol,1}:
:bar
:baz
1qux

You can access the field values of a composite object using the traditional foo.bar notation:

julia> foo.bar
"Hello, world."

julia> foo.baz
23

julia> foo.qux
1.5
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Composite objects declared with struct are immutable; they cannot be modified after construction. This may seem
odd at first, but it has several advantages:

e It can be more efficient. Some structs can be packed efficiently into arrays, and in some cases the compiler is
able to avoid allocating immutable objects entirely.

e [t is not possible to violate the invariants provided by the type's constructors.

e Code using immutable objects can be easier to reason about.

An immutable object might contain mutable objects, such as arrays, as fields. Those contained objects will remain
mutable; only the fields of the immutable object itself cannot be changed to point to different objects.

Where required, mutable composite objects can be declared with the keyword mutable struct, to be discussed in
the next section.

Composite types with no fields are singletons; there can be only one instance of such types:

julia> struct NoFields

end
julia> NoFields() === NoFields()
true
The === function confirms that the "two” constructed instances of NoFields are actually one and the same. Singleton

types are described in further detail below.

There is much more to say about how instances of composite types are created, but that discussion depends on both
Parametric Types and on Methods, and is sufficiently important to be addressed in its own section: Constructors.

14.5 Mutable Composite Types

If a composite type is declared with mutable struct instead of struct, then instances of it can be modified:

julia> mutable struct Bar
baz
qux: :Float64
end

julia> bar = Bar("Hello", 1.5);

julia> bar.qux = 2.0
2.0

julia> bar.baz = 1//2
1//2

In order to support mutation, such objects are generally allocated on the heap, and have stable memory addresses. A
mutable object is like a little container that might hold different values over time, and so can only be reliably identified
with its address. In contrast, an instance of an immutable type is associated with specific field values -- the field values
alone tell you everything about the object. In deciding whether to make a type mutable, ask whether two instances
with the same field values would be considered identical, or if they might need to change independently over time. If
they would be considered identical, the type should probably be immutable.

To recap, two essential properties define immutability in Julia:
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e An object with an immutable type is passed around (both in assignment statements and in function calls) by
copying, whereas a mutable type is passed around by reference.

e |t is not permitted to modify the fields of a composite immutable type.
It is instructive, particularly for readers whose background is C/C++, to consider why these two properties go hand
in hand. If they were separated, i.e., if the fields of objects passed around by copying could be modified, then it
would become more difficult to reason about certain instances of generic code. For example, suppose x is a function
argument of an abstract type, and suppose that the function changes a field: x.isprocessed = true. Depending
on whether x is passed by copying or by reference, this statement may or may not alter the actual argument in the

calling routine. Julia sidesteps the possibility of creating functions with unknown effects in this scenario by forbidding
modification of fields of objects passed around by copying.

14.6 Declared Types
The three kinds of types discussed in the previous three sections are actually all closely related. They share the same
key properties:

e They are explicitly declared.

e They have names.

e They have explicitly declared supertypes.

e They may have parameters.

Because of these shared properties, these types are internally represented as instances of the same concept, DataType,
which is the type of any of these types:

julia> typeof(Real)
DataType

julia> typeof(Int)
DataType

A DataType may be abstract or concrete. If it is concrete, it has a specified size, storage layout, and (optionally) field
names. Thus a bits type is a DataType with nonzero size, but no field names. A composite type is a DataType that
has field names or is empty (zero size).

Every concrete value in the system is an instance of some DataType.

14.7 Type Unions

Atype union is a special abstract type which includes as objects all instances of any of its argument types, constructed
using the special Union function:

julia> IntOrString = Union{Int, AbstractString}
Union{AbstractString, Int64}

julia> 1 :: IntOrString
1
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julia> "Hello!" :: IntOrString
"Hello!"

julia> 1.0 :: IntOrString
ERROR: TypeError: typeassert: expected Union{AbstractString, Int64}, got Float64

The compilers for many languages have an internal union construct for reasoning about types; Julia simply exposes it
to the programmer.

14.8 Parametric Types

Animportant and powerful feature of Julia’s type system is that it is parametric: types can take parameters, so that type
declarations actually introduce a whole family of new types - one for each possible combination of parameter values.
There are many languages that support some version of generic programming, wherein data structures and algorithms
to manipulate them may be specified without specifying the exact types involved. For example, some form of generic
programming exists in ML, Haskell, Ada, Eiffel, C++, Java, C#, F#, and Scala, just to name a few. Some of these languages
support true parametric polymorphism (e.g. ML, Haskell, Scala), while others support ad-hoc, template-based styles
of generic programming (e.g. C++, Java). With so many different varieties of generic programming and parametric
types in various languages, we won't even attempt to compare Julia’s parametric types to other languages, but will
instead focus on explaining Julia’s system in its own right. We will note, however, that because Julia is a dynamically
typed language and doesn’t need to make all type decisions at compile time, many traditional difficulties encountered
in static parametric type systems can be relatively easily handled.

All declared types (the DataType variety) can be parameterized, with the same syntax in each case. We will discuss
them in the following order: first, parametric composite types, then parametric abstract types, and finally parametric
bits types.

Parametric Composite Types

Type parameters are introduced immediately after the type name, surrounded by curly braces:

julia> struct Point{T}
x::T
y:i:T
end

This declaration defines a new parametric type, Point{T}, holding two "coordinates” of type T. What, one may ask,
is T? Well, that’s precisely the point of parametric types: it can be any type at all (or a value of any bits type, actually,
although here it's clearly used as a type). Point{Float64} is a concrete type equivalent to the type defined by
replacing T in the definition of Point with Float64. Thus, this single declaration actually declares an unlimited
number of types: Point{Float64}, Point{AbstractString}, Point{Int64}, etc. Each of these is now a usable
concrete type:

julia> Point{Float64}
Point{Float64}

julia> Point{AbstractString}
Point{AbstractString}

The type Point{Float64} is a point whose coordinates are 64-bit floating-point values, while the type Point{Ab-
stractString} is a "point” whose "coordinates” are string objects (see Strings).

Point itself is also a valid type object, containing all instances Point{Float64}, Point{AbstractString}, etc. as
subtypes:
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julia> Point{Float64} <: Point
true

julia> Point{AbstractString} <: Point
true
Other types, of course, are not subtypes of it:

julia> Float64 <: Point
false

julia> AbstractString <: Point

false

Concrete Point types with different values of T are never subtypes of each other:
julia> Point{Float64} <: Point{Int64}

false

julia> Point{Float64} <: Point{Real}
false

Warning

This last point is very important: even though Float64 <: Real we DO NOT have Point{Float64}
<: Point{Real}.

In other words, in the parlance of type theory, Julia’s type parameters are invariant, rather than being covariant (or
even contravariant). This is for practical reasons: while any instance of Point{Float64} may conceptually be like an
instance of Point{Real} as well, the two types have different representations in memory:

e Aninstance of Point{Float64} can be represented compactly and efficiently as an immediate pair of 64-bit
values;

e Aninstance of Point{Real} must be able to hold any pair of instances of Real. Since objects that are instances
of Real can be of arbitrary size and structure, in practice an instance of Point{Real} must be represented as
a pair of pointers to individually allocated Real objects.

The efficiency gained by being able to store Point{Float64} objects with immediate values is magnified enormously
in the case of arrays: an Array{Float64} can be stored as a contiguous memory block of 64-bit floating-point
values, whereas an Array{Real} must be an array of pointers to individually allocated Real objects - which may
well be boxed 64-bit floating-point values, but also might be arbitrarily large, complex objects, which are declared to
be implementations of the Real abstract type.

Since Point{Float64} is not a subtype of Point{Real}, the following method can't be applied to arguments of
type Point{Float64}:

function norm(p::Point{Real})
sqrt(p.x"2 + p.y"2)
end

A correct way to define a method that accepts all arguments of type Point{T} where T is a subtype of Real is:
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function norm(p::Point{<:Real})
sqrt(p.x*2 + p.y*2)
end

(Equivalently, one could define function norm{T<:Real}(p::Point{T}) or function norm(p::Point{T} where
T<:Real); see UnionAll Types.)

More examples will be discussed later in Methods.

How does one construct a Point object? It is possible to define custom constructors for composite types, which will
be discussed in detail in Constructors, but in the absence of any special constructor declarations, there are two default
ways of creating new composite objects, one in which the type parameters are explicitly given and the other in which
they are implied by the arguments to the object constructor.

Since the type Point{Float64} is a concrete type equivalent to Point declared with Float64 in place of T, it can
be applied as a constructor accordingly:

julia> Point{Float64}(1.0, 2.8)
Point{Float64}(1.0, 2.0)

julia> typeof(ans)
Point{Float64}

For the default constructor, exactly one argument must be supplied for each field:

julia> Point{Float64}(1.0)
ERROR: MethodError: Cannot ‘convert’ an object of type Float64 to an object of type Point{Float64
}
This may have arisen from a call to the constructor Point{Float64}(...),
since type constructors fall back to convert methods.
Stacktrace:
[1] Point{Float64}(::Float64) at ./sysimg.jl:24

julia> Point{Float64}(1.0,2.0,3.0)
ERROR: MethodError: no method matching Point{Float64}(::Float64, ::Float64, ::Float64)

Only one default constructor is generated for parametric types, since overriding it is not possible. This constructor
accepts any arguments and converts them to the field types.

In many cases, it is redundant to provide the type of Point object one wants to construct, since the types of arguments
to the constructor call already implicitly provide type information. For that reason, you can also apply Point itself as
a constructor, provided that the implied value of the parameter type T is unambiguous:

julia> Point(1.0,2.0)
Point{Float64}(1.0, 2.0)

julia> typeof(ans)
Point{Float64}

julia> Point(1,2)
Point{Int64}(1, 2)

julia> typeof(ans)
Point{Int64}

In the case of Point, the type of T is unambiguously implied if and only if the two arguments to Point have the same
type. When this isn't the case, the constructor will fail with a MethodError:
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julia> Point(1,2.5)
ERROR: MethodError: no method matching Point(::Int64, ::Float64)
Closest candidates are:

Point(::T, !Matched::T) where T at none:2

Constructor methods to appropriately handle such mixed cases can be defined, but that will not be discussed until
later on in Constructors.

Parametric Abstract Types

Parametric abstract type declarations declare a collection of abstract types, in much the same way:

‘julia> abstract type Pointy{T} end

With this declaration, Pointy{T} is a distinct abstract type for each type or integer value of T. As with parametric
composite types, each such instance is a subtype of Pointy:
julia> Pointy{Int64} <: Pointy

true

julia> Pointy{1} <: Pointy

true

Parametric abstract types are invariant, much as parametric composite types are:
julia> Pointy{Float64} <: Pointy{Real}

false

julia> Pointy{Real} <: Pointy{Float64}
false

The notation Pointy{<:Real} can be used to express the Julia analogue of a covariant type, while Pointy{>:Int}
the analogue of a contravariant type, but technically these represent sets of types (see UnionAll Types).

julia> Pointy{Float64} <: Pointy{<:Real}
true

julia> Pointy{Real} <: Pointy{>:Int}
true

Much as plain old abstract types serve to create a useful hierarchy of types over concrete types, parametric abstract
types serve the same purpose with respect to parametric composite types. We could, for example, have declared
Point{T} to be a subtype of Pointy{T} as follows:
julia> struct Point{T} <: Pointy{T}
x::T
y:o:T
end

Given such a declaration, for each choice of T, we have Point{T} as a subtype of Pointy{T}:
julia> Point{Float64} <: Pointy{Float64}

true

julia> Point{Real} <: Pointy{Real}
true

julia> Point{AbstractString} <: Pointy{AbstractString}
true
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This relationship is also invariant:

julia> Point{Float64} <: Pointy{Real}
false

julia> Point{Float64} <: Pointy{<:Real}
true

What purpose do parametric abstract types like Pointy serve? Consider if we create a point-like implementation that
only requires a single coordinate because the point is on the diagonal line x = y:

julia> struct DiagPoint{T} <: Pointy{T}
x::T
end

Now both Point{Float64} and DiagPoint{Float64} are implementations of the Pointy{Float64} abstraction,
and similarly for every other possible choice of type T. This allows programming to a common interface shared by all
Pointy objects, implemented for both Point and DiagPoint. This cannot be fully demonstrated, however, until we
have introduced methods and dispatch in the next section, Methods.

There are situations where it may not make sense for type parameters to range freely over all possible types. In such
situations, one can constrain the range of T like so:

‘julia> abstract type Pointy{T<:Real} end

With such a declaration, it is acceptable to use any type that is a subtype of Real in place of T, but not types that are
not subtypes of Real:

julia> Pointy{Float64}
Pointy{Float64}

julia> Pointy{Real}
Pointy{Real}

julia> Pointy{AbstractString}
ERROR: TypeError: Pointy: in T, expected T<:Real, got Type{AbstractString}

julia> Pointy{1}
ERROR: TypeError: Pointy: in T, expected T<:Real, got Int64

Type parameters for parametric composite types can be restricted in the same manner:

struct Point{T<:Real} <: Pointy{T}
x::T
y:o:T

end

To give a real-world example of how all this parametric type machinery can be useful, here is the actual definition of
Julia’s Rational immutable type (except that we omit the constructor here for simplicity), representing an exact ratio
of integers:

struct Rational{T<:Integer} <: Real
num: :T
den::T

end
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It only makes sense to take ratios of integer values, so the parameter type T is restricted to being a subtype of Inte-
ger, and a ratio of integers represents a value on the real number line, so any Rational is an instance of the Real
abstraction.

Tuple Types

Tuples are an abstraction of the arguments of a function - without the function itself. The salient aspects of a function’s
arguments are their order and their types. Therefore a tuple type is similar to a parameterized immutable type where
each parameter is the type of one field. For example, a 2-element tuple type resembles the following immutable type:

struct Tuple2{A,B}
a::A
b::B

end

However, there are three key differences:

e Tuple types may have any number of parameters.

o Tuple types are covariant in their parameters: Tuple{Int}isasubtypeof Tuple{Any}. Therefore Tuple{Any}
is considered an abstract type, and tuple types are only concrete if their parameters are.

e Tuples do not have field names; fields are only accessed by index.

Tuple values are written with parentheses and commas. When a tuple is constructed, an appropriate tuple type is
generated on demand:

julia> typeof((1,"foo",2.5))
Tuple{Int64,String, Float64}

Note the implications of covariance:
julia> Tuple{Int,AbstractString} <: Tuple{Real, Any}

true

julia> Tuple{Int,AbstractString} <: Tuple{Real,Real}
false

julia> Tuple{Int,AbstractString} <: Tuple{Real,}
false

Intuitively, this corresponds to the type of a function’s arguments being a subtype of the function’s signature (when
the signature matches).

Vararg Tuple Types

The last parameter of a tuple type can be the special type Vararg, which denotes any number of trailing elements:
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julia> mytupletype = Tuple{AbstractString,Vararg{Int}}
Tuple{AbstractString,Vararg{Int64,N} where N}

julia>
true

julia>
true

julia>
true

julia>
false

isa(("1",), mytupletype)

isa(("1",1), mytupletype)

isa(("1",1,2), mytupletype)

isa(("1",1,2,3.0), mytupletype)

Notice that Vararg{T} corresponds to zero or more elements of type T. Vararg tuple types are used to represent the
arguments accepted by varargs methods (see Varargs Functions).

The type Vararg{T, N} corresponds to exactly N elements of type T. NTuple{N, T} is a convenient alias for Tu-
ple{Vararg{T,N}},i.e. a tuple type containing exactly N elements of type T.

Singleton Types

There is a special kind of abstract parametric type that must be mentioned here: singleton types. For each type, T, the
"singleton type” Type{T} is an abstract type whose only instance is the object T. Since the definition is a little difficult
to parse, let's look at some examples:

julia>
true

julia>
false

julia>
true

julia>
false

isa(Float64, Type{Float64})

isa(Real, Type{Float64})

isa(Real, Type{Real})

isa(Float64, Type{Real})

In other words, isa (A, Type{B}) is true if and only if A and B are the same object and that object is a type. Without
the parameter, Type is simply an abstract type which has all type objects as its instances, including, of course, singleton

types:
julia>
true

julia>
true

julia>
true

isa(Type{Float64}, Type)

isa(Float64, Type)

isa(Real, Type)

Any object that is not a type is not an instance of Type:



122 CHAPTER 14. TYPES

julia> isa(1, Type)
false

julia> isa("foo", Type)
false

Until we discuss Parametric Methods and conversions, it is difficult to explain the utility of the singleton type construct,
but in short, it allows one to specialize function behavior on specific type values. This is useful for writing methods
(especially parametric ones) whose behavior depends on a type that is given as an explicit argument rather than implied
by the type of one of its arguments.

A few popular languages have singleton types, including Haskell, Scala and Ruby. In general usage, the term "singleton
type” refers to a type whose only instance is a single value. This meaning applies to Julia’s singleton types, but with
that caveat that only type objects have singleton types.

Parametric Primitive Types

Primitive types can also be declared parametrically. For example, pointers are represented as primitive types which
would be declared in Julia like this:

# 32-bit system:
primitive type Ptr{T} 32 end

# 64-bit system:
primitive type Ptr{T} 64 end

The slightly odd feature of these declarations as compared to typical parametric composite types, is that the type pa-
rameter T is not used in the definition of the type itself - it is just an abstract tag, essentially defining an entire family of
types with identical structure, differentiated only by their type parameter. Thus, Ptr{Float64} and Ptr{Int64} are
distinct types, even though they have identical representations. And of course, all specific pointer types are subtypes
of the umbrella Ptr type:

julia> Ptr{Float64} <: Ptr
true

julia> Ptr{Int64} <: Ptr
true

14.9 UnionAll Types

We have said that a parametric type like Ptr acts as a supertype of all its instances (Ptr{Int64} etc.). How does this
work? Ptr itself cannot be a normal data type, since without knowing the type of the referenced data the type clearly
cannot be used for memory operations. The answer is that Ptr (or other parametric types like Array) is a different
kind of type called aUnionAll type. Such a type expresses the iterated union of types for all values of some parameter.

UnionAll types are usually written using the keyword where. For example Ptr could be more accurately written
as Ptr{T} where T, meaning all values whose type is Ptr{T} for some value of T. In this context, the parameter T
is also often called a "type variable” since it is like a variable that ranges over types. Each where introduces a single
type variable, so these expressions are nested for types with multiple parameters, for example Array{T,N} where
N where T.

The type application syntax A{B, C} requires A to be a UnionAll type, and first substitutes B for the outermost type
variable in A. The result is expected to be another UnionAll type, into which C is then substituted. So A{B,C} is
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equivalent to A{B} {C}. This explains why it is possible to partially instantiate a type, as in Array{Float64}: the first
parameter value has been fixed, but the second still ranges over all possible values. Using explicit where syntax, any
subset of parameters can be fixed. For example, the type of all 1-dimensional arrays can be written as Array{T, 1}
where T.

Type variables can be restricted with subtype relations. Array{T} where T<:Integer refers to all arrays whose
element type is some kind of Integer. The syntax Array{<:Integer} is a convenient shorthand for Array{T}
where T<:Integer. Type variables can have both lower and upper bounds. Array{T} where Int<:T<:Number
refers to all arrays of Numbers that are able to contain Ints (since T must be at least as big as Int). The syntax where
T>:Int also works to specify only the lower bound of a type variable, and Array{>:Int} is equivalent to Array{T}
where T>:Int.

Since where expressions nest, type variable bounds can refer to outer type variables. For example Tuple{T, Ar-
ray{S}} where S<:AbstractArray{T} where T<:Real refers to 2-tuples whose first element is some Real,
and whose second element is an Array of any kind of array whose element type contains the type of the first tuple
element.

The where keyword itself can be nested inside a more complex declaration. For example, consider the two types
created by the following declarations:

julia> const T1 = Array{Array{T,1} where T, 1}
Array{Array{T,1} where T,1}

julia> const T2 = Array{Array{T,1}, 1} where T
Array{Array{T,1},1} where T

Type T1 defines a 1-dimensional array of 1-dimensional arrays; each of the inner arrays consists of objects of the same
type, but this type may vary from one inner array to the next. On the other hand, type T2 defines a 1-dimensional
array of 1-dimensional arrays all of whose inner arrays must have the same type. Note that T2 is an abstract type, e.g.,
Array{Array{Int,1},1} <: T2,whereas T1 is a concrete type. As a consequence, T1 can be constructed with a
zero-argument constructor a=T1() but T2 cannot.

There is a convenient syntax for naming such types, similar to the short form of function definition syntax:
‘ Vector{T} = Array{T,1}

This is equivalent to const Vector = Array{T,1} where T.Writing Vector{Float64} is equivalent to writing
Array{Float64, 1}, and the umbrella type Vector has as instances all Array objects where the second parameter
- the number of array dimensions - is 1, regardless of what the element type is. In languages where parametric types
must always be specified in full, this is not especially helpful, but in Julia, this allows one to write just Vector for the
abstract type including all one-dimensional dense arrays of any element type.

14.10 Type Aliases

Sometimes it is convenient to introduce a new name for an already expressible type. This can be done with a simple
assignment statement. For example, UInt is aliased to either UInt32 or UInt64 as is appropriate for the size of
pointers on the system:

# 32-bit system:
julia> UInt
UInt32

# 64-bit system:
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julia> UInt
UInt64

This is accomplished via the following code in base/boot. j1:

if Int === Int64

const UInt = UInt64
else

const UInt = UInt32
end

Of course, this depends on what Int is aliased to - but that is predefined to be the correct type - either Int32 or
Int64.

(Note that unlike Int, Float does not exist as a type alias for a specific sized AbstractFloat. Unlike with integer
registers, the floating point register sizes are specified by the IEEE-754 standard. Whereas the size of Int reflects the
size of a native pointer on that machine.)

14.11 Operations on Types

Since types in Julia are themselves objects, ordinary functions can operate on them. Some functions that are particu-
larly useful for working with or exploring types have already been introduced, such as the <: operator, which indicates
whether its left hand operand is a subtype of its right hand operand.

The isa function tests if an object is of a given type and returns true or false:

julia> isa(1, Int)
true

julia> isa(1, AbstractFloat)
false

The typeof () function, already used throughout the manual in examples, returns the type of its argument. Since, as
noted above, types are objects, they also have types, and we can ask what their types are:

julia> typeof(Rational{Int})
DataType

julia> typeof(Union{Real,Float64,Rational})
DataType

julia> typeof(Union{Real, String})
Union

What if we repeat the process? What is the type of a type of a type? As it happens, types are all composite values and
thus all have a type of DataType:

julia> typeof(DataType)
DataType

julia> typeof(Union)
DataType
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DataType is its own type.

Another operation that applies to some types is supertype (), which reveals a type's supertype. Only declared types
(DataType) have unambiguous supertypes:

julia> supertype(Float64)
AbstractFloat

julia> supertype(Number)
Any

julia> supertype(AbstractString)
Any

julia> supertype(Any)
Any

If you apply supertype() to other type objects (or non-type objects), a MethodError is raised:

julia> supertype(Union{Float64,Int64})
ERROR: MethodError: no method matching supertype(::Type{Union{Float64, Int64}})
Closest candidates are:

supertype(!Matched: :DataType) at operators.jl:41

supertype(!Matched: :UnionAll) at operators.jl:46

14.12 Custom pretty-printing

Often, one wants to customize how instances of a type are displayed. This is accomplished by overloading the show ()
function. For example, suppose we define a type to represent complex numbers in polar form:

julia> struct Polar{T<:Real} <: Number
ro:T
0::T
end

julia> Polar(r::Real®, ::Real) = Polar(promote(ro,)...)
Polar

Here, we've added a custom constructor function so that it can take arguments of different Real types and promote
them to a common type (see Constructors and Conversion and Promotion). (Of course, we would have to define
lots of other methods, too, to make it act like a Number, e.g. +, *, one, zero, promotion rules and so on.) By de-
fault, instances of this type display rather simply, with information about the type name and the field values, as e.g.
Polar{Float64}(3.0,4.0).

If we want it to display instead as 3.8 * exp(4.0im), we would define the following method to print the object to
a given output object io (representing a file, terminal, buffer, etcetera; see Networking and Streams):

julia> Base.show(io::I0, z::Polar) = print(io, z.r, " * exp(", z0., "im)")

More fine-grained control over display of Polar objects is possible. In particular, sometimes one wants both a verbose
multi-line printing format, used for displaying a single object in the REPL and other interactive environments, and also
a more compact single-line format used for print () or for displaying the object as part of another object (e.g. in an
array). Although by default the show(io, z) function is called in both cases, you can define a different multi-line
format for displaying an object by overloading a three-argument form of show that takes the text/plain MIME type
as its second argument (see Multimedia |/0), for example:



126 CHAPTER 14. TYPES

julia> Base.show{T}(io::I0, ::MIME"text/plain", z::Polar{T}) =
print(io, "Polar{$T} complex number:\n ", z)

(Note that print (..., z) here will call the 2-argument show(io, z) method.) This results in:

julia> Polar(3, 4.0)
Polar{Float64} complex number:
3.0 * exp(4.0im)

julia> [Polar(3, 4.8), Polar(4.9,5.3)]
2-element Array{Polar{Float64},1}:

3.0 * exp(4.0im)

4.0 * exp(5.3im)

where the single-line show(io, z) form is still used for an array of Polar values. Technically, the REPL calls dis-
play(z) to display the result of executing a line, which defaults to show(STDOUT, MIME("text/plain"), z),
which in turn defaults to show(STDOUT, z), but you should not define new display() methods unless you are
defining a new multimedia display handler (see Multimedia 1/0).

Moreover, you can also define show methods for other MIME types in order to enable richer display (HTML, images,
etcetera) of objects in environments that support this (e.g. IJulia). For example, we can define formatted HTML display
of Polar objects, with superscripts and italics, via:

julia> Base.show{T}(io::I0, ::MIME"text/html", z::Polar{T}) =
println(io, "<code>Polar{S8T}</code> complex number: ",
z.r, " <i»e</i><sup>", z0., " <i>i</i></sup>")

A Polar object will then display automatically using HTML in an environment that supports HTML display, but you
can call show manually to get HTML output if you want:

julia> show(STDOUT, "text/html", Polar(3.0,4.0))
<code>Polar{Float64}</code> complex number: 3.0 <i>e</i><sup>4.0 <i>i</i></sup>

14.13 "Value types”

In Julia, you can’t dispatch on a value such as true or false. However, you can dispatch on parametric types, and
Julia allows you to include "plain bits” values (Types, Symbols, Integers, floating-point numbers, tuples, etc.) as type
parameters. A common example is the dimensionality parameter in Array{T, N}, where T is a type (e.g., Float64)
but N is just an Int.

You can create your own custom types that take values as parameters, and use them to control dispatch of custom
types. By way of illustration of this idea, let’s introduce a parametric type, Val{T}, which serves as a customary way
to exploit this technique for cases where you don’t need a more elaborate hierarchy.

Valis defined as:
julia> struct Val{T}

end

There is no more to the implementation of Val than this. Some functions in Julia’s standard library accept Val types
as arguments, and you can also use it to write your own functions. For example:

julia> firstlast(::Type{Val{true}}) = "First"

firstlast (generic function with 1 method)

julia> firstlast(::Type{Val{false}}) = "Last"
firstlast (generic function with 2 methods)
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julia> firstlast(Val{true})
"First"

julia> firstlast(Val{false})
"Last"

For consistency across Julia, the call site should always pass a Valtype rather than creating an instance, i.e., use
foo(Val{:bar}) rather than foo(Val{:bar}()).

It's worth noting that it's extremely easy to mis-use parametric "value” types, including Val; in unfavorable cases, you
can easily end up making the performance of your code much worse. In particular, you would never want to write
actual code as illustrated above. For more information about the proper (and improper) uses of Val, please read the
more extensive discussion in the performance tips.

14.14 Nullable Types: Representing Missing Values

In many settings, you need to interact with a value of type T that may or may not exist. To handle these settings, Julia
provides a parametric type called Nullable{T}, which can be thought of as a specialized container type that can
contain either zero or one values. Nullable{T} provides a minimal interface designed to ensure that interactions
with missing values are safe. At present, the interface consists of several possible interactions:

e Construct a Nullable object.

e Check if aNullable object has a missing value.

e Access the value of a Nullable object with a guarantee that a Nul1Exception will be thrown if the object’s
value is missing.

e Access the value of a Nullable object with a guarantee that a default value of type T will be returned if the
object’s value is missing.

e Perform an operation on the value (if it exists) of a Nullable object, getting a Nullable result. The result will
be missing if the original value was missing.

e Performing a test on the value (if it exists) of a Nullable object, getting a result that is missing if either the
Nullable itself was missing, or the test failed.

o Perform general operations on single Nullable objects, propagating the missing data.

Constructing Nullable objects

To construct an object representing a missing value of type T, use the Nullable{T} () function:

julia> x1 = Nullable{Int64}()
Nullable{Int64}()

julia> x2 = Nullable{Float64}()
Nullable{Float64}()

julia> x3 = Nullable{Vector{Int64}}()
Nullable{Array{Int64,1}}()

To construct an object representing a non-missing value of type T, use the Nullable(x: :T) function:
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julia> x1 = Nullable(1)
Nullable{Int64}(1)

julia> x2 = Nullable(1.0)
Nullable{Float64}(1.0)

julia> x3 = Nullable([1, 2, 3])
Nullable{Array{Int64,1}}([1, 2, 3])

Note the core distinction between these two ways of constructing a Nullable object: in one style, you provide a
type, T, as a function parameter; in the other style, you provide a single value of type T as an argument.

Checking if a Nullable object has a value

You can check if a Nullable object has any value using isnull():

julia> isnull(Nullable{Float64}())
true

julia> isnull(Nullable(©.0))
false

Safely accessing the value of a Nullable object

You can safely access the value of a Nullable object using get():

julia> get(Nullable{Float64}())

ERROR: NullException()

Stacktrace:

[1] get(::Nullable{Float64}) at ./nullable.jl:92

julia> get(Nullable(1.0))
1.0

If the value is not present, as it would be for Nullable{Float64}, a NullException error will be thrown. The
error-throwing nature of the get () function ensures that any attempt to access a missing value immediately fails.

In cases for which a reasonable default value exists that could be used when a Nullable object’s value turns out to
be missing, you can provide this default value as a second argument to get ():

julia> get(Nullable{Float64}(), 0.0)
0.0

julia> get(Nullable(1.0), 0.0)
1.0

Tip
Make sure the type of the default value passed to get() and that of the Nullable object match to
avoid type instability, which could hurt performance. Use convert () manually if needed.
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Performing operations on Nullable objects

Nullable objects represent values that are possibly missing, and it is possible to write all code using these objects by
first testing to see if the value is missing with isnull(), and then doing an appropriate action. However, there are
some common use cases Where the code could be more concise or clear by using a higher-order function.

The map function takes as arguments a function f and a Nullable value x. It produces a Nullable:

o If x is a missing value, then it produces a missing value;

e If x has a value, then it produces a Nullable containing f (get(x)) as value.

This is useful for performing simple operations on values that might be missing if the desired behaviour is to simply
propagate the missing values forward.

The filter function takes as arguments a predicate function p (that is, a function returning a boolean)andaNullable
value x. It produces a Nullable value:

o If x is a missing value, then it produces a missing value;
o If p(get(x)) is true, then it produces the original value x;

o If p(get(x)) is false, then it produces a missing value.

In this way, filter can be thought of as selecting only allowable values, and converting non-allowable values to
missing values.

While map and filter are useful in specific cases, by far the most useful higher-order function is broadcast, which
can handle a wide variety of cases, including making existing operations work and propagate Nullables. An example
will motivate the need for broadcast. Suppose we have a function that computes the greater of two real roots of a
quadratic equation, using the quadratic formula:

julia> root(a::Real, b::Real, c::Real) = (-b + v(b*2 - 4a*c)) / 2a
root (generic function with 1 method)

We may verify that the result of root(1, -9, 20) is 5.0, as we expect, since 5.0 is the greater of two real roots of
the quadratic equation.

Suppose now that we want to find the greatest real root of a quadratic equations where the coefficients might be
missing values. Having missing values in datasets is a common occurrence in real-world data, and so it is important to
be able to deal with them. But we cannot find the roots of an equation if we do not know all the coefficients. The best
solution to this will depend on the particular use case; perhaps we should throw an error. However, for this example,
we will assume that the best solution is to propagate the missing values forward; that is, if any input is missing, we
simply produce a missing output.

The broadcast() function makes this task easy; we can simply pass the root function we wrote to broadcast:

julia> broadcast(root, Nullable(1), Nullable(-9), Nullable(20))
Nullable{Float64}(5.0)

julia> broadcast(root, Nullable(1), Nullable{Int}(), Nullable{Int}())
Nullable{Float64}()

julia> broadcast(root, Nullable{Int}(), Nullable(-9), Nullable(20))
Nullable{Float64}()
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If one or more of the inputs is missing, then the output of broadcast () will be missing.
There exists special syntactic sugar for the broadcast() function using a dot notation:

julia> root.(Nullable(1), Nullable(-9), Nullable(20))
Nullable{Float64}(5.0)

In particular, the regular arithmetic operators can be broadcast () conveniently using .-prefixed operators:

julia> Nullable(2) ./ Nullable(3) .+ Nullable(1.0)
Nullable{Float64}(1.66667)




Chapter 15

Methods

Recall from Functions that a function is an object that maps a tuple of arguments to a return value, or throws an
exception if no appropriate value can be returned. It is common for the same conceptual function or operation to be
implemented quite differently for different types of arguments: adding two integers is very different from adding two
floating-point numbers, both of which are distinct from adding an integer to a floating-point number. Despite their
implementation differences, these operations all fall under the general concept of "addition”. Accordingly, in Julia,
these behaviors all belong to a single object: the + function.

To facilitate using many different implementations of the same concept smoothly, functions need not be defined all at
once, but can rather be defined piecewise by providing specific behaviors for certain combinations of argument types
and counts. A definition of one possible behavior for a function is called a method. Thus far, we have presented only
examples of functions defined with a single method, applicable to all types of arguments. However, the signatures of
method definitions can be annotated to indicate the types of arguments in addition to their number, and more than
a single method definition may be provided. When a function is applied to a particular tuple of arguments, the most
specific method applicable to those arguments is applied. Thus, the overall behavior of a function is a patchwork of
the behaviors of its various method definitions. If the patchwork is well designed, even though the implementations
of the methods may be quite different, the outward behavior of the function will appear seamless and consistent.

The choice of which method to execute when a function is applied is called dispatch. Julia allows the dispatch process
to choose which of a function’s methods to call based on the number of arguments given, and on the types of all of the
function’s arguments. This is different than traditional object-oriented languages, where dispatch occurs based only on
the first argument, which often has a special argument syntax, and is sometimes implied rather than explicitly written
as an argument. * Using all of a function’s arguments to choose which method should be invoked, rather than just the
first, is known as multiple dispatch. Multiple dispatch is particularly useful for mathematical code, where it makes little
sense to artificially deem the operations to "belong” to one argument more than any of the others: does the addition
operationin x + y belong to x any more than it does to y? The implementation of a mathematical operator generally
depends on the types of all of its arguments. Even beyond mathematical operations, however, multiple dispatch ends
up being a powerful and convenient paradigm for structuring and organizing programs.

15.1 Defining Methods

Until now, we have, in our examples, defined only functions with a single method having unconstrained argument
types. Such functions behave just like they would in traditional dynamically typed languages. Nevertheless, we have
used multiple dispatch and methods almost continually without being aware of it: all of Julia’s standard functions

LI C++ or Java, for example, in a method call like obj.meth(arg1,arg2), the object obj "receives” the method call and is implicitly passed
to the method via the this keyword, rather than as an explicit method argument. When the current this object is the receiver of a method call, it
can be omitted altogether, writing just meth(arg1, arg2), with this implied as the receiving object.
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and operators, like the aforementioned + function, have many methods defining their behavior over various possible
combinations of argument type and count.

When defining a function, one can optionally constrain the types of parameters it is applicable to, using the : : type-
assertion operator, introduced in the section on Composite Types:

julia> f(x::Float64, y::Float64) = 2x + y
f (generic function with 1 method)

This function definition applies only to calls where x and y are both values of type Float64:

julia> f(2.0, 3.0)
7.0

Applying it to any other types of arguments will result in a MethodError:

julia> f(2.0, 3)
ERROR: MethodError: no method matching f(::Float64, ::Int64)
Closest candidates are:

f(::Float64, !Matched::Float64) at none:1

julia> f(Float32(2.0), 3.0)
ERROR: MethodError: no method matching f(::Float32, ::Float64)
Closest candidates are:

f(!Matched: :Float64, ::Float64) at none:1

julia> f(2.8, "3.0")
ERROR: MethodError: no method matching f(::Float64, ::String)
Closest candidates are:

f(::Float64, !Matched::Float64) at none:1

julia> f("2.0", "3.0")
ERROR: MethodError: no method matching f(::String, ::String)

As you can see, the arguments must be precisely of type Float64. Other numeric types, such as integers or 32-
bit floating-point values, are not automatically converted to 64-bit floating-point, nor are strings parsed as numbers.
Because Float64 is a concrete type and concrete types cannot be subclassed in Julia, such a definition can only
be applied to arguments that are exactly of type Float64. It may often be useful, however, to write more general
methods where the declared parameter types are abstract:

julia> f(x::Number, y::Number) = 2x -y
f (generic function with 2 methods)

julia> f(2.0, 3)
1.0

This method definition applies to any pair of arguments that are instances of Number. They need not be of the same
type, so long as they are each numeric values. The problem of handling disparate numeric types is delegated to the
arithmetic operations in the expression 2x - y.

To define a function with multiple methods, one simply defines the function multiple times, with different numbers and
types of arguments. The first method definition for a function creates the function object, and subsequent method
definitions add new methods to the existing function object. The most specific method definition matching the number
and types of the arguments will be executed when the function is applied. Thus, the two method definitions above,
taken together, define the behavior for f over all pairs of instances of the abstract type Number - but with a different
behavior specific to pairs of Float64 values. If one of the arguments is a 64-bit float but the other one is not, then the
f(Float64,Float64) method cannot be called and the more general f (Number, Number) method must be used:
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julia> f(2.0, 3.9)
7.0

julia> f(2, 3.9)
1.0

julia> f(2.0, 3)
1.0

julia> f(2, 3)
1

The 2x + y definition is only used in the first case, while the 2x - y definition is used in the others. No automatic
casting or conversion of function arguments is ever performed: all conversion in Julia is non-magical and completely
explicit. Conversion and Promotion, however, shows how clever application of sufficiently advanced technology can
be indistinguishable from magic. 2

For non-numeric values, and for fewer or more than two arguments, the function f remains undefined, and applying
it will still result in a MethodError:

julia> f("foo", 3)
ERROR: MethodError: no method matching f(::String, ::Int64)
Closest candidates are:

f(!Matched: :Number, ::Number) at none:1

julia> f()

ERROR: MethodError: no method matching f()

Closest candidates are:
f(!Matched: :Float64, !Matched::Float64) at none:1
f(!Matched: :Number, !Matched::Number) at none:1

You can easily see which methods exist for a function by entering the function object itself in an interactive session:

julia> f
f (generic function with 2 methods)

This output tells us that f is a function object with two methods. To find out what the signatures of those methods
are, use the methods () function:

julia> methods(f)

# 2 methods for generic function "f":
f(x::Float64, y::Float64) in Main at none:1
f(x::Number, y::Number) in Main at none:1

which shows that f has two methods, one taking two Float64 arguments and one taking arguments of type Number.
It also indicates the file and line number where the methods were defined: because these methods were defined at
the REPL, we get the apparent line number none : 1.

In the absence of a type declaration with : :, the type of a method parameter is Any by default, meaning that it is
unconstrained since all values in Julia are instances of the abstract type Any. Thus, we can define a catch-all method
for f like so:

julia> f(x,y) = println("Whoa there, Nelly.")

f (generic function with 3 methods)

julia> f("foo", 1)
Whoa there, Nelly.
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This catch-all is less specific than any other possible method definition for a pair of parameter values, so it will only be
called on pairs of arguments to which no other method definition applies.

Although it seems a simple concept, multiple dispatch on the types of values is perhaps the single most powerful and
central feature of the Julia language. Core operations typically have dozens of methods:

julia> methods(+)

# 180 methods for generic function "+":

+(x::Bool, z::Complex{Bool}) in Base at complex.jl:224

+(x::Bool, y::Bool) in Base at bool.jl:89

+(x::Bool) in Base at bool.jl:86

+(x::Bool, y::T) where T<:AbstractFloat in Base at bool.jl:96

+(x::Bool, z::Complex) in Base at complex.jl:231

+(a::Float16, b::Float16) in Base at float.jl:372

+(x::Float32, y::Float32) in Base at float.jl:374

+(x::Float64, y::Float64) in Base at float.jl:375

+(z::Complex{Bool}, x::Bool) in Base at complex.jl:225

+(z::Complex{Bool}, x::Real) in Base at complex.jl:239

+(x::Char, y::Integer) in Base at char.jl:40

+(c::BigInt, x::BigFloat) in Base.MPFR at mpfr.jl:303

+(a::BigInt, b::BigInt, c::BigInt, d::BigInt, e::BigInt) in Base.GMP at gmp.jl:303
+(a::BigInt, b::BigInt, c::BigInt, d::BigInt) in Base.GMP at gmp.jl:296
+(a::BigInt, b::BigInt, c::BigInt) in Base.GMP at gmp.jl:290

+(x::BigInt, y::BigInt) in Base.GMP at gmp.jl:258

+(x::BigInt, c::Union{UInt16, UInt32, UInt64, UInt8}) in Base.GMP at gmp.jl:315
+(a, b, ¢, xs...) at operators.jl:119

Multiple dispatch together with the flexible parametric type system give Julia its ability to abstractly express high-level
algorithms decoupled from implementation details, yet generate efficient, specialized code to handle each case at run
time.

15.2 Method Ambiguities

It is possible to define a set of function methods such that there is no unique most specific method applicable to some
combinations of arguments:

julia> g(x::Float64, y) = 2x + vy
g (generic function with 1 method)

julia> g(x, y::Float64) = x + 2y
g (generic function with 2 methods)

julia> g(2.0, 3)
7.0

julia> g(2, 3.0)
8.0

julia> g(2.06, 3.0)
ERROR: MethodError: g(::Float64, ::Float64) is ambiguous.
[...]

Here the call g(2.0, 3.8) could be handled by either the g(Float64, Any) or the g(Any, Float64) method,
and neither is more specific than the other. In such cases, Julia raises a MethodEr ror rather than arbitrarily picking a
method. You can avoid method ambiguities by specifying an appropriate method for the intersection case:
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julia> g(x::Float64, y::Float64) = 2x + 2y
g (generic function with 3 methods)

julia> g(2.0, 3)
7.0

julia> g(2, 3.9)
8.0

julia> g(2.0, 3.9)
10.0

It is recommended that the disambiguating method be defined first, since otherwise the ambiguity exists, if transiently,
until the more specific method is defined.

In more complex cases, resolving method ambiguities involves a certain element of design; this topic is explored further
below.

15.3 Parametric Methods

Method definitions can optionally have type parameters qualifying the signature:

julia> same_type(x::T, y::T) where {T} = true
same_type (generic function with 1 method)

julia> same_type(x,y) = false
same_type (generic function with 2 methods)

The first method applies whenever both arguments are of the same concrete type, regardless of what type that is,
while the second method acts as a catch-all, covering all other cases. Thus, overall, this defines a boolean function
that checks whether its two arguments are of the same type:

julia> same_type(1, 2)
true

julia> same_type(1, 2.9)
false

julia> same_type(1.0, 2.0)
true

julia> same_type("foo", 2.0)
false

julia> same_type("foo", "bar")
true

julia> same_type(Int32(1), Int64(2))
false

Such definitions correspond to methods whose type signatures are UnionAll types (see UnionAll Types).

This kind of definition of function behavior by dispatch is quite common - idiomatic, even - in Julia. Method type
parameters are not restricted to being used as the types of arguments: they can be used anywhere a value would be in
the signature of the function or body of the function. Here’s an example where the method type parameter T is used
as the type parameter to the parametric type Vector{T} in the method signature:
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julia> myappend(v::Vector{T}, x::T) where {T} = [v..., x]
myappend (generic function with 1 method)

julia> myappend([1,2,3],4)
4-element Array{Int64,1}:

W N =

julia> myappend([1,2,3],2.5)
ERROR: MethodError: no method matching myappend(::Array{Int64,1},
Closest candidates are:

myappend( : :Array{T,1}, !Matched::T) where T at none:1

julia> myappend([1.0,2.0,3.0],4.0)
4-element Array{Float64,1}:

1.0

2.0

3.0

4.0

julia> myappend([1.0,2.0,3.0],4)

Closest candidates are:
myappend( : :Array{T,1}, !'Matched::T) where T at none:1

::Float64)

ERROR: MethodError: no method matching myappend(::Array{Float64,1}, ::Int64)
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As you can see, the type of the appended element must match the element type of the vector it is appended to, or
else a MethodError is raised. In the following example, the method type parameter T is used as the return value:

julia> mytypeof(x::T) where (T} =T
mytypeof (generic function with 1 method)

julia> mytypeof(1)
Int64

julia> mytypeof(1.0)
Float64

Just as you can put subtype constraints on type parameters in type declarations (see Parametric Types), you can also

constrain type parameters of methods:

julia> same_type_numeric(x::T, y::T) where {T<:Number} = true
same_type_numeric (generic function with 1 method)

julia> same_type_numeric(x::Number, y::Number) = false
same_type_numeric (generic function with 2 methods)

julia> same_type_numeric(1, 2)
true

julia> same_type_numeric(1, 2.9)
false
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julia> same_type_numeric(1.0, 2.0)
true

julia> same_type_numeric("foo", 2.0)
ERROR: MethodError: no method matching same_type_numeric(::String, ::Float64)
Closest candidates are:

same_type_numeric(!Matched::T<:Number, ::T<:Number) where T<:Number at none:1
same_type_numeric(!Matched: :Number, ::Number) at none:1
julia> same_type_numeric("foo", "bar")

ERROR: MethodError: no method matching same_type_numeric(::String, ::String)

julia> same_type_numeric(Int32(1), Int64(2))
false

The same_type_numeric function behaves much like the same_type function defined above, but is only defined
for pairs of numbers.

Parametric methods allow the same syntax as where expressions used to write types (see UnionAll Types). If there is
only a single parameter, the enclosing curly braces (in where {T}) can be omitted, but are often preferred for clarity.
Multiple parameters can be separated with commas, e.g. where {T, S<:Real}, or written using nested where, e.g.
where S<:Real where T.

15.4 Redefining Methods

When redefining a method or adding new methods, it is important to realize that these changes don't take effect
immediately. This is key to Julia’s ability to statically infer and compile code to run fast, without the usual JIT tricks and
overhead. Indeed, any new method definition won't be visible to the current runtime environment, including Tasks
and Threads (and any previously defined @generated functions). Let's start with an example to see what this means:

julia> function tryeval()
@eval newfun() = 1
newfun()
end
tryeval (generic function with 1 method)

julia> tryeval()
ERROR: MethodError: no method matching newfun()
The applicable method may be too new: running in world age xxxx1, while current world is xxxx2.
Closest candidates are:
newfun() at none:1 (method too new to be called from this world context.)
in tryeval() at none:1

julia> newfun()
1

In this example, observe that the new definition for newfun has been created, but can’t be immediately called. The
new global is immediately visible to the tryeval function, so you could write return newfun (without parentheses).
But neither you, nor any of your callers, nor the functions they call, or etc. can call this new method definition!

But there’s an exception: future calls to newfun from the REPL work as expected, being able to both see and call the
new definition of newfun.
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However, future calls to tryeval will continue to see the definition of newfun as it was at the previous statement at
the REPL, and thus before that call to tryeval.

You may want to try this for yourself to see how it works.

The implementation of this behavior is a "world age counter”. This monotonically increasing value tracks each method
definition operation. This allows describing "the set of method definitions visible to a given runtime environment” as
a single number, or "world age”. It also allows comparing the methods available in two worlds just by comparing their
ordinal value. In the example above, we see that the "current world” (in which the method newfun() exists), is one
greater than the task-local "runtime world” that was fixed when the execution of tryeval started.

Sometimes it is necessary to get around this (for example, if you are implementing the above REPL). Fortunately, there
is an easy solution: call the function using Base.invokelatest:

julia> function tryeval2()
@eval newfun2() = 2
Base.invokelatest(newfun2)
end
tryeval2 (generic function with 1 method)

julia> tryeval2()
2

Finally, let’s take a look at some more complex examples where this rule comes into play. Define a function f(x),
which initially has one method:

julia> f(x) = "original definition"
f (generic function with 1 method)
Start some other operations that use f(x):
julia> g(x) = f(x)

g (generic function with 1 method)

julia> t = @async f(wait()); yield();

Now we add some new methods to f(x):
julia> f(x::Int) = "definition for Int"

f (generic function with 2 methods)

julia> f(x::Type{Int}) = "definition for Type{Int}"
f (generic function with 3 methods)

Compare how these results differ:

julia> f(1)
"definition for Int"

julia> g(1)
"definition for Int"

julia> wait(schedule(t, 1))
"original definition”

julia> t = @async f(wait()); yield();

julia> wait(schedule(t, 1))
"definition for Int"
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15.5 Parametrically-constrained Varargs methods

Function parameters can also be used to constrain the number of arguments that may be supplied to a "varargs”
function (Varargs Functions). The notation Vararg{T, N} is used to indicate such a constraint. For example:

julia> bar(a,b,x::Vararg{Any,2}) = (a,b,x)
bar (generic function with 1 method)

julia> bar(1,2,3)
ERROR: MethodError: no method matching bar(::Int64, ::Int64, ::Int64)
Closest candidates are:

bar(::Any, ::Any, ::Any, !Matched::Any) at none:1

julia> bar(1,2,3,4)
(1, 2, (3, 4))

julia> bar(1,2,3,4,5)
ERROR: MethodError: no method matching bar(::Int64, ::Int64, ::Int64, ::Int64, ::Int64)
Closest candidates are:

bar(::Any, ::Any, ::Any, ::Any) at none:1l

More usefully, it is possible to constrain varargs methods by a parameter. For example:
‘ function getindex(A::AbstractArray{T,N}, indexes::Vararg{Number,N}) where {T,N}

would be called only when the number of indexes matches the dimensionality of the array.

15.6 Note on Optional and keyword Arguments

As mentioned briefly in Functions, optional arguments are implemented as syntax for multiple method definitions. For
example, this definition:

| f(a=1,b=2) = a+2b

translates to the following three methods:

f(a,b) = a+2b
f(a) = f(a,2)
() = f(1,2)

This means that calling f () is equivalent to calling f (1, 2). In this case the resultis 5, because f (1, 2) invokes the first
method of f above. However, this need not always be the case. If you define a fourth method that is more specialized
for integers:

‘ f(a::Int,b::Int) = a-2b

then the result of both () and f(1,2) is -3. In other words, optional arguments are tied to a function, not to any
specific method of that function. It depends on the types of the optional arguments which method is invoked. When
optional arguments are defined in terms of a global variable, the type of the optional argument may even change at
run-time.

Keyword arguments behave quite differently from ordinary positional arguments. In particular, they do not participate
in method dispatch. Methods are dispatched based only on positional arguments, with keyword arguments processed
after the matching method is identified.
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15.7 Function-like objects

Methods are associated with types, so it is possible to make any arbitrary Julia object "callable” by adding methods to
its type. (Such "callable” objects are sometimes called "functors.”)

For example, you can define a type that stores the coefficients of a polynomial, but behaves like a function evaluating
the polynomial:

julia> struct Polynomial{R}
coeffs::Vector{R}
end

julia> function (p::Polynomial)(x)
v = p.coeffs[end]
for i = (length(p.coeffs)-1):-1:1
v = vxx + p.coeffs[i]
end
return v
end

Notice that the function is specified by type instead of by name. In the function body, p will refer to the object that
was called. A Polynomial can be used as follows:

julia> p = Polynomial([1,10,100])
Polynomial{Int64}([1, 10, 100])

julia> p(3)
931

This mechanism is also the key to how type constructors and closures (inner functions that refer to their surrounding
environment) work in Julia, discussed later in the manual.

15.8 Empty generic functions

Occasionally it is useful to introduce a generic function without yet adding methods. This can be used to separate
interface definitions from implementations. It might also be done for the purpose of documentation or code readability.
The syntax for this is an empty function block without a tuple of arguments:

function emptyfunc
end

15.9 Method design and the avoidance of ambiguities

Julia’s method polymorphism is one of its most powerful features, yet exploiting this power can pose design challenges.
In particular, in more complex method hierarchies it is not uncommon for ambiguities to arise.

Above, it was pointed out that one can resolve ambiguities like

n
N =

f(x, y::Int)
f(x::Int, y)

by defining a method

‘f(x::Int, y::Int) = 3
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This is often the right strategy; however, there are circumstances where following this advice blindly can be counter-
productive. In particular, the more methods a generic function has, the more possibilities there are for ambiguities.
When your method hierarchies get more complicated than this simple example, it can be worth your while to think
carefully about alternative strategies.

Below we discuss particular challenges and some alternative ways to resolve such issues.

Tuple and NTuple arguments

Tuple (and NTuple) arguments present special challenges. For example,

f(x::NTuple{N,Int}) where {N} =1
f(x::NTuple{N,Float64}) where {N} = 2

are ambiguous because of the possibility that N == 0: there are no elements to determine whether the Int or
Float64 variant should be called. To resolve the ambiguity, one approach is define a method for the empty tuple:

‘f(x::Tuple{}) =3
Alternatively, for all methods but one you can insist that there is at least one element in the tuple:

f(x::NTuple{N,Int}) where {N} =1 # this is the fallback
f(x::Tuple{Float64, Vararg{Float64}}) = 2 # this requires at least one Float64
Orthogonalize your design

When you might be tempted to dispatch on two or more arguments, consider whether a "wrapper” function might
make for a simpler design. For example, instead of writing multiple variants:

f(x::A, y::A) = ...
f(x::A, y::B) = ...
f(x::B, y::A) =
f(x::B, y::B) =

you might consider defining

f(x::A, y::A) = ...
f(x, y) = f(g(x), ga(y))

where g converts the argument to type A. This is a very specific example of the more general principle of orthogonal
design, in which separate concepts are assigned to separate methods. Here, g will most likely need a fallback definition

‘ g(x::A) = x
A related strategy exploits promote to bring x and y to a common type:

f(x::T, y::T) where {T} = ...
f(x, y) = f(promote(x, y)...)

One risk with this design is the possibility that if there is no suitable promotion method converting x and y to the
same type, the second method will recurse on itself infinitely and trigger a stack overflow. The non-exported function
Base.promote_noncircular can be used as an alternative; when promotion fails it will still throw an error, but one
that fails faster with a more specific error message.
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Dispatch on one argument at a time

If you need to dispatch on multiple arguments, and there are many fallbacks with too many combinations to make it
practical to define all possible variants, then consider introducing a "name cascade” where (for example) you dispatch
on the first argument and then call an internal method:

f(x::A, y)
f(x::B, y)

_fA(x, y)
_fB(x, y)

Then the internal methods _fA and _fB can dispatch on y without concern about ambiguities with each other with
respect to x.

Be aware that this strategy has at least one major disadvantage: in many cases, it is not possible for users to further
customize the behavior of f by defining further specializations of your exported function f. Instead, they have to
define specializations for your internal methods _fA and _fB, and this blurs the lines between exported and internal
methods.

Abstract containers and element types

Where possible, try to avoid defining methods that dispatch on specific element types of abstract containers. For
example,

‘—(A::AbstractArray{T}, b::Date) where {T<:Date}
generates ambiguities for anyone who defines a method
‘—(A: :MyArrayType{T}, b::T) where {T}

The best approach is to avoid defining either of these methods: instead, rely on a generic method - (A: :AbstractArray,
b) and make sure this method is implemented with generic calls (like similar and -) that do the right thing for each
container type and element type separately. This is just a more complex variant of the advice to orthogonalize your
methods.

When this approach is not possible, it may be worth starting a discussion with other developers about resolving the
ambiguity; just because one method was defined first does not necessarily mean that it can’t be modified or eliminated.
As a last resort, one developer can define the "band-aid” method

‘—(A: :MyArrayType{T}, b::Date) where {T<:Date} = ...
that resolves the ambiguity by brute force.

Complex method "cascades” with default arguments

If you are defining a method "cascade” that supplies defaults, be careful about dropping any arguments that correspond
to potential defaults. For example, suppose you're writing a digital filtering algorithm and you have a method that
handles the edges of the signal by applying padding:

function myfilter(A, kernel, ::Replicate)

Apadded = replicate_edges(A, size(kernel))

myfilter (Apadded, kernel) # now perform the "real" computation
end
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This will run afoul of a method that supplies default padding:
‘myfilter(A, kernel) = myfilter(A, kernel, Replicate()) # replicate the edge by default

Together, these two methods generate an infinite recursion with A constantly growing bigger.

The better design would be to define your call hierarchy like this:

struct NoPad end # indicate that no padding is desired, or that it's already applied
myfilter (A, kernel) = myfilter(A, kernel, Replicate()) # default boundary conditions
function myfilter (A, kernel, ::Replicate)

Apadded = replicate_edges(A, size(kernel))

myfilter(Apadded, kernel, NoPad()) # indicate the new boundary conditions
end

# other padding methods go here

function myfilter(A, kernel, ::NoPad)
# Here's the "real" implementation of the core computation

end

NoPad is supplied in the same argument position as any other kind of padding, so it keeps the dispatch hierarchy well
organized and with reduced likelihood of ambiguities. Moreover, it extends the "public” myfilter interface: a user

who wants to control the padding explicitly can call the NoPad variant directly.

2Arthur C. Clarke, Profiles of the Future (1961): Clarke’s Third Law.
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Constructors

Constructors ! are functions that create new objects - specifically, instances of Composite Types. In Julia, type objects
also serve as constructor functions: they create new instances of themselves when applied to an argument tuple as a
function. This much was already mentioned briefly when composite types were introduced. For example:

julia> struct Foo
bar
baz
end

julia> foo = Foo(1, 2)
Foo(1, 2)

julia> foo.bar
1

julia> foo.baz
2

For many types, forming new objects by binding their field values together is all that is ever needed to create instances.
There are, however, cases where more functionality is required when creating composite objects. Sometimes invariants
must be enforced, either by checking arguments or by transforming them. Recursive data structures, especially those
that may be self-referential, often cannot be constructed cleanly without first being created in an incomplete state
and then altered programmatically to be made whole, as a separate step from object creation. Sometimes, it's just
convenient to be able to construct objects with fewer or different types of parameters than they have fields. Julia’s
system for object construction addresses all of these cases and more.

16.1 Outer Constructor Methods

A constructor is just like any other function in Julia in that its overall behavior is defined by the combined behavior of
its methods. Accordingly, you can add functionality to a constructor by simply defining new methods. For example,
let’s say you want to add a constructor method for Foo objects that takes only one argument and uses the given value
for both the bar and baz fields. This is simple:

‘julia> Foo(x) = Foo(x,x)

INomenclature: while the term "constructor” generally refers to the entire function which constructs objects of a type, it is common to abuse
terminology slightly and refer to specific constructor methods as "constructors”. In such situations, it is generally clear from context that the term is
used to mean "constructor method” rather than "constructor function”, especially as it is often used in the sense of singling out a particular method
of the constructor from all of the others.
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Foo

julia> Foo(1)
Foo(1, 1)

You could also add a zero-argument Foo constructor method that supplies default values for both of the bar and baz
fields:

julia> Foo() = Foo(®)
Foo

julia> Foo()
Foo(@, 0)

Here the zero-argument constructor method calls the single-argument constructor method, which in turn calls the
automatically provided two-argument constructor method. For reasons that will become clear very shortly, additional
constructor methods declared as normal methods like this are called outer constructor methods. Outer constructor
methods can only ever create a new instance by calling another constructor method, such as the automatically provided
default ones.

16.2 Inner Constructor Methods

While outer constructor methods succeed in addressing the problem of providing additional convenience methods for
constructing objects, they fail to address the other two use cases mentioned in the introduction of this chapter: enforc-
ing invariants, and allowing construction of self-referential objects. For these problems, one needs inner constructor
methods. An inner constructor method is much like an outer constructor method, with two differences:

1. ltis declared inside the block of a type declaration, rather than outside of it like normal methods.

2. It has access to a special locally existent function called new that creates objects of the block’s type.

For example, suppose one wants to declare a type that holds a pair of real numbers, subject to the constraint that the
first number is not greater than the second one. One could declare it like this:

julia> struct OrderedPair
x::Real
y::Real
OrderedPair(x,y) = x >y ? error("out of order") : new(x,y)
end

Now OrderedPair objects can only be constructed such that x <= y:

julia> OrderedPair(1, 2)
OrderedPair (1, 2)

julia> OrderedPair(2,1)
ERROR: out of order
Stacktrace:
[1] OrderedPair(::Int64, ::Int64) at ./none:4

If the type were declared mutable, you could reach in and directly change the field values to violate this invariant, but
messing around with an object’s internals uninvited is considered poor form. You (or someone else) can also provide
additional outer constructor methods at any later point, but once a type is declared, there is no way to add more inner
constructor methods. Since outer constructor methods can only create objects by calling other constructor methods,
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ultimately, some inner constructor must be called to create an object. This guarantees that all objects of the declared
type must come into existence by a call to one of the inner constructor methods provided with the type, thereby giving
some degree of enforcement of a type’s invariants.

If any inner constructor method is defined, no default constructor method is provided: it is presumed that you have
supplied yourself with all the inner constructors you need. The default constructor is equivalent to writing your own
inner constructor method that takes all of the object’s fields as parameters (constrained to be of the correct type, if
the corresponding field has a type), and passes them to new, returning the resulting object:

julia> struct Foo
bar
baz
Foo(bar,baz) = new(bar,baz)
end

This declaration has the same effect as the earlier definition of the Foo type without an explicit inner constructor
method. The following two types are equivalent - one with a default constructor, the other with an explicit constructor:

julia> struct T1
x::Int64
end

julia> struct T2
x::Int64
T2(x) = new(x)
end

julia> T1(1)
T1(1)

julia> T2(1)
T2(1)

julia> T1(1.0)
T1(1)

julia> T2(1.9)
T2(1)

It is considered good form to provide as few inner constructor methods as possible: only those taking all arguments
explicitly and enforcing essential error checking and transformation. Additional convenience constructor methods,
supplying default values or auxiliary transformations, should be provided as outer constructors that call the inner
constructors to do the heavy lifting. This separation is typically quite natural.

16.3 Incomplete Initialization

The final problem which has still not been addressed is construction of self-referential objects, or more generally,
recursive data structures. Since the fundamental difficulty may not be immediately obvious, let us briefly explain it.
Consider the following recursive type declaration:

julia> mutable struct SelfReferential
obj::SelfReferential
end
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This type may appear innocuous enough, until one considers how to construct an instance of it. If a is an instance of
SelfReferential, then a second instance can be created by the call:

julia> b = SelfReferential(a)

But how does one construct the first instance when no instance exists to provide as a valid value for its obj field? The
only solution is to allow creating an incompletely initialized instance of SelfReferential with an unassigned obj
field, and using that incomplete instance as a valid value for the obj field of another instance, such as, for example,
itself.

To allow for the creation of incompletely initialized objects, Julia allows the new function to be called with fewer than
the number of fields that the type has, returning an object with the unspecified fields uninitialized. The inner con-
structor method can then use the incomplete object, finishing its initialization before returning it. Here, for example,
we take another crack at defining the SelfReferential type, with a zero-argument inner constructor returning
instances having obj fields pointing to themselves:

julia> mutable struct SelfReferential
obj::SelfReferential
SelfReferential() = (x = new(); x.obj = x)
end

We can verify that this constructor works and constructs objects that are, in fact, self-referential:

julia> x = SelfReferential();

julia> x === x

true

julia> x === x.obj
true

julia> x === x.obj.obj
true

Although it is generally a good idea to return a fully initialized object from an inner constructor, incompletely initialized
objects can be returned:

julia> mutable struct Incomplete
XX
Incomplete() = new()
end

julia> z = Incomplete();

While you are allowed to create objects with uninitialized fields, any access to an uninitialized reference is an immediate
error:

julia> z.xx
ERROR: UndefRefError: access to undefined reference

This avoids the need to continually check for null values. However, not all object fields are references. Julia considers
some types to be "plain data”, meaning all of their data is self-contained and does not reference other objects. The plain
data types consist of primitive types (e.g. Int) and immutable structs of other plain data types. The initial contents of
a plain data type is undefined:
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julia> struct HasPlain
n::Int
HasPlain() = new()
end

julia> HasPlain()
HasPlain(438103441441)

Arrays of plain data types exhibit the same behavior.

You can pass incomplete objects to other functions from inner constructors to delegate their completion:

julia> mutable struct Lazy
XX
Lazy(v) = complete_me(new(), V)
end

As with incomplete objects returned from constructors, if complete_me or any of its callees try to access the xx field
of the Lazy object before it has been initialized, an error will be thrown immediately.

16.4 Parametric Constructors

Parametric types add a few wrinkles to the constructor story. Recall from Parametric Types that, by default, instances
of parametric composite types can be constructed either with explicitly given type parameters or with type parameters
implied by the types of the arguments given to the constructor. Here are some examples:

julia> struct Point{T<:Real}
x::T
yo:T
end

julia> Point(1,2) ## implicit T ##
Point{Int64}(1, 2)

julia> Point(1.0,2.5) ## implicit T ##
Point{Float64}(1.0, 2.5)

julia> Point(1,2.5) ## implicit T ##
ERROR: MethodError: no method matching Point(::Int64, ::Float64)
Closest candidates are:

Point(::T<:Real, !Matched::T<:Real) where T<:Real at none:2

julia> Point{Int64}(1, 2) ## explicit T ##
Point{Int64}(1, 2)

julia> Point{Int64}(1.0,2.5) ## explicit T ##

ERROR: InexactError()

Stacktrace:
[1] convert(::Type{Int64}, ::Float64) at ./float.jl:679
[2] Point{Int64}(::Float64, ::Float64) at ./none:2

julia> Point{Float64}(1.0, 2.5) ## explicit T ##
Point{Float64}(1.0, 2.5)

julia> Point{Float64}(1,2) ## explicit T ##
Point{Float64}(1.0, 2.0)
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As you can see, for constructor calls with explicit type parameters, the arguments are converted to the implied field
types: Point{Int64}(1,2) works, but Point{Int64}(1.0,2.5) raises an InexactError when converting 2.5
to Int64. When the type is implied by the arguments to the constructor call, as in Point (1, 2), then the types of the
arguments must agree - otherwise the T cannot be determined - but any pair of real arguments with matching type
may be given to the generic Point constructor.

What's really going on here is that Point, Point{Float64} and Point{Int64} are all different constructor func-
tions. In fact, Point{T} is a distinct constructor function for each type T. Without any explicitly provided inner
constructors, the declaration of the composite type Point{T<:Real} automatically provides an inner constructor,
Point{T}, for each possible type T<:Real, that behaves just like non-parametric default inner constructors do. It
also provides a single general outer Point constructor that takes pairs of real arguments, which must be of the same
type. This automatic provision of constructors is equivalent to the following explicit declaration:

julia> struct Point{T<:Real}
x::T
y:o:T
Point{T}(x,y) where {T<:Real} = new(x,y)
end

julia> Point(x::T, y::T) where {T<:Real} Point{T}(x,y);

Notice that each definition looks like the form of constructor call that it handles. The call Point{Int64}(1,2)
will invoke the definition Point{T}(x,y) inside the type block. The outer constructor declaration, on the other
hand, defines a method for the general Point constructor which only applies to pairs of values of the same real type.
This declaration makes constructor calls without explicit type parameters, like Point(1,2) and Point(1.0,2.5),
work. Since the method declaration restricts the arguments to being of the same type, calls like Point(1,2.5), with
arguments of different types, result in "no method” errors.

Suppose we wanted to make the constructor call Point(1,2.5) work by "promoting” the integer value 1 to the
floating-point value 1.0. The simplest way to achieve this is to define the following additional outer constructor
method:

‘julia> Point(x::Int64, y::Float64) = Point(convert(Float64,x),y);

This method uses the convert () function to explicitly convert x to Float64 and then delegates construction to the
general constructor for the case where both arguments are Float64. With this method definition what was previously
a MethodError now successfully creates a point of type Point{Float64}:

julia> Point(1,2.5)
Point{Float64}(1.0, 2.5)

julia> typeof(ans)
Point{Float64}

However, other similar calls still don’t work:

julia> Point(1.5,2)
ERROR: MethodError: no method matching Point(::Float64, ::Int64)
Closest candidates are:

Point(::T<:Real, !Matched::T<:Real) where T<:Real at none:1

For a more general way to make all such calls work sensibly, see Conversion and Promotion. At the risk of spoiling the
suspense, we can reveal here that all it takes is the following outer method definition to make all calls to the general
Point constructor work as one would expect:

julia> Point(x::Real, y::Real) = Point(promote(x,y)...);
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The promote function converts all its arguments to a common type - in this case Float64. With this method def-
inition, the Point constructor promotes its arguments the same way that numeric operators like + do, and works for
all kinds of real numbers:

julia> Point(1.5,2)
Point{Float64}(1.5, 2.0)

julia> Point(1,1//2)
Point{Rational{Int64}}(1//1, 1//2)

julia> Point(1.0,1//2)
Point{Float64}(1.0, 0.5)

Thus, while the implicit type parameter constructors provided by default in Julia are fairly strict, it is possible to make
them behave in a more relaxed but sensible manner quite easily. Moreover, since constructors can leverage all of the
power of the type system, methods, and multiple dispatch, defining sophisticated behavior is typically quite simple.

16.5 Case Study: Rational

Perhaps the best way to tie all these pieces together is to present a real world example of a parametric composite type
and its constructor methods. To that end, here is the (slightly modified) beginning of rational. j1, which implements
Julia’s Rational Numbers:

julia> struct OurRational{T<:Integer} <: Real

num::T

den::T

function OurRational{T}(num::T, den::T) where T<:Integer
if num == 0 && den ==

error("invalid rational: @6//0")

end
g = gcd(den, num)
num = div(num, g)
den = div(den, g)
new(num, den)

end

end

julia> OurRational(n::T, d::T) where {T<:Integer} = OurRational{T}(n,d)
OurRational

julia> OurRational(n::Integer, d::Integer) = OurRational(promote(n,d)...)
OurRational

julia> OurRational(n::Integer) = OurRational(n,one(n))
OurRational

julia> //(n::Integer, d::Integer) = OurRational(n,d)
// (generic function with 1 method)

julia> //(x::OurRational, y::Integer) = x.num // (x.denxy)
// (generic function with 2 methods)

julia> //(x::Integer, y::OurRational) = (x*y.den) // y.num
// (generic function with 3 methods)

julia> //(x::Complex, y::Real) = complex(real(x)//y, imag(x)//y)


https://github.com/JuliaLang/julia/blob/master/base/rational.jl
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// (generic function with 4 methods)

julia> //(x::Real, y::Complex) = x*y'//real(y*y"')
// (generic function with 5 methods)

julia> function //(x::Complex, y::Complex)
Xy = xxy'
yy = real(y*y')
complex(real(xy)//yy, imag(xy)//yy)
end
// (generic function with 6 methods)

The first line - struct OurRational{T<:Integer} <: Real - declares that OurRational takes one type pa-
rameter of an integer type, and is itself a real type. The field declarations num: : T and den: : T indicate that the data
held in a OurRational{T} object are a pair of integers of type T, one representing the rational value’s numerator and
the other representing its denominator.

Now things get interesting. OurRational has a single inner constructor method which checks that both of num and
den aren't zero and ensures that every rational is constructed in "lowest terms” with a non-negative denominator. This
is accomplished by dividing the given numerator and denominator values by their greatest common divisor, computed
using the gcd function. Since gcd returns the greatest common divisor of its arguments with sign matching the first
argument (den here), after this division the new value of den is guaranteed to be non-negative. Because this is the
only inner constructor for OurRational, we can be certain that OurRational objects are always constructed in this
normalized form.

OurRational also provides several outer constructor methods for convenience. The first is the "standard” general
constructor that infers the type parameter T from the type of the numerator and denominator when they have the
same type. The second applies when the given numerator and denominator values have different types: it promotes
them to a common type and then delegates construction to the outer constructor for arguments of matching type.
The third outer constructor turns integer values into rationals by supplying a value of 1 as the denominator.

Following the outer constructor definitions, we have a number of methods for the / / operator, which provides a syntax
for writing rationals. Before these definitions, // is a completely undefined operator with only syntax and no meaning.
Afterwards, it behaves just as described in Rational Numbers - its entire behavior is defined in these few lines. The
first and most basic definition just makes a/ /b construct a OurRational by applying the OurRational constructor
to a and b when they are integers. When one of the operands of // is already a rational number, we construct a new
rational for the resulting ratio slightly differently; this behavior is actually identical to division of a rational with an
integer. Finally, applying // to complex integral values creates an instance of Complex{OurRational} - a complex
number whose real and imaginary parts are rationals:

julia> ans = (1 + 2im)//(1 - 2im);

julia> typeof(ans)
Complex{OurRational{Int64}}

julia> ans <: Complex{OurRational}
false

Thus, although the // operator usually returns an instance of OurRational, if either of its arguments are complex
integers, it will return an instance of Complex{OurRational} instead. The interested reader should consider perusing
the rest of rational. jl: itis short, self-contained, and implements an entire basic Julia type.

16.6 Constructors and Conversion

Constructors T(args. . .) inJulia are implemented like other callable objects: methods are added to their types. The
type of a type is Type, so all constructor methods are stored in the method table for the Type type. This means that


https://github.com/JuliaLang/julia/blob/master/base/rational.jl
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you can declare more flexible constructors, e.g. constructors for abstract types, by explicitly defining methods for the
appropriate types.

However, in some cases you could consider adding methods to Base.convert instead of defining a constructor,
because Julia falls back to calling convert() if no matching constructor is found. For example, if no constructor
T(args...) = ... existsBase.convert(::Type{T}, args...) = ... iscalled.

convert is used extensively throughout Julia whenever one type needs to be converted to another (e.g. in assign-
ment, ccall, etcetera), and should generally only be defined (or successful) if the conversion is lossless. For example,
convert(Int, 3.0) produces 3, butconvert(Int, 3.2) throwsan InexactError. If youwant to define a con-
structor for a lossless conversion from one type to another, you should probably define a convert method instead.

On the other hand, if your constructor does not represent a lossless conversion, or doesn’t represent "conversion” at
all, it is better to leave it as a constructor rather than a convert method. For example, the Array{Int} () constructor
creates a zero-dimensional Array of the type Int, but is not really a "conversion” from Int to an Array.

16.7 Outer-only constructors

As we have seen, a typical parametric type has inner constructors that are called when type parameters are known;
e.g. they apply to Point{Int} but not to Point. Optionally, outer constructors that determine type parameters
automatically can be added, for example constructing a Point{Int} from the call Point(1,2). Outer constructors
call inner constructors to do the core work of making an instance. However, in some cases one would rather not
provide inner constructors, so that specific type parameters cannot be requested manually.

For example, say we define a type that stores a vector along with an accurate representation of its sum:

julia> struct SummedArray{T<:Number, S<:Number}
data::Vector{T}
sum: :S
end

julia> SummedArray(Int32[1; 2; 3], Int32(6))
SummedArray{Int32,Int32}(Int32[1, 2, 3], 6)

The problem is that we want S to be a larger type than T, so that we can sum many elements with less information loss.
For example, when T is Int32, we would like S to be Int64. Therefore we want to avoid an interface that allows the
user to construct instances of the type SummedArray{Int32, Int32}. One way to do this is to provide a constructor
only for SummedAr ray, but inside the type definition block to suppress generation of default constructors:

julia> struct SummedArray{T<:Number, S<:Number}

data::Vector{T}

sum: :S

function SummedArray(a::Vector{T}) where T
S = widen(T)
new{T,S}(a, sum(S, a))

end

end

julia> SummedArray(Int32[1; 2; 3], Int32(6))
ERROR: MethodError: no method matching SummedArray(::Array{Int32,1}, ::Int32)
Closest candidates are:

SummedArray(::Array{T,1}) where T at none:5

This constructor will be invoked by the syntax SummedArray(a). The syntax new{T, S} allows specifying parameters
for the type to be constructed, i.e. this call will return a SummedArray{T, S}.new{T, S} can be used in any constructor
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definition, but for convenience the parameters to new{} are automatically derived from the type being constructed
when possible.



Chapter 17

Conversion and Promotion

Julia has a system for promoting arguments of mathematical operators to a common type, which has been mentioned
in various other sections, including Integers and Floating-Point Numbers, Mathematical Operations and Elementary
Functions, Types, and Methods. In this section, we explain how this promotion system works, as well as how to extend
it to new types and apply it to functions besides built-in mathematical operators. Traditionally, programming languages
fall into two camps with respect to promotion of arithmetic arguments:

e Automatic promotion for built-in arithmetic types and operators. In most languages, built-in numeric types,
when used as operands to arithmetic operators with infix syntax, such as +, -, *, and /, are automatically
promoted to a common type to produce the expected results. C, Java, Perl, and Python, to name a few, all
correctly compute the sum 1 + 1.5 as the floating-point value 2.5, even though one of the operands to +
is an integer. These systems are convenient and designed carefully enough that they are generally all-but-
invisible to the programmer: hardly anyone consciously thinks of this promotion taking place when writing
such an expression, but compilers and interpreters must perform conversion before addition since integers and
floating-point values cannot be added as-is. Complex rules for such automatic conversions are thus inevitably
part of specifications and implementations for such languages.

¢ No automatic promotion. This camp includes Ada and ML - very "strict” statically typed languages. In these
languages, every conversion must be explicitly specified by the programmer. Thus, the example expression 1
+ 1.5 would be a compilation error in both Ada and ML. Instead one must write real(1) + 1.5, explicitly
converting the integer 1 to a floating-point value before performing addition. Explicit conversion everywhere is
so inconvenient, however, that even Ada has some degree of automatic conversion: integer literals are promoted
to the expected integer type automatically, and floating-point literals are similarly promoted to appropriate
floating-point types.

In asense, Julia falls into the "no automatic promotion” category: mathematical operators are just functions with special
syntax, and the arguments of functions are never automatically converted. However, one may observe that applying
mathematical operations to a wide variety of mixed argument types is just an extreme case of polymorphic multi-
ple dispatch - something which Julia’s dispatch and type systems are particularly well-suited to handle. "Automatic”
promotion of mathematical operands simply emerges as a special application: Julia comes with pre-defined catch-all
dispatch rules for mathematical operators, invoked when no specific implementation exists for some combination of
operand types. These catch-all rules first promote all operands to a common type using user-definable promotion
rules, and then invoke a specialized implementation of the operator in question for the resulting values, now of the
same type. User-defined types can easily participate in this promotion system by defining methods for conversion to
and from other types, and providing a handful of promotion rules defining what types they should promote to when
mixed with other types.

155
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17.1 Conversion

Conversion of values to various types is performed by the convert function. The convert function generally takes
two arguments: the first is a type object while the second is a value to convert to that type; the returned value is the
value converted to an instance of given type. The simplest way to understand this function is to see it in action:

n
-
N

julia> x
12

julia> typeof(x)
Int64

julia> convert(UInt8, x)
Ox0c

julia> typeof(ans)
UInt8

julia> convert(AbstractFloat, x)
12.0

julia> typeof(ans)
Float64

julia> a = Any[1 2 3; 4 5 6]
2x3 Array{Any,2}:

1 2 3

4 5 6

julia> convert(Array{Float64}, a)
2x3 Array{Float64,2}:

1.0 2.0 3.0

4.0 5.0 6.0

Conversion isn't always possible, in which case a no method error is thrown indicating that convert doesn’t know
how to perform the requested conversion:

julia> convert(AbstractFloat, "foo")

ERROR: MethodError: Cannot ‘convert' an object of type String to an object of type AbstractFloat
This may have arisen from a call to the constructor AbstractFloat(...),

since type constructors fall back to convert methods.

Some languages consider parsing strings as numbers or formatting numbers as strings to be conversions (many dynamic
languages will even perform conversion for you automatically), however Julia does not: even though some strings can
be parsed as numbers, most strings are not valid representations of numbers, and only a very limited subset of them
are. Therefore in Julia the dedicated parse (') function must be used to perform this operation, making it more explicit.

Defining New Conversions

To define a new conversion, simply provide a new method for convert (). That's really all there is to it. For example,
the method to convert a real number to a boolean is this:

convert(::Type{Bool}, x::Real) = x==0 ? false : x==1 ? true : throw(InexactError())
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The type of the first argument of this method is a singleton type, Type{Bool}, the only instance of which is Bool.
Thus, this method is only invoked when the first argument is the type value Bool. Notice the syntax used for the first
argument: the argument name is omitted prior to the : : symbol, and only the type is given. This is the syntax in Julia
for a function argument whose type is specified but whose value is never used in the function body. In this example,
since the type is a singleton, there would never be any reason to use its value within the body. When invoked, the
method determines whether a numeric value is true or false as a boolean, by comparing it to one and zero:

julia> convert(Bool, 1)
true

julia> convert(Bool, 0)
false

julia> convert(Bool, 1im)

ERROR: InexactError()

Stacktrace:

[1] convert(::Type{Bool}, ::Complex{Int64}) at ./complex.jl:31

julia> convert(Bool, 6im)
false

The method signatures for conversion methods are often quite a bit more involved than this example, especially for
parametric types. The example above is meant to be pedagogical, and is not the actual Julia behaviour. This is the
actual implementation in Julia:

convert(::Type{T}, z::Complex) where {T<:Real} =
(imag(z) == @ ? convert(T, real(z)) : throw(InexactError()))

Case Study: Rational Conversions

To continue our case study of Julia's Rational type, here are the conversions declared in rational. j1, right after
the declaration of the type and its constructors:

convert(::Type{Rational{T}}, x::Rational) where {T<:Integer} =

— Rational(convert(T,x.num),convert(T,x.den))

convert(::Type{Rational{T}}, x::Integer) where {T<:Integer} = Rational(convert(T,x),
— convert(T,1))

function convert(::Type{Rational{T}}, x::AbstractFloat, tol::Real) where T<:Integer
if isnan(x); return zero(T)//zero(T); end
if isinf(x); return sign(x)//zero(T); end
y = X
a =d = one(T)
b = c = zero(T)
while true
f = convert(T,round(y)); vy -= f
a, b, ¢, d = fxa+tc, fxb+d, a, b
if y == 0 || abs(a/b-x) <= tol
return a//b
end
y =1/y
end
end
convert(rt::Type{Rational{T}}, x::AbstractFloat) where {T<:Integer} = convert(rt,x,eps(x))
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convert(::Type{T}, x::Rational) where {T<:AbstractFloat} = convert(T,x.num)/convert(T,x.den)
convert(::Type{T}, x::Rational) where {T<:Integer} = div(convert(T,x.num),convert(T,x.den))

The initial four convert methods provide conversions to rational types. The first method converts one type of rational
to another type of rational by converting the numerator and denominator to the appropriate integer type. The second
method does the same conversion for integers by taking the denominator to be 1. The third method implements a
standard algorithm for approximating a floating-point number by a ratio of integers to within a given tolerance, and
the fourth method applies it, using machine epsilon at the given value as the threshold. In general, one should have
a//b == convert(Rational{Int64}, a/b).

The last two convert methods provide conversions from rational types to floating-point and integer types. To convert
to floating point, one simply converts both numerator and denominator to that floating point type and then divides.
To convert to integer, one can use the div operator for truncated integer division (rounded towards zero).

17.2 Promotion

Promotion refers to converting values of mixed types to a single common type. Although it is not strictly necessary, it
is generally implied that the common type to which the values are converted can faithfully represent all of the original
values. In this sense, the term "promotion” is appropriate since the values are converted to a "greater” type - i.e. one
which can represent all of the input values in a single common type. It is important, however, not to confuse this with
object-oriented (structural) super-typing, or Julia’s notion of abstract super-types: promotion has nothing to do with
the type hierarchy, and everything to do with converting between alternate representations. For instance, although
every Int32 value can also be represented as a Float64 value, Int32 is not a subtype of Float64.

Promotion to a common "greater” type is performed in Julia by the promote function, which takes any number of
arguments, and returns a tuple of the same number of values, converted to a common type, or throws an exception if
promotion is not possible. The most common use case for promotion is to convert numeric arguments to a common

type:

julia> promote(1, 2.5)
(1.8, 2.5)

julia> promote(1, 2.5, 3)
(1.0, 2.5, 3.0)

julia> promote(2, 3//4)
(2//1, 3//4)

julia> promote(1, 2.5, 3, 3//4)
(1.0, 2.5, 3.0, 0.75)

julia> promote(1.5, im)
(1.5 + 0.0im, 6.0 + 1.0im)

julia> promote(1 + 2im, 3//4)
(1//1 + 2//1%im, 3//4 + @//1%im)

Floating-point values are promoted to the largest of the floating-point argument types. Integer values are promoted
to the larger of either the native machine word size or the largest integer argument type. Mixtures of integers and
floating-point values are promoted to a floating-point type big enough to hold all the values. Integers mixed with
rationals are promoted to rationals. Rationals mixed with floats are promoted to floats. Complex values mixed with
real values are promoted to the appropriate kind of complex value.
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That is really all there is to using promotions. The rest is just a matter of clever application, the most typical "clever”
application being the definition of catch-all methods for numeric operations like the arithmetic operators +, -, * and
/. Here are some of the catch-all method definitions given in promotion.j1:

+(x: :Number,
-(x: :Number,
*(x: :Number,
/(x: :Number,

::Number) = +(promote(x,y)...
::Number) = -(promote(x,y)...
::Number) = *(promote(x,y)...
::Number) = /(promote(x,y)...

K K KX K
— — — —

These method definitions say that in the absence of more specific rules for adding, subtracting, multiplying and dividing
pairs of numeric values, promote the values to a common type and then try again. That’s all there is to it: nowhere else
does one ever need to worry about promotion to a common numeric type for arithmetic operations - it just happens
automatically. There are definitions of catch-all promotion methods for a number of other arithmetic and mathemat-
ical functions in promotion. j1, but beyond that, there are hardly any calls to promote required in the Julia standard
library. The most common usages of promote occur in outer constructors methods, provided for convenience, to
allow constructor calls with mixed types to delegate to an inner type with fields promoted to an appropriate common
type. For example, recall that rational. j1 provides the following outer constructor method:

Rational(n::Integer, d::Integer) = Rational(promote(n,d)...)

This allows calls like the following to work:

julia> Rational(Int8(15),Int32(-5))
-3//1

julia> typeof(ans)
Rational{Int32}

For most user-defined types, it is better practice to require programmers to supply the expected types to constructor
functions explicitly, but sometimes, especially for numeric problems, it can be convenient to do promotion automat-
ically.

Defining Promotion Rules

Although one could, in principle, define methods for the promote function directly, this would require many redundant
definitions for all possible permutations of argument types. Instead, the behavior of promote is defined in terms of
an auxiliary function called promote_rule, which one can provide methods for. The promote_rule function takes
a pair of type objects and returns another type object, such that instances of the argument types will be promoted to
the returned type. Thus, by defining the rule:

promote_rule( ::Type{Float64}, ::Type{Float32}) = Float64

one declares that when 64-bit and 32-bit floating-point values are promoted together, they should be promoted to
64-bit floating-point. The promotion type does not need to be one of the argument types, however; the following
promotion rules both occur in Julia’s standard library:

promote_rule(::Type{UInt8}, ::Type{Int8}) = Int
promote_rule( ::Type{BigInt}, ::Type{Int8}) = BigInt


https://github.com/JuliaLang/julia/blob/master/base/promotion.jl
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In the latter case, the result type is BigInt since BigInt is the only type large enough to hold integers for arbitrary-
precision integer arithmetic. Also note that one does not need to define both promote_rule( ::Type{A}, ::Type{B})
and promote_rule(::Type{B}, ::Type{A}) - the symmetry isimplied by the way promote_rule is used in the
promotion process.

The promote_rule function is used as a building block to define a second function called promote_type, which,
given any number of type objects, returns the common type to which those values, as arguments to promote should
be promoted. Thus, if one wants to know, in absence of actual values, what type a collection of values of certain types
would promote to, one can use promote_type:

julia> promote_type(Int8, UInt16)
Int64

Internally, promote_type is used inside of promote to determine what type argument values should be converted
to for promotion. It can, however, be useful in its own right. The curious reader can read the code in promotion.jl,
which defines the complete promotion mechanism in about 35 lines.

Case Study: Rational Promotions

Finally, we finish off our ongoing case study of Julia’s rational number type, which makes relatively sophisticated use
of the promotion mechanism with the following promotion rules:

promote_rule(::Type{Rational{T}}, ::Type{S}) where {T<:Integer,S<:Integer} =

— Rational{promote_type(T,S)}

promote_rule( ::Type{Rational{T}}, ::Type{Rational{S}}) where {T<:Integer,S<:Integer} =
< Rational{promote_type(T,S)}

promote_rule( ::Type{Rational{T}}, ::Type{S}) where {T<:Integer,S<:AbstractFloat} =

< promote_type(T,S)

The first rule says that promoting a rational number with any other integer type promotes to a rational type whose
numerator/denominator type is the result of promotion of its numerator/denominator type with the other integer
type. The second rule applies the same logic to two different types of rational numbers, resulting in a rational of the
promotion of their respective numerator/denominator types. The third and final rule dictates that promoting a rational
with a float results in the same type as promoting the numerator/denominator type with the float.

This small handful of promotion rules, together with the conversion methods discussed above, are sufficient to make
rational numbers interoperate completely naturally with all of Julia’s other numeric types - integers, floating-point
numbers, and complex numbers. By providing appropriate conversion methods and promotion rules in the same man-
ner, any user-defined numeric type can interoperate just as naturally with Julia’s predefined numerics.


https://github.com/JuliaLang/julia/blob/master/base/promotion.jl

Chapter 18

Interfaces

A lot of the power and extensibility in Julia comes from a collection of informal interfaces. By extending a few specific
methods to work for a custom type, objects of that type not only receive those functionalities, but they are also able
to be used in other methods that are written to generically build upon those behaviors.

18.1 Iteration

Required methods

Brief description

start(iter)

Returns the initial iteration state

next(iter, state)

Returns the current item and the next state

done(iter, state)

Tests if there are any items remaining

Important optional Default Brief description

methods definition

iteratorsize(Iter- | HasLength() | One of HasLength(), HasShape(), IsInfinite(), or
Type) SizeUnknown() as appropriate

iteratorel- HasEl- Either E1typeUnknown() or HasEltype() as appropriate
type(IterType) type()

eltype(IterType) Any The type the items returned by next ()

length(iter) (undefined) The number of items, if known

size(iter, (undefined) The number of items in each dimension, if known
[dim...])

Value returned by iteratorsize(IterType) | Required Methods

HasLength() length(iter)

HasShape() length(iter) and size(iter, [dim...])
IsInfinite() (none)

SizeUnknown() (none)

Value returned by iteratoreltype(IterType)

Required Methods

HasEltype()

eltype(IterType)

EltypeUnknown()

(hone)

Sequential iteration is implemented by the methods start(), done(), and next().

Instead of mutating objects

as they are iterated over, Julia provides these three methods to keep track of the iteration state externally from the
object. The start(iter) method returns the initial state for the iterable object iter. That state gets passed along
to done(iter, state), which tests if there are any elements remaining, and next (iter, state), which returns
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a tuple containing the current element and an updated state. The state object can be anything, and is generally
considered to be an implementation detail private to the iterable object.

Any object defines these three methods is iterable and can be used in the many functions that rely upon iteration. It
can also be used directly in a for loop since the syntax:

for i in iter # or "for 1 = iter"
# body
end

is translated into:

state = start(iter)

while !done(iter, state)
(i, state) = next(iter, state)
# body

end

A simple example is an iterable sequence of square numbers with a defined length:
julia> struct Squares
count::Int
end
julia> Base.start(::Squares) = 1

julia> Base.next(S::Squares, state) = (state*state, state+1)

julia> Base.done(S::Squares, state) = state > S.count

julia> Base.eltype(::Type{Squares}) Int # Note that this is defined for the type

julia> Base.length(S::Squares) = S.count
With only start, next, and done definitions, the Squares type is already pretty powerful. We can iterate over all
the elements:

julia> for i in Squares(7)
println(i)
end

We can use many of the builtin methods that work with iterables, like in(), mean() and std():
julia> 25 in Squares(10)

true

julia> mean(Squares(100))
3383.5
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julia> std(Squares(100))
3024 .355854282583

There are a few more methods we can extend to give Julia more information about this iterable collection. We know
that the elements in a Squares sequence will always be Int. By extending the eltype () method, we can give that
information to Julia and help it make more specialized code in the more complicated methods. We also know the
number of elements in our sequence, so we can extend length(), too.

Now, when we ask Julia to collect () all the elements into an array it can preallocate a Vector{Int} of the right
size instead of blindly push!ing each element into a Vector {Any}:

julia> collect(Squares(10))' # transposed to save space
1x10 RowVector{Int64,Array{Int64,1}}:
1 4 9 16 25 36 49 64 81 100

While we can rely upon generic implementations, we can also extend specific methods where we know there is a
simpler algorithm. For example, there’s a formula to compute the sum of squares, so we can override the generic
iterative version with a more performant solution:

julia> Base.sum(S::Squares) = (n = S.count; return n*(n+1)#*(2n+1)+6)

julia> sum(Squares(1803))
1955361914

This is a very common pattern throughout the Julia standard library: a small set of required methods define an informal

interface that enable many fancier behaviors. In some cases, types will want to additionally specialize those extra
behaviors when they know a more efficient algorithm can be used in their specific case.

18.2 Indexing

Methods to implement Brief description

getindex(X, 1) X[1], indexed element access
setindex! (X, v, i) | X[i] = v, indexed assignment
endof (X) The last index, used in X[ end]

For the Squares iterable above, we can easily compute the ith element of the sequence by squaring it. We can expose
this as an indexing expression S[1i]. To opt into this behavior, Squares simply needs to define getindex():

julia> function Base.getindex(S::Squares, i::Int)
1 <= 1 <= S.count || throw(BoundsError(S, 1i))
return ixi
end

julia> Squares(100)[23]
529

Additionally, to support the syntax S[end], we must define endof () to specify the last valid index:

julia> Base.endof(S::Squares) = length(S)

julia> Squares(23)[end]
529

Note, though, that the above only defines getindex () with one integer index. Indexing with anything other than an
Int will throw a MethodError saying that there was no matching method. In order to support indexing with ranges
or vectors of Ints, separate methods must be written:
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julia> Base.getindex(S::Squares, i::Number) = S[convert(Int, i)]
julia> Base.getindex(S::Squares, I) = [S[i] for i in I]

julia> Squares(10)[[3,4.,5]]
3-element Array{Int64,1}:
9
16
25

While this is starting to support more of the indexing operations supported by some of the builtin types, there’s still
quite a number of behaviors missing. This Squares sequence is starting to look more and more like a vector as we've
added behaviors to it. Instead of defining all these behaviors ourselves, we can officially define it as a subtype of an
AbstractArray.

18.3 Abstract Arrays

If a type is defined as a subtype of AbstractArray, it inherits a very large set of rich behaviors including iteration
and multidimensional indexing built on top of single-element access. See the arrays manual page and standard library
section for more supported methods.

Akey part in defining an AbstractArray subtypeis IndexStyle. Since indexing is such an important part of an array
and often occurs in hot loops, it's important to make both indexing and indexed assignment as efficient as possible.
Array data structures are typically defined in one of two ways: either it most efficiently accesses its elements using
just one index (linear indexing) or it intrinsically accesses the elements with indices specified for every dimension.
These two modalities are identified by Julia as IndexLinear () and IndexCartesian(). Converting a linear index
to multiple indexing subscripts is typically very expensive, so this provides a traits-based mechanism to enable efficient
generic code for all array types.

This distinction determines which scalar indexing methods the type must define. IndexLinear () arrays are simple:
just define getindex(A: :ArrayType, i::Int). When the array is subsequently indexed with a multidimensional
set of indices, the fallback getindex(A: :AbstractArray, I...)() efficiently converts the indices into one linear
index and then calls the above method. IndexCartesian() arrays, on the other hand, require methods to be defined
for each supported dimensionality with ndims (A) Int indices. For example, the builtin SparseMatrixCSC type only
supports two dimensions, so it just defines getindex(A: :SparseMatrixCSC, i::Int, j::Int)(). The same
holds for setindex! ().

Returning to the sequence of squares from above, we could instead define it as a subtype of an AbstractArray{Int,
1}:
julia> struct SquaresVector <: AbstractArray{Int, 1}
count::Int
end
julia> Base.size(S::SquaresVector) = (S.count,)

julia> Base.IndexStyle(::Type{<:SquaresVector}) = IndexLinear()

julia> Base.getindex(S::SquaresVector, i::Int) = i*i

Note that it's very important to specify the two parameters of the AbstractArray; the first defines the eltype(),
and the second defines the ndims (). That supertype and those three methods are all it takes for SquaresVector to
be an iterable, indexable, and completely functional array:

julia> s = SquaresVector(7)
7-element SquaresVector:
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Methods to implement

Brief description

size(A) Returns a tuple containing the dimensions of A
getindex(A, i::Int) (if IndexLinear) Linear scalar indexing
getindex(A, (if IndexCartesian, where N = ndims(A))

I::Vararg{Int, N})

N-dimensional scalar indexing

setindex! (A, v, i::Int)

(if IndexLinear) Scalar indexed assignment

setindex! (A, v,
I::Vararg{Int, N})

(if IndexCartesian, where N = ndims(A))
N-dimensional scalar indexed assignment

Optional methods

Default definition

Brief description

IndexStyle(::Type)

IndexCartesian()

Returns either IndexLinear () or
IndexCartesian(). See the description
below.

getindex(A, I...)

defined in terms of
scalar getindex()

Multidimensional and nonscalar indexing

setindex! (A, I...)

defined in terms of
scalar setindex! ()

Multidimensional and nonscalar indexed
assignment

start()/next()/done()

defined in terms of
scalar getindex()

Iteration

length(A) prod(size(A)) Number of elements

similar(A) similar (A, Return a mutable array with the same shape and
eltype(A), element type
size(A))

similar (A, ::Type{S}) similar(A, S, Return a mutable array with the same shape and
size(A)) the specified element type

similar(A, similar(A, Return a mutable array with the same element

dims: :NTuple{Int}) eltype(A), dims) type and size dims

similar(A, ::Type{S}, Array{S}(dims) Return a mutable array with the specified

dims: :NTuple{Int})

element type and size

Non-traditional indices

Default definition

Brief description

indices(A)

map (OneTo,
size(A))

Return the AbstractUnitRange of valid
indices

Base.similar (A,
::Type{S},
inds: :NTuple{Ind})

similar(A, S,
Base.to_shape(inds))

Return a mutable array with the specified
indices inds (see below)

Base.simi-
lar(T::Union{Type, Func-
tion},

inds)

T(Base.to_shape(inds

) Return an array similar to T with the specified
indices inds (see below)

16
25
36
49

julia> s[s .> 20]
3-element Array{Int64,1}:
25

36
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49

julia> s \ [12; 3 4; 56; 7 8; 9106; 11 12; 13 14]
1x2 Array{Float64,2}:

0.305389 0.335329

julia> s s # dot(s, s)
4676

As a more complicated example, let's define our own toy N-dimensional sparse-like array type built on top of Dict:

julia> struct SparseArray{T,N} <: AbstractArray{T,N}
data::Dict{NTuple{N,Int}, T}
dims: :NTuple{N, Int}
end

julia> SparseArray{T}(::Type{T}, dims::Int...) = SparseArray(T, dims);

julia> SparseArray{T,N}(::Type{T}, dims::NTuple{N,Int}) = SparseArray{T,N}(Dict{NTuple{N,Int}, T
(), dims);

julia> Base.size(A::SparseArray) = A.dims
julia> Base.similar(A::SparseArray, ::Type{T}, dims::Dims) where {T} = SparseArray(T, dims)

julia> Base.getindex(A::SparseArray{T,N}, I::Vararg{Int,N}) where {T,N} = get(A.data, I, zero(T))

julia> Base.setindex! (A::SparseArray{T,N}, v, I::Vararg{Int,N}) where {T,N} = (A.data[I] = v)

Notice that this is an IndexCartesian array, so we must manually define getindex() and setindex! () at the
dimensionality of the array. Unlike the SquaresVector, we are able to define setindex! (), and so we can mutate
the array:

julia> A = SparseArray(Float64, 3, 3)
3x3 SparseArray{Float64,2}:

0.0 0.0 0.0

0.0 0.0 0.0

0.0 0.0 0.0

julia> fill!(A, 2)

3x3 SparseArray{Float64,2}:
2.0 2.0 2.0

2.0 2.0 2.0

2.0 2.8 2.0

julia> A[:] = 1:length(A); A
3x3 SparseArray{Float64,2}:
1.0 4.0 7.0
2.0 5.0 8.0
3.0 6.8 9.0

The result of indexing an AbstractArray can itself be an array (for instance when indexing by a Range). The Ab-
stractArray fallback methods use similar () to allocate an Array of the appropriate size and element type, which
is filled in using the basic indexing method described above. However, when implementing an array wrapper you often
want the result to be wrapped as well:

julia> A[1:2,:]
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2x3 SparseArray{Float64,2}:
1.0 4.0 7.0
2.0 5.0 8.0

In this example it is accomplished by defining Base.similar{T}(A::SparseArray, ::Type{T}, dims::Dims)
to create the appropriate wrapped array. (Note that while similar supports 1- and 2-argument forms, in most case
you only need to specialize the 3-argument form.) For this to work it's important that SparseArray is mutable (sup-
ports setindex!). Defining similar(), getindex() and setindex! () for SparseArray also makes it possible
to copy() the array:

julia> copy(A)

3x3 SparseArray{Float64,2}:
1.0 4.0 7.0

2.6 5.0 8.0
3.0 6.0 9.0

In addition to all the iterable and indexable methods from above, these types can also interact with each other and
use most of the methods defined in the standard library for AbstractArrays:

julia> A[SquaresVector(3)]
3-element SparseArray{Float64,1}:
1.0
4.0
9.0

julia> dot(A[:,1],A[:,2])
32.0

If you are defining an array type that allows non-traditional indexing (indices that start at something other than 1), you
should specialize indices. You should also specialize similar so that the dims argument (ordinarily a Dims size-
tuple) can accept AbstractUnitRange objects, perhaps range-types Ind of your own design. For more information,
see Arrays with custom indices.






Chapter 19

Modules

Modules in Julia are separate variable workspaces, i.e. they introduce a new global scope. They are delimited syntacti-
cally, inside module Name ... end. Modules allow you to create top-level definitions (aka global variables) without
worrying about name conflicts when your code is used together with somebody else’s. Within a module, you can
control which names from other modules are visible (via importing), and specify which of your names are intended to
be public (via exporting).

The following example demonstrates the major features of modules. It is not meant to be run, but is shown for
illustrative purposes:

module MyModule
using Lib

using BiglLib: thing1, thing2
import Base.show
importall OtherLib
export MyType, foo
struct MyType
X

end

bar(x) = 2x
foo(a::MyType) = bar(a.x) + 1

show(io::I0, a::MyType) = print(io, "MyType $(a.x)")
end

Note that the style is not to indent the body of the module, since that would typically lead to whole files being indented.

This module defines a type MyType, and two functions. Function foo and type MyType are exported, and so will be
available for importing into other modules. Function bar is private to MyModule.

The statement using Lib means that a module called Lib will be available for resolving names as needed. When a
global variable is encountered that has no definition in the current module, the system will search for it among variables
exported by Lib and import it if it is found there. This means that all uses of that global within the current module will
resolve to the definition of that variable in Lib.

Thestatementusing BigLib: thing1, thing2isasyntacticshortcutforusing BiglLib.thing1, BigLib.thing2.
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The import keyword supports all the same syntax as using, but only operates on a single name at a time. It does not
add modules to be searched the way using does. import also differs from using in that functions must be imported
using import to be extended with new methods.

In MyModule above we wanted to add a method to the standard show function, so we had towrite import Base.show.
Functions whose names are only visible via using cannot be extended.

The keyword importall explicitly imports all names exported by the specified module, as if import were individually
used on all of them.

Once a variable is made visible via using or import, a module may not create its own variable with the same name.
Imported variables are read-only; assigning to a global variable always affects a variable owned by the current module,
or else raises an error.

19.1 Summary of module usage

To load a module, two main keywords can be used: using and import. To understand their differences, consider the
following example:

module MyModule

export X, y

end

In this module we export the x and y functions (with the keyword export), and also have the non-exported function
p. There are several different ways to load the Module and its inner functions into the current workspace:

Import Command What is brought into scope Available for method
extension

using MyModule All exported names (x and y), MyModule.x, MyModule.x, MyModule.y

MyModule.y and MyModule.p and MyModule.p

using MyModule.x, x and p

MyModule.p

using MyModule: x, x and p

p

import MyModule MyModule. x, MyModule.y and MyModule.p MyModule.x, MyModule.y
and MyModule.p

import MyModule.x, x and p x and p

MyModule.p

import MyModule: x, x and p x and p

p

importall MyModule All exported names (x and y) xandy

Modules and files

Files and file names are mostly unrelated to modules; modules are associated only with module expressions. One can
have multiple files per module, and multiple modules per file:
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module Foo

include("file1.j1")
include("file2.j1")

end

Including the same code in different modules provides mixin-like behavior. One could use this to run the same code
with different base definitions, for example testing code by running it with "safe” versions of some operators:

module Normal
include("mycode.jl")
end

module Testing
include("safe_operators.jl")
include("mycode.jl")

end

Standard modules
There are three important standard modules: Main, Core, and Base.

Main is the top-level module, and Julia starts with Main set as the current module. Variables defined at the prompt go
in Main, and whos () lists variables in Main.

Core contains all identifiers considered "built in” to the language, i.e. part of the core language and not libraries. Every
module implicitly specifies using Core, since you can’'t do anything without those definitions.

Base is the standard library (the contents of base/). All modules implicitly contain using Base, since this is needed
in the vast majority of cases.

Default top-level definitions and bare modules

In addition to using Base, modules also automatically contain a definition of the eval function, which evaluates
expressions within the context of that module.

If these default definitions are not wanted, modules can be defined using the keyword baremodule instead (note:
Core is still imported, as per above). In terms of baremodule, a standard module looks like this:

baremodule Mod
using Base

eval(x) = Core.eval(Mod, x)
eval(m,x) = Core.eval(m, x)

end

Relative and absolute module paths

Given the statement using Foo, the system looks for Foo within Main. If the module does not exist, the system
attempts to require("Foo" ), which typically results in loading code from an installed package.
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However, some modules contain submodules, which means you sometimes need to access a module that is not directly
available in Main. There are two ways to do this. The first is to use an absolute path, for example using Base.Sort.
The second is to use a relative path, which makes it easier to import submodules of the current module or any of its
enclosing modules:

module Parent
module Utils
end

using .Utils

end

Here module Parent contains a submodule Utils, and code in Parent wants the contents of Utils to be visible.
This is done by starting the using path with a period. Adding more leading periods moves up additional levels in the
module hierarchy. For example using ..Utils would look for Utils in Parent’s enclosing module rather than in
Parent itself.

Note that relative-import qualifiers are only valid in using and import statements.

Module file paths

The global variable LOAD_PATH contains the directories Julia searches for modules when calling require. It can be
extended using push!:

| push! (LOAD_PATH, "/Path/To/My/Module/")

Putting this statement in the file ~/.juliarc.j1 will extend LOAD_PATH on every Julia startup. Alternatively, the
module load path can be extended by defining the environment variable JULIA_LOAD_PATH.

Namespace miscellanea

If a name is qualified (e.g. Base.sin), then it can be accessed even if it is not exported. This is often useful when
debugging. It can also have methods added to it by using the qualified name as the function name. However, due to
syntactic ambiguities that arise, if you wish to add methods to a function in a different module whose name contains
only symbols, such as an operator, Base . + for example, you must use Base. : + to refer to it. If the operator is more
than one character in length you must surround it in brackets, such as: Base. : (==).

Macro names are written with @ in import and export statements, e.g. import Mod.@mac. Macros in other modules
can be invoked as Mod . @mac or @Mod . mac.

The syntax M.x = y does not work to assign a global in another module; global assignment is always module-local.

Avariable can be "reserved” for the current module without assigning to it by declaring it as global x at the top level.
This can be used to prevent name conflicts for globals initialized after load time.

Module initialization and precompilation

Large modules can take several seconds to load because executing all of the statements in a module often involves
compiling a large amount of code. Julia provides the ability to create precompiled versions of modules to reduce this
time.
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To create an incremental precompiled module file, add __precompile__() at the top of your module file (before the

module starts). This will cause it to be automatically compiled the first time it is imported. Alternatively, you can manu-

ally callBase.compilecache(modulename). The resulting cache files will be stored in Base . LOAD_CACHE_PATH[1].
Subsequently, the module is automatically recompiled upon import whenever any of its dependencies change; de-

pendencies are modules it imports, the Julia build, files it includes, or explicit dependencies declared by include_de-

pendency (path) in the module file(s).

For file dependencies, a change is determined by examining whether the modification time (mtime) of each file loaded
by include or added explicitly by include_dependency is unchanged, or equal to the modification time truncated
to the nearest second (to accommodate systems that can't copy mtime with sub-second accuracy). It also takes into
account whether the path to the file chosen by the search logic in require matches the path that had created the
precompile file.

It also takes into account the set of dependencies already loaded into the current process and won't recompile those
modaules, even if their files change or disappear, in order to avoid creating incompatibilities between the running system
and the precompile cache. If you want to have changes to the source reflected in the running system, you should call
reload("Module") on the module you changed, and any module that depended on it in which you want to see the
change reflected.

Precompiling a module also recursively precompiles any modules that are imported therein. If you know that it is not
safe to precompile your module (for the reasons described below), you should put __precompile__(false) in the
module file to cause Base.compilecache to throw an error (and thereby prevent the module from being imported
by any other precompiled module).

__precompile__() should not be used in a module unless all of its dependencies are also using __precompile__().
Failure to do so can result in a runtime error when loading the module.

In order to make your module work with precompilation, however, you may need to change your module to explicitly
separate any initialization steps that must occur at runtime from steps that can occur at compile time. For this purpose,
Julia allows you to define an __init__() function in your module that executes any initialization steps that must
occur at runtime. This function will not be called during compilation (--output-* or __precompile__()). You
may, of course, call it manually if necessary, but the default is to assume this function deals with computing state
for the local machine, which does not need to be - or even should not be - captured in the compiled image. It
will be called after the module is loaded into a process, including if it is being loaded into an incremental compile
(--output-incremental=yes), but not if it is being loaded into a full-compilation process.

In particular, if you define a function __init__() in a module, then Julia will call __init__() immediately after
the module is loaded (e.g., by import, using, or require) at runtime for the first time (i.e., __init__ is only called
once, and only after all statements in the module have been executed). Because it is called after the module is fully
imported, any submodules or other imported modules have their __init__ functions called before the __init__ of
the enclosing module.

Two typical uses of __init__ are calling runtime initialization functions of external C libraries and initializing global
constants that involve pointers returned by external libraries. For example, suppose that we are calling a C library
libfoo that requires us to call a foo_init () initialization function at runtime. Suppose that we also want to define
a global constant foo_data_ptr that holds the return value of a void *foo_data() function defined by 1ibfoo -
this constant must be initialized at runtime (not at compile time) because the pointer address will change from run to
run. You could accomplish this by defining the following __init__ function in your module:

const foo_data_ptr = Ref{Ptr{Void}}(9)
function __init__()

ccall((:foo_init, :libfoo), Void, ())

foo_data_ptr[] = ccall((:foo_data, :libfoo), Ptr{Void}, ())
end
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Notice that it is perfectly possible to define a global inside a function like __init__; this is one of the advantages of
using a dynamic language. But by making it a constant at global scope, we can ensure that the type is known to the
compiler and allow it to generate better optimized code. Obviously, any other globals in your module that depends on
foo_data_ptr would also have to be initialized in __init__.

Constants involving most Julia objects that are not produced by ccall do not need to be placed in __init__: their
definitions can be precompiled and loaded from the cached module image. This includes complicated heap-allocated
objects like arrays. However, any routine that returns a raw pointer value must be called at runtime for precompilation
to work (Ptr objects will turn into null pointers unless they are hidden inside an isbits object). This includes the return
values of the Julia functions cfunction and pointer.

Dictionary and set types, or in general anything that depends on the output of a hash(key) method, are a trickier
case. In the common case where the keys are numbers, strings, symbols, ranges, Expr, or compositions of these types
(via arrays, tuples, sets, pairs, etc.) they are safe to precompile. However, for a few other key types, such as Function
or DataType and generic user-defined types where you haven’t defined a hash method, the fallback hash method
depends on the memory address of the object (via its object_id) and hence may change from run to run. If you have
one of these key types, or if you aren’t sure, to be safe you can initialize this dictionary from within your __init__
function. Alternatively, you can use the ObjectIdDict dictionary type, which is specially handled by precompilation
so that it is safe to initialize at compile-time.

When using precompilation, it is important to keep a clear sense of the distinction between the compilation phase and
the execution phase. In this mode, it will often be much more clearly apparent that Julia is a compiler which allows
execution of arbitrary Julia code, not a standalone interpreter that also generates compiled code.

Other known potential failure scenarios include:

1. Global counters (for example, for attempting to uniquely identify objects) Consider the following code snippet:

mutable struct UniquedById
myid: :Int
let counter = 0
UniquedById() = new(counter += 1)
end
end

while the intent of this code was to give every instance a unique id, the counter value is recorded at the end
of compilation. All subsequent usages of this incrementally compiled module will start from that same counter
value.

Note that object_id (which works by hashing the memory pointer) has similar issues (see notes on Dict usage
below).

One alternative is to store both current_module() and the current counter value, however, it may be better
to redesign the code to not depend on this global state.

2. Associative collections (such as Dict and Set) need to be re-hashed in __init__. (In the future, a mechanism
may be provided to register an initializer function.)

3. Depending on compile-time side-effects persisting through load-time. Example include: modifying arrays or
other variables in other Julia modules; maintaining handles to open files or devices; storing pointers to other
system resources (including memory);

4. Creating accidental "copies” of global state from another module, by referencing it directly instead of via its
lookup path. For example, (in global scope):

#mystdout = Base.STDOUT #= will not work correctly, since this will copy Base.STDOUT into
— this module =#
# instead use accessor functions:
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getstdout() = Base.STDOUT #= best option =#
# or move the assignment into the runtime:
__init__() = global mystdout = Base.STDOUT #= also works =#

Several additional restrictions are placed on the operations that can be done while precompiling code to help the user
avoid other wrong-behavior situations:

1. Calling eval to cause a side-effect in another module. This will also cause a warning to be emitted when the
incremental precompile flag is set.

2. global const statements from local scope after __init__() has been started (see issue #12010 for plans
to add an error for this)

3. Replacing a module (or calling workspace()) is a runtime error while doing an incremental precompile.

A few other points to be aware of:

1. No code reload / cache invalidation is performed after changes are made to the source files themselves, (in-
cluding by Pkg.update), and no cleanup is done after Pkg.rm

2. The memory sharing behavior of a reshaped array is disregarded by precompilation (each view gets its own copy)

w

Expecting the filesystem to be unchanged between compile-time and runtimee.g. @__FILE__/source_path()
to find resources at runtime, or the BinDeps @checked_1ib macro. Sometimes this is unavoidable. However,
when possible, it can be good practice to copy resources into the module at compile-time so they won't need
to be found at runtime.

4. WeakRef objects and finalizers are not currently handled properly by the serializer (this will be fixed in an up-
coming release).

5. It is usually best to avoid capturing references to instances of internal metadata objects such as Method,
MethodInstance, MethodTable, TypeMapLevel, TypeMapEntry and fields of those objects, as this can
confuse the serializer and may not lead to the outcome you desire. It is not necessarily an error to do this,
but you simply need to be prepared that the system will try to copy some of these and to create a single unique
instance of others.

It is sometimes helpful during module development to turn off incremental precompilation. The command line flag
--compilecache={yes|no} enables you to toggle module precompilation on and off. When Julia is started with
--compilecache=no the serialized modules in the compile cache are ignored when loading modules and module
dependencies. Base.compilecache() can still be called manually and it will respect __precompile__() directives
for the module. The state of this command line flag is passed to Pkg.build() to disable automatic precompilation
triggering when installing, updating, and explicitly building packages.
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Documentation

Julia enables package developers and users to document functions, types and other objects easily via a built-in docu-
mentation system since Julia 0.4.

The basic syntax is very simple: any string appearing at the top-level right before an object (function, macro, type or
instance) will be interpreted as documenting it (these are called docstrings). Here is a very simple example:

"Tell whether there are too foo items in the array.”
foo(xs::Array) = ...

Documentation is interpreted as Markdown, so you can use indentation and code fences to delimit code examples
from text. Technically, any object can be associated with any other as metadata; Markdown happens to be the default,
but one can construct other string macros and pass them to the @doc macro just as well.

Here is a more complex example, still using Markdown:

bar(x[, yl)

Compute the Bar index between “x° and 'y . If 'y’ is missing, compute
the Bar index between all pairs of columns of “x'.

# Examples

*Tjulia-repl
julia> bar([1, 2], [1, 2])
1

function bar(x, y)

As in the example above, we recommend following some simple conventions when writing documentation:

1. Always show the signature of a function at the top of the documentation, with a four-space indent so that it is
printed as Julia code.

This can be identical to the signature present in the Julia code (like mean(x : :AbstractArray)), or a simplified
form. Optional arguments should be represented with their default values (i.e. f(x, y=1))when possible, fol-
lowing the actual Julia syntax. Optional arguments which do not have a default value should be put in brackets
(i.e. f(x[, yl)and f(x[, yl[, z11)). An alternative solution is to use several lines: one without optional
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arguments, the other(s) with them. This solution can also be used to document several related methods of a
given function. When a function accepts many keyword arguments, only include a <keyword arguments>
placeholder in the signature (i.e. f(x; <keyword arguments>)), and give the complete list under an # Ar-
guments section (see point 4 below).

Include a single one-line sentence describing what the function does or what the object represents after the
simplified signature block. If needed, provide more details in a second paragraph, after a blank line.

The one-line sentence should use the imperative form ("Do this”, "Return that”) instead of the third person (do
not write "Returns the length..”) when documenting functions. It should end with a period. If the meaning
of a function cannot be summarized easily, splitting it into separate composable parts could be beneficial (this
should not be taken as an absolute requirement for every single case though).

Do not repeat yourself.

Since the function name is given by the signature, there is no need to start the documentation with "The function
bar..”: go straight to the point. Similarly, if the signature specifies the types of the arguments, mentioning them
in the description is redundant.

Only provide an argument list when really necessary.

For simple functions, it is often clearer to mention the role of the arguments directly in the description of the
function’s purpose. An argument list would only repeat information already provided elsewhere. However,
providing an argument list can be a good idea for complex functions with many arguments (in particular key-
word arguments). In that case, insert it after the general description of the function, under an # Arguments
header, with one - bullet for each argument. The list should mention the types and default values (if any) of the
arguments:

# Arguments
- 'n::Integer’: the number of elements to compute.
- “dim::Integer=1": the dimensions along which to perform the computation.

Include any code examples in an # Examples section.

Examples should, whenever possible, be written as doctests. A doctest is a fenced code block (see Code blocks)
starting with * * “ jldoctest and contains any number of julia> prompts together with inputs and expected
outputs that mimic the Julia REPL.

For example in the following docstring a variable a is defined and the expected result, as printed in a Julia REPL,
appears afterwards:

Some nice documentation here.
# Examples

““jldoctest

julia> a = [1 2; 3 4]
2x2 Array{Int64,2}:
1 2

3 4
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20.1

Warning

Calling rand and other RNG-related functions should be avoided in doctests since they will not
produce consistent outputs during different Julia sessions.

Operating system word size (Int32 or Int64) as well as path separator differences (/ or \) will also
affect the reproducibility of some doctests.

Note that whitespace in your doctest is significant! The doctest will fail if you misalign the output
of pretty-printing an array, for example.

You can then run make -C doc doctest to run all the doctests in the Julia Manual, which will ensure that
your example works.

Examples that are untestable should be written within fenced code blocks starting with * * “ julia so that they
are highlighted correctly in the generated documentation.

Tip
Wherever possible examples should be self-contained and runnable so that readers are able to try
them out without having to include any dependencies.

Use backticks to identify code and equations.

Julia identifiers and code excerpts should always appear between backticks * to enable highlighting. Equations
in the LaTeX syntax can be inserted between double backticks * *. Use Unicode characters rather than their
LaTeX escape sequence,i.e. ““a = 1 ratherthan " “\\alpha = 1°°

Place the starting and ending """ characters on lines by themselves.

That is, write:

f(x, y) = ...

rather than:

f(x, y) = ...
This makes it more clear where docstrings start and end.

Respect the line length limit used in the surrounding code.

Docstrings are edited using the same tools as code. Therefore, the same conventions should apply. It it advised
to add line breaks after 92 characters.

Accessing Documentation

Documentation can be accessed at the REPL or in |Julia by typing ? followed by the name of a function or macro, and
pressing Enter. For example,

7fft

?@time

2rmn
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will bring up docs for the relevant function, macro or string macro respectively. In Juno using Ctrl-J, Ctrl-D will
bring up documentation for the object under the cursor.

20.2 Functions & Methods

Functions in Julia may have multiple implementations, known as methods. While it's good practice for generic func-
tions to have a single purpose, Julia allows methods to be documented individually if necessary. In general, only the
most generic method should be documented, or even the function itself (i.e. the object created without any meth-
ods by function bar end). Specific methods should only be documented if their behaviour differs from the more
generic ones. In any case, they should not repeat the information provided elsewhere. For example:

*(X, y, z...)

Multiplication operator. "x * y * z *...  calls this function with multiple
arguments, i.e. “*(x, y, z...)"

function *(x, vy, z...)
# ... [implementation sold separately] ...

end
*(x::AbstractString, y::AbstractString, z::AbstractString...)

When applied to strings, concatenates them.

function *(x::AbstractString, y::AbstractString, z::AbstractString...)
# ... [insert secret sauce here] ...

end

help?> =*
search: * .*

*(X, Y, Z...)

Multiplication operator. x * y * z *... calls this function with multiple
arguments, i.e. *(x,y,z...).

*(x::AbstractString, y::AbstractString, z::AbstractString...)

When applied to strings, concatenates them.

When retrieving documentation for a generic function, the metadata for each method is concatenated with the catdoc
function, which can of course be overridden for custom types.

20.3 Advanced Usage

The @doc macro associates its first argument with its second in a per-module dictionary called META. By default,
documentation is expected to be written in Markdown, and the doc" " string macro simply creates an object represent-
ing the Markdown content. In the future it is likely to do more advanced things such as allowing for relative image or
link paths.

When used for retrieving documentation, the @doc macro (or equally, the doc function) will search all META dictionaries
for metadata relevant to the given object and return it. The returned object (some Markdown content, for example)
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will by default display itself intelligently. This design also makes it easy to use the doc system in a programmatic way;
for example, to re-use documentation between different versions of a function:

@doc "..." foo!
@doc (@doc foo!) foo

Or for use with Julia’s metaprogramming functionality:

for (f, op) in ((:add, :+), (:subtract, :-), (:multiply, :*), (:divide, :/))
@eval begin
$f(a,b) = Sop(a,b)
end
end
@doc "‘add(a,b)’ adds ‘a’ and 'b" together" add
@doc "“subtract(a,b)’ subtracts "b" from "a’" subtract

Documentation written in non-toplevel blocks, such asbegin, if, for,and let, is added to the documentation system
as blocks are evaluated. For example:

if VERSION > v"@.5"
f(x) = x
end

will add documentation to f(x) when the condition is true. Note that even if f(x) goes out of scope at the end of
the block, its documentation will remain.

Dynamic documentation

Sometimes the appropriate documentation for an instance of a type depends on the field values of that instance, rather
than just on the type itself. In these cases, you can add a method to Docs . getdoc for your custom type that returns
the documentation on a per-instance basis. For instance,

struct MyType
value: :String
end

Docs.getdoc(t::MyType) = "Documentation for MyType with value $(t.value)"

x
]

MyType("x")
y = MyType("y")

?x will display "Documentation for MyType with value x” while ?y will display "Documentation for MyType with value

»

y"

20.4 Syntax Guide

A comprehensive overview of all documentable Julia syntax.

In the following examples " . . . " is used to illustrate an arbitrary docstring which may be one of the follow four variants
and contain arbitrary text:
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doc"..."

doc"""

@doc_str should only be used when the docstring contains $ or \ characters that should not be parsed by Julia such
as LaTeX syntax or Julia source code examples containing interpolation.

Functions and Methods

function f end

Adds docstring " . . ." to Functionf. The first version is the preferred syntax, however both are equivalent.
f(x) = x

function f(x)
X
end

f(x)

Adds docstring " . . . " to Methodf(: :Any).

‘f(x,y=1)=x+y

Adds docstring " . . . " to two Methods, namely f(::Any) and f(::Any, ::Any).

Macros

macro m(x) end
Adds docstring " . . . " to the @m( : : Any) macro definition.
‘:(@m)

Adds docstring " . . ." to the macro named @m.
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Types

abstract type T1 end

mutable struct T2
end
struct T3

end

Adds the docstring " .. ." to types T1, T2, and T3.

struct T

Adds docstring " .. ." totype T, "x" to field T.x and "y" to field T.y. Also applicable to mutable struct types.
Modules
module M end

module M

end

Adds docstring " . . . " to the ModuleM. Adding the docstring above the Module is the preferred syntax, however both
are equivalent.

baremodule M
# ...
end

baremodule M

import Base: @doc

F(x) - x

end
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Documenting a baremodule by placing a docstring above the expression automatically imports @doc into the module.
These imports must be done manually when the module expression is not documented. Empty baremodules cannot
be documented.

Global Variables

const a = 1

global ¢ = 3
Adds docstring " .. ." to the Bindings a, b, and c.

Bindings are used to store a reference to a particular Symbol in a Module without storing the referenced value itself.

Note

When a const definition is only used to define an alias of another definition, such as is the case with
the function div and its alias + in Base, do not document the alias and instead document the actual
function.

If the alias is documented and not the real definition then the docsystem (? mode) will not return the
docstring attached to the alias when the real definition is searched for.

For example you should write
f(x) = x + 1

const alias = f

rather than

f(x) = x + 1

const alias = f

sym
Adds docstring " . . . " to the value associated with sym. Users should prefer documenting sym at it’s definition.
Multiple Objects

a, b
Adds docstring " . . ." to a and b each of which should be a documentable expression. This syntax is equivalent to
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Any number of expressions many be documented together in this way. This syntax can be useful when two functions
are related, such as non-mutating and mutating versions f and f!.

Macro-generated code

@m expression

Adds docstring " . . . " to expression generated by expanding @m expression. This allows for expressions decorated
with @inline, @noinline, @generated, or any other macro to be documented in the same way as undecorated
expressions.

Macro authors should take note that only macros that generate a single expression will automatically support doc-
strings. If a macro returns a block containing multiple subexpressions then the subexpression that should be docu-
mented must be marked using the @__doc__ macro.

The @enum macro makes use of @__doc__ to allow for documenting Enums. Examining it's definition should serve as
an example of how to use @__doc__ correctly.

Core.@__doc__ - Macro.
@__doc__(ex)

Low-level macro used to mark expressions returned by a macro that should be documented. If more than one
expression is marked then the same docstring is applied to each expression.

macro example(f)
quote
S(f)() =0
@__doc__ $(f)(x) =1
S(F)(x, y) =2
end |> esc
end

@__doc__ has no effect when a macro that uses it is not documented.

source

20.5 Markdown syntax

The following markdown syntax is supported in Julia.

Inline elements

Here "inline” refers to elements that can be found within blocks of text, i.e. paragraphs. These include the following
elements.

Bold

Surround words with two asterisks, **, to display the enclosed text in boldface.

‘A paragraph containing a **bold** word.

Italics

Surround words with one asterisk, *, to display the enclosed text in italics.

A paragraph containing an *emphasised* word.


https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/docs/Docs.jl#L570-L585
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Literals
Surround text that should be displayed exactly as written with single backticks, * .

A paragraph containing a ‘literal’ word.

Literals should be used when writing text that refers to names of variables, functions, or other parts of a Julia program.

Tip
To include a backtick character within literal text use three backticks rather than one to enclose the text.

A paragraph containing a " ‘“backtick® character "

By extension any odd number of backticks may be used to enclose a lesser number of backticks.

BTEX
Surround text that should be displayed as mathematics using ETgXsyntax with double backticks, * *

‘A paragraph containing some " “\LaTeX" " markup.

Tip
As with literals in the previous section, if literal backticks need to be written within double backticks

use an even number greater than two. Note that if a single literal backtick needs to be included within
ETeXmarkup then two enclosing backticks is sufficient.

Links

Links to either external or internal addresses can be written using the following syntax, where the text enclosed in
square brackets, [ 1, is the name of the link and the text enclosed in parentheses, ( ), is the URL.

A paragraph containing a link to [Julia](http://www.julialang.org).

It's also possible to add cross-references to other documented functions/methods/variables within the Julia documen-
tation itself. For example:

eigvals! (A, [irange, ][vl, ]1[vu]) -> values

Same as [ ‘eigvals’](@ref), but saves space by overwriting the input 'A’, instead of creating a
< copy.

This will create a link in the generated docs to the eigvals documentation (which has more information about what
this function actually does). It's good to include cross references to mutating/non-mutating versions of a function, or
to highlight a difference between two similar-seeming functions.

Note

The above cross referencing is not a Markdown feature, and relies on Documenter.jl, which is used to
build base Julia’s documentation.
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Footnote references

Named and numbered footnote references can be written using the following syntax. A footnote name must be a
single alphanumeric word containing no punctuation.

‘A paragraph containing a numbered footnote [*1] and a named one [“named].

Note

The text associated with a footnote can be written anywhere within the same page as the footnote
reference. The syntax used to define the footnote text is discussed in the Footnotes section below.

Toplevel elements

The following elements can be written either at the "toplevel” of a document or within another "toplevel” element.

Paragraphs

A paragraph is a block of plain text, possibly containing any number of inline elements defined in the Inline elements
section above, with one or more blank lines above and below it.

This is a paragraph.

And this is *another* one containing some emphasised text.
A new line, but still part of the same paragraph.

Headers

A document can be split up into different sections using headers. Headers use the following syntax:

# Level One

## Level Two

### Level Three
#### Level Four
##### Level Five
#H##### Level Six

A header line can contain any inline syntax in the same way as a paragraph can.

Tip
Try to avoid using too many levels of header within a single document. A heavily nested document may
be indicative of a need to restructure it or split it into several pages covering separate topics.

Code blocks
Source code can be displayed as a literal block using an indent of four spaces as shown in the following example.

This is a paragraph.

function func(x)
# ...
end

Another paragraph.
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Additionally, code blocks can be enclosed using triple backticks with an optional "language” to specify how a block of
code should be highlighted.

A code block without a "language":

function func(x)
# ...
end

and another one with the "language" specified as “julia':

*julia
function func(x)
# ...
end

Note

"Fenced” code blocks, as shown in the last example, should be prefered over indented code blocks since
there is no way to specify what language an indented code block is written in.

Block quotes

Text from external sources, such as quotations from books or websites, can be quoted using > characters prepended
to each line of the quote as follows.

Here's a quote:

> Julia is a high-level, high-performance dynamic programming language for
> technical computing, with syntax that is familiar to users of other
> technical computing environments.

Note that a single space must appear after the > character on each line. Quoted blocks may themselves contain other
toplevel or inline elements.

Images

The syntax for images is similar to the link syntax mentioned above. Prepending a ! character to a link will display an
image from the specified URL rather than a link to it.

‘![alternative text](link/to/image.png)

Lists
Unordered lists can be written by prepending each item in a list with either *, +, or -.

A list of items:

* item one
* item two
* item three
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Note the two spaces before each * and the single space after each one.

Lists can contain other nested toplevel elements such as lists, code blocks, or quoteblocks. A blank line should be left
between each list item when including any toplevel elements within a list.

Another list:
* item one

* item two
f(x) = x

* And a sublist:

+ sub-item one
+ sub-item two

Note

The contents of each item in the list must line up with the first line of the item. In the above example the
fenced code block must be indented by four spaces to align with the i in item two.

Ordered lists are written by replacing the "bullet” character, either *, +, or -, with a positive integer followed by either
. or).

Two ordered lists:

1. item one
2. item two
3. item three

5) item five
6) item six
7) item seven

An ordered list may start from a number other than one, as in the second list of the above example, where it is numbered
from five. As with unordered lists, ordered lists can contain nested toplevel elements.

Display equations

Large BTpXequations that do not fit inline within a paragraph may be written as display equations using a fenced code
block with the "language” math as in the example below.

““math
f(a) = \frac{1}{2\pi}\int_{0}*{2\pi} (\alpha+R\cos(\theta))d\theta

Footnotes
This syntax is paired with the inline syntax for Footnote references. Make sure to read that section as well.

Footnote text is defined using the following syntax, which is similar to footnote reference syntax, aside from the :
character that is appended to the footnote label.
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[~1]: Numbered footnote text.
[*note] :
Named footnote text containing several toplevel elements.

* item one
* item two
* item three

“"julia
function func(x)
# ...
end

Note

No checks are done during parsing to make sure that all footnote references have matching footnotes.

Horizontal rules
The equivalent of an <hr> HTML tag can be written using the following syntax:

Text above the line.

And text below the line.

Tables

Basic tables can be written using the syntax described below. Note that markdown tables have limited features and
cannot contain nested toplevel elements unlike other elements discussed above - only inline elements are allowed.
Tables must always contain a header row with column names. Cells cannot span multiple rows or columns of the table.

| Column One | Column Two | Column Three |

| Row “1° | Column "2° | |
| *Row=* 2 | **Row** 2 | Column "'3°° |

Note
As illustrated in the above example each column of | characters must be aligned vertically.

A : character on either end of a column’s header separator (the row containing - characters) specifies
whether the row is left-aligned, right-aligned, or (when : appears on both ends) center-aligned. Providing
no : characters will default to right-aligning the column.

Admonitions

Specially formatted blocks with titles such as "Notes”, "Warning”, or "Tips” are known as admonitions and are used
when some part of a document needs special attention. They can be defined using the following ! ! ! syntax:



20.6. MARKDOWN SYNTAX EXTENSIONS 191

111 note
This is the content of the note.
11l warning "Beware!"

And this is another one.

This warning admonition has a custom title: “"Beware!"'.

Admonitions, like most other toplevel elements, can contain other toplevel elements. When no title text, specified
after the admonition type in double quotes, is included then the title used will be the type of the block, i.e. "Note" in
the case of the note admonition.

20.6 Markdown Syntax Extensions

Julia’s markdown supports interpolation in a very similar way to basic string literals, with the difference that it will
store the object itself in the Markdown tree (as opposed to converting it to a string). When the Markdown content
is rendered the usual show methods will be called, and these can be overridden as usual. This design allows the
Markdown to be extended with arbitrarily complex features (such as references) without cluttering the basic syntax.

In principle, the Markdown parser itself can also be arbitrarily extended by packages, or an entirely custom flavour of
Markdown can be used, but this should generally be unnecessary.
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Metaprogramming

The strongest legacy of Lisp in the Julia language is its metaprogramming support. Like Lisp, Julia represents its own
code as a data structure of the language itself. Since code is represented by objects that can be created and ma-
nipulated from within the language, it is possible for a program to transform and generate its own code. This allows
sophisticated code generation without extra build steps, and also allows true Lisp-style macros operating at the level
of abstract syntax trees. In contrast, preprocessor "macro” systems, like that of C and C++, perform textual manipula-
tion and substitution before any actual parsing or interpretation occurs. Because all data types and code in Julia are
represented by Julia data structures, powerful reflection capabilities are available to explore the internals of a program
and its types just like any other data.

21.1 Program representation

Every Julia program starts life as a string:

julia> prog = "1 + 1"
"4

What happens next?
The next step is to parse each string into an object called an expression, represented by the Julia type Expr:

julia> ex1 = parse(prog)
(1 + 1)

julia> typeof(ex1)
Expr

Expr objects contain three parts:
¢ a Symbol identifying the kind of expression. A symbol is an interned string identifier (more discussion below).

julia> ex1.head
rcall

o the expression arguments, which may be symbols, other expressions, or literal values:
julia> ex1.args

3-element Array{Any,1}:
T+
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o finally, the expression result type, which may be annotated by the user or inferred by the compiler (and may be
ignored completely for the purposes of this chapter):

julia> ex1.typ

Any

Expressions may also be constructed directly in prefix notation:

julia> ex2 = Expr(:call, :+, 1, 1)

(1 + 1)
The two expressions constructed above - by parsing and by direct construction - are equivalent:

julia> ex1 == ex2
true

The key point here is that Julia code is internally represented as a data structure that is accessible from the language
itself.

The dump () function provides indented and annotated display of Expr objects:

julia> dump(ex2)
Expr
head: Symbol call
args: Array{Any}((3,))
1: Symbol +
2: Int64 1
3: Int64 1

typ: Any

Expr objects may also be nested:

julia> ex3 = parse("(4 + 4) / 2")
(4 +4)/2)

Another way to view expressions is with Meta.show_sexpr, which displays the S-expression form of a given Expr,
which may look very familiar to users of Lisp. Here's an example illustrating the display on a nested Expr:

julia> Meta.show_sexpr(ex3)
(:call, :/, (:call, :+, 4, 4), 2)

Symbols

The : character has two syntactic purposes in Julia. The first form creates a Symbol, an interned string used as one
building-block of expressions:

julia> :foo
:foo

julia> typeof(ans)
Symbol

The Symbol constructor takes any number of arguments and creates a new symbol by concatenating their string
representations together:
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julia> :foo == Symbol("foo")
true

julia> Symbol("func",10)
:func10

julia> Symbol(:var,'_"',"sym")
:var_sym

In the context of an expression, symbols are used to indicate access to variables; when an expression is evaluated, a
symbol is replaced with the value bound to that symbol in the appropriate scope.

Sometimes extra parentheses around the argument to : are needed to avoid ambiguity in parsing.:
julia> :(:)
()
julia> :(::)

(i)

21.2 Expressions and evaluation

Quoting

The second syntactic purpose of the : character is to create expression objects without using the explicit Expr con-
structor. This is referred to as quoting. The : character, followed by paired parentheses around a single statement of
Julia code, produces an Expr object based on the enclosed code. Here is example of the short form used to quote an
arithmetic expression:

julia> ex = :(a+b*c+1)
(a+b*xc+1)
julia> typeof(ex)
Expr

(to view the structure of this expression, try ex.head and ex.args, or use dump () as above)

Note that equivalent expressions may be constructed using parse() or the direct Expr form:

julia> (a + bxc + 1) =
parse("a + bxc + 1") =
Expr(:call, :+, :a, Expr(:call, :x, :b, :c), 1)

true

Expressions provided by the parser generally only have symbols, other expressions, and literal values as their args,
whereas expressions constructed by Julia code can have arbitrary run-time values without literal forms as args. In this
specific example, + and a are symbols, *(b, ¢) is a subexpression, and 1 is a literal 64-bit signed integer.

There is a second syntactic form of quoting for multiple expressions: blocks of code enclosed in quote ... end.
Note that this form introduces QuoteNode elements to the expression tree, which must be considered when directly
manipulating an expression tree generated from quote blocks. For other purposes, :( ... ) and quote .. end

blocks are treated identically.
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julia> ex = quote

x =1

y =2

X +y
end

quote # none, line 2:
1 # none, line 3:

X
y = 2 # none, line 4:
X +y

end

julia> typeof(ex)
Expr

Interpolation

Direct construction of Expr objects with value arguments is powerful, but Expr constructors can be tedious compared
to "normal” Julia syntax. As an alternative, Julia allows "splicing” or interpolation of literals or expressions into quoted
expressions. Interpolation is indicated by the $ prefix.

In this example, the literal value of a is interpolated:

julia> a = 1;

julia> ex = :(Sa + b)

(1 +b)
Interpolating into an unquoted expression is not supported and will cause a compile-time error:

julia> Sa + b
ERROR: unsupported or misplaced expression $

In this example, the tuple (1,2, 3) is interpolated as an expression into a conditional test:
julia> ex = :(a in $:((1,2,3)) )
:(a in (1, 2, 3))

Interpolating symbols into a nested expression requires enclosing each symbol in an enclosing quote block:

julia> :( :a in $( :(:a + :b) ) )

AAAAAAAAAA

quoted inner expression

The use of § for expression interpolation is intentionally reminiscent of string interpolation and command interpolation.
Expression interpolation allows convenient, readable programmatic construction of complex Julia expressions.

eval() and effects

Given an expression object, one can cause Julia to evaluate (execute) it at global scope using eval():
julia> (1 + 2)
(1 + 2)

julia> eval(ans)
3
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julia> ex = :(a + b)
(a +b)

julia> eval(ex)
ERROR: UndefVarError: b not defined
[...]

julia> a = 1; b = 2;

julia> eval(ex)
3

Every module has its own eval() function that evaluates expressions in its global scope. Expressions passed to
eval() are not limited to returning values - they can also have side-effects that alter the state of the enclosing
module’s environment:

julia> ex = :(x = 1)

(x = 1)

julia> x
ERROR: UndefVarError: x not defined

julia> eval(ex)
:

julia> x
1

Here, the evaluation of an expression object causes a value to be assigned to the global variable x.

Since expressions are just Expr objects which can be constructed programmatically and then evaluated, it is possible
to dynamically generate arbitrary code which can then be run using eval( ). Here is a simple example:

julia> a = 1;

julia> ex = Expr(:call, :+, a, :b)
(1 +b)

julia> a = 0; b = 2;

julia> eval(ex)
3

The value of a is used to construct the expression ex which applies the + function to the value 1 and the variable b.
Note the important distinction between the way a and b are used:

e The value of the variablea at expression construction time is used as an immediate value in the expression.
Thus, the value of a when the expression is evaluated no longer matters: the value in the expression is already
1, independent of whatever the value of a might be.

e On the other hand, the symbol :b is used in the expression construction, so the value of the variable b at that
time is irrelevant - :b is just a symbol and the variable b need not even be defined. At expression evaluation
time, however, the value of the symbol :b is resolved by looking up the value of the variable b.
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Functions on Expressions

As hinted above, one extremely useful feature of Julia is the capability to generate and manipulate Julia code within
Julia itself. We have already seen one example of a function returning Expr objects: the parse() function, which
takes a string of Julia code and returns the corresponding Expr. A function can also take one or more Expr objects as
arguments, and return another Expr. Here is a simple, motivating example:

julia> function math_expr(op, opl, op2)
expr = Expr(:call, op, opl, op2)
return expr
end
math_expr (generic function with 1 method)

julia> ex = math_expr(:+, 1, Expr(:call, :%, 4, 5))
(1 + 4 %5)

julia> eval(ex)
21

As another example, here is a function that doubles any numeric argument, but leaves expressions alone:

julia> function make_expr2(op, opri1, opr2)
opr1f, opr2f = map(x -> isa(x, Number) ? 2*x : x, (oprl1, opr2))
retexpr = Expr(:call, op, oprif, opr2f)
return retexpr
end
make_expr2 (generic function with 1 method)

julia> make_expr2(:+, 1, 2)
(2 + 4)

julia> ex = make_expr2(:+, 1, Expr(:call, :%, 5, 8))
(2 +5 % 8)

julia> eval(ex)
42

21.3 Macros

Macros provide a method to include generated code in the final body of a program. A macro maps a tuple of arguments
to a returned expression, and the resulting expression is compiled directly rather than requiring a runtime eval() call.
Macro arguments may include expressions, literal values, and symbols.

Basics
Here is an extraordinarily simple macro:

julia> macro sayhello()
return :( println("Hello, world!") )
end
@sayhello (macro with 1 method)

Macros have a dedicated character in Julia’s syntax: the @ (at-sign), followed by the unique name declared in a macro
NAME ... end block. In this example, the compiler will replace all instances of @sayhello with:
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‘:( println("Hello, world!") )

When @sayhello is entered in the REPL, the expression executes immediately, thus we only see the evaluation result:

julia> @sayhello()
Hello, world!

Now, consider a slightly more complex macro:

julia> macro sayhello(name)
return :( println("Hello, ", Sname) )
end
@sayhello (macro with 1 method)

This macro takes one argument: name. When @sayhello is encountered, the quoted expression is expanded to
interpolate the value of the argument into the final expression:

julia> @sayhello("human")
Hello, human
We can view the quoted return expression using the function macroexpand() (important note: this is an extremely

useful tool for debugging macros):

julia> ex = macroexpand( :(@sayhello("human")) )
:((println) ("Hello, ", "human"))

julia> typeof(ex)
Expr
We can see that the "human" literal has been interpolated into the expression.
There also exists a macro @macroexpand that is perhaps a bit more convenient than the macroexpand function:

julia> @macroexpand @sayhello "human"
:((println) ("Hello, ", "human"))

Hold up: why macros?

We have already seen a function f(::Expr...) -> Expr in a previous section. In fact, macroexpand() is also
such a function. So, why do macros exist?

Macros are necessary because they execute when code is parsed, therefore, macros allow the programmer to generate
and include fragments of customized code before the full program is run. To illustrate the difference, consider the
following example:

julia> macro twostep(arg)
println("I execute at parse time. The argument is: ", arg)
return :(println("I execute at runtime. The argument is: ", Sarg))

end
@twostep (macro with 1 method)

julia> ex = macroexpand( :(@twostep :(1, 2, 3)) );
I execute at parse time. The argument is: $(Expr(:quote, :((1, 2, 3))))

The first call to println() is executed when macroexpand() is called. The resulting expression contains only the
second println:
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julia> typeof(ex)
Expr

julia> ex
:((println) ("I execute at runtime. The argument is:

))))))))

, S(Expr(:copyast, :($(QuoteNode(:((1, 2, 3)

julia> eval(ex)
I execute at runtime. The argument is: (1, 2, 3)

Macro invocation

Macros are invoked with the following general syntax:

@name expr1 expr2 ...
@name(expr1, expr2, ...)

Note the distinguishing @ before the macro name and the lack of commas between the argument expressions in the
first form, and the lack of whitespace after @name in the second form. The two styles should not be mixed. For
example, the following syntax is different from the examples above; it passes the tuple (expr1, expr2, ...) as
one argument to the macro:

‘@name (expr1, expr2, ...)

It is important to emphasize that macros receive their arguments as expressions, literals, or symbols. One way to
explore macro arguments is to call the show () function within the macro body:

julia> macro showarg(x)
show(x)
# ... remainder of macro, returning an expression
end
@showarg (macro with 1 method)

julia> @showarg(a)
‘a

julia> @showarg(1+1)
(1 + 1)

julia> @showarg(println("Yo!"))
:(println("Yo!"))

Building an advanced macro
Here is a simplified definition of Julia’s @assert macro:

julia> macro assert(ex)
return :( Sex ? nothing : throw(AssertionError($(string(ex)))) )
end
@assert (macro with 1 method)

This macro can be used like this:
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julia> @assert 1 == 1.0

julia> @assert 1 == 0
ERROR: AssertionError: 1 == 0

In place of the written syntax, the macro call is expanded at parse time to its returned result. This is equivalent to
writing:

1 == 1.0 ? nothing : throw(AssertionError("1 == 1.0"))
1 == 0 ? nothing : throw(AssertionError("1 == 08"))
Thatis, in the first call, the expression : (1 == 1.0) is spliced into the test condition slot, while the value of string( : (1

== 1.0)) is spliced into the assertion message slot. The entire expression, thus constructed, is placed into the syn-
tax tree where the @assert macro call occurs. Then at execution time, if the test expression evaluates to true, then
nothing is returned, whereas if the test is false, an error is raised indicating the asserted expression that was false.
Notice that it would not be possible to write this as a function, since only the value of the condition is available and it
would be impossible to display the expression that computed it in the error message.

The actual definition of @assert in the standard library is more complicated. It allows the user to optionally specify
their own error message, instead of just printing the failed expression. Just like in functions with a variable number of
arguments, this is specified with an ellipses following the last argument:

julia> macro assert(ex, msgs...)
msg_body = isempty(msgs) ? ex : msgs[1]
msg = string(msg_body)
return :(Sex ? nothing : throw(AssertionError($msg)))
end
@assert (macro with 1 method)

Now @assert has two modes of operation, depending upon the number of arguments it receives! If there’s only one
argument, the tuple of expressions captured by msgs will be empty and it will behave the same as the simpler def-
inition above. But now if the user specifies a second argument, it is printed in the message body instead of the failing
expression. You can inspect the result of a macro expansion with the aptly named macroexpand() function:

julia> macroexpand(:(@assert a == b))
((if a ==
nothing
else
(throw) ((AssertionError)("a == b"))
end)

julia> macroexpand(:(@assert a==b "a should equal b!"))
(if a ==
nothing
else
(throw) ((AssertionError)("a should equal b!"))
end)

There is yet another case that the actual @assert macro handles: what if, in addition to printing "a should equal b,” we
wanted to print their values? One might naively try to use string interpolation in the custom message, e.g., @assert
a==b "a (8a) should equal b ($b)!", but this won't work as expected with the above macro. Can you see
why? Recall from string interpolation that an interpolated string is rewritten to a call to string(). Compare:

julia> typeof(:("a should equal b"))
String
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julia> typeof(:("a ($a) should equal b ($h)!"))
Expr

julia> dump(:("a ($a) should equal b ($b)!"))
Expr
head: Symbol string
args: Array{Any}((5,))
1: String "a ("

2: Symbol a
3: String ") should equal b ("
4: Symbol b
5: String ")!"
typ: Any

So now instead of getting a plain string in msg_body, the macro is receiving a full expression that will need to be
evaluated in order to display as expected. This can be spliced directly into the returned expression as an argument to
the string() call; see error.j1 for the complete implementation.

The @assert macro makes great use of splicing into quoted expressions to simplify the manipulation of expressions
inside the macro body.

Hygiene

An issue that arises in more complex macros is that of hygiene. In short, macros must ensure that the variables they
introduce in their returned expressions do not accidentally clash with existing variables in the surrounding code they
expand into. Conversely, the expressions that are passed into a macro as arguments are often expected to evaluate
in the context of the surrounding code, interacting with and modifying the existing variables. Another concern arises
from the fact that a macro may be called in a different module from where it was defined. In this case we need to
ensure that all global variables are resolved to the correct module. Julia already has a major advantage over languages
with textual macro expansion (like C) in that it only needs to consider the returned expression. All the other variables
(such as msg in @assert above) follow the normal scoping block behavior.

To demonstrate these issues, let us consider writing a @t ime macro that takes an expression as its argument, records
the time, evaluates the expression, records the time again, prints the difference between the before and after times,
and then has the value of the expression as its final value. The macro might look like this:

macro time(ex)
return quote
local t@ = time()
local val = Sex
local t1 = time()
println("elapsed time: ", t1-t@, " seconds")
val
end
end

Here, we want t0, t1, and val to be private temporary variables, and we want time to refer to the time () function
in the standard library, not to any time variable the user might have (the same applies to println). Imagine the
problems that could occur if the user expression ex also contained assignments to a variable called t0, or defined its
own time variable. We might get errors, or mysteriously incorrect behavior.

Julia’s macro expander solves these problems in the following way. First, variables within a macro result are classified
as either local or global. A variable is considered local if it is assigned to (and not declared global), declared local, or


https://github.com/JuliaLang/julia/blob/master/base/error.jl
https://en.wikipedia.org/wiki/Hygienic_macro

21.4. CODE GENERATION 203

used as a function argument name. Otherwise, it is considered global. Local variables are then renamed to be unique
(using the gensym( ) function, which generates new symbols), and global variables are resolved within the macro def-
inition environment. Therefore both of the above concerns are handled; the macro’s locals will not conflict with any
user variables, and time and println will refer to the standard library definitions.

One problem remains however. Consider the following use of this macro:

module MyModule
import Base.@time

time() = ... # compute something

@time time()
end

Here the user expression ex is a call to time, but not the same time function that the macro uses. It clearly refers to
MyModule. time. Therefore we must arrange for the code in ex to be resolved in the macro call environment. This is
done by "escaping” the expression with esc():

macro time(ex)
local val = $(esc(ex))

end

An expression wrapped in this manner is left alone by the macro expander and simply pasted into the output verbatim.
Therefore it will be resolved in the macro call environment.

This escaping mechanism can be used to "violate” hygiene when necessary, in order to introduce or manipulate user
variables. For example, the following macro sets x to zero in the call environment:

julia> macro zerox()
return esc(:(x = 0))
end
@zerox (macro with 1 method)

julia> function foo()
x =1
@zerox
return x # is zero
end
foo (generic function with 1 method)

julia> foo()
0

This kind of manipulation of variables should be used judiciously, but is occasionally quite handy.

21.4 Code Generation

When a significant amount of repetitive boilerplate code is required, it is common to generate it programmatically
to avoid redundancy. In most languages, this requires an extra build step, and a separate program to generate the
repetitive code. In Julia, expression interpolation and eval () allow such code generation to take place in the normal
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course of program execution. For example, the following code defines a series of operators on three arguments in
terms of their 2-argument forms:

for op = (:+, :*, :&, |, :8)
eval(quote
(Sop)(a,b,c) = (Sop)((Sop)(a,b),c)
end)
end

In this manner, Julia acts as its own preprocessor, and allows code generation from inside the language. The above
code could be written slightly more tersely using the : prefix quoting form:

for op = (:+, :*, :&, |, :8)
eval(:((Sop)(a,b,c) = (Sop)((Sop)(a,b),c)))

end

This sort of in-language code generation, however, using the eval(quote(...)) pattern, is common enough that
Julia comes with a macro to abbreviate this pattern:

for op = (:+, :*, :&, |, :8)
@eval (Sop)(a,b,c) = (Sop)((Sop)(a,b),c)
end

The @eval macro rewrites this call to be precisely equivalent to the above longer versions. For longer blocks of
generated code, the expression argument given to @eval can be a block:

@eval begin
# multiple lines
end

21.5 Non-Standard String Literals

Recall from Strings that string literals prefixed by an identifier are called non-standard string literals, and can have
different semantics than un-prefixed string literals. For example:

e r"A\sx(?:#|$)" produces a regular expression object rather than a string

e b"DATA\xff\u2200" is a byte array literal for [68, 65, 84,65,255,226, 136, 128].

Perhaps surprisingly, these behaviors are not hard-coded into the Julia parser or compiler. Instead, they are custom
behaviors provided by a general mechanism that anyone can use: prefixed string literals are parsed as calls to specially-
named macros. For example, the regular expression macro is just the following:

macro r_str(p)
Regex(p)
end

That's all. This macro says that the literal contents of the string literal r"A\sx(?:#|$)" should be passed to the
@r_str macro and the result of that expansion should be placed in the syntax tree where the string literal occurs. In
other words, the expression r"*\s*(?:#|$)" is equivalent to placing the following object directly into the syntax
tree:
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‘Regex(”“\\s*(?:#l\S)”)

Not only is the string literal form shorter and far more convenient, but it is also more efficient: since the regular
expression is compiled and the Regex object is actually created when the code is compiled, the compilation occurs only
once, rather than every time the code is executed. Consider if the regular expression occurs in a loop:

for line = lines
m = match(r"*\sx(?:#|S)", line)
if m === nothing
# non-comment
else
# comment
end

end

Since the regular expression r"A\sx(?:#|$)" is compiled and inserted into the syntax tree when this code is parsed,
the expression is only compiled once instead of each time the loop is executed. In order to accomplish this without
macros, one would have to write this loop like this:

re = Regex( "\ \s*(?:#|\$)")
for line = lines
m = match(re, line)
if m === nothing
# non-comment
else
# comment
end

end

Moreover, if the compiler could not determine that the regex object was constant over all loops, certain optimizations
might not be possible, making this version still less efficient than the more convenient literal form above. Of course,
there are still situations where the non-literal form is more convenient: if one needs to interpolate a variable into the
regular expression, one must take this more verbose approach; in cases where the regular expression pattern itself is
dynamic, potentially changing upon each loop iteration, a new regular expression object must be constructed on each
iteration. In the vast majority of use cases, however, regular expressions are not constructed based on run-time data.
In this majority of cases, the ability to write regular expressions as compile-time values is invaluable.

Like non-standard string literals, non-standard command literals exist using a prefixed variant of the command literal
syntax. The command literal custom™literal’ is parsed as @custom_cmd "literal". Juliaitself does not contain
any non-standard command literals, but packages can make use of this syntax. Aside from the different syntax and the
_cmd suffix instead of the _str suffix, non-standard command literals behave exactly like non-standard string literals.

In the event that two modules provide non-standard string or command literals with the same name, it is possible to
qualify the string or command literal with a module name. For instance, if both Foo and Bar provide non-standard
string literal @x_str, then one can write Foo.x"1iteral"” or Bar.x"literal" to disambiguate between the two.

The mechanism for user-defined string literals is deeply, profoundly powerful. Not only are Julia’s non-standard literals
implemented using it, but also the command literal syntax (*echo "Hello, Sperson"’)is implemented with the
following innocuous-looking macro:

macro cmd(str)
:(cmd_gen(S$S(shell_parse(str)[1])))
end
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Of course, a large amount of complexity is hidden in the functions used in this macro definition, but they are just
functions, written entirely in Julia. You can read their source and see precisely what they do - and all they do is
construct expression objects to be inserted into your program’s syntax tree.

21.6 Generated functions

A very special macro is @generated, which allows you to define so-called generated functions. These have the capa-
bility to generate specialized code depending on the types of their arguments with more flexibility and/or less code
than what can be achieved with multiple dispatch. While macros work with expressions at parsing-time and cannot
access the types of their inputs, a generated function gets expanded at a time when the types of the arguments are
known, but the function is not yet compiled.

Instead of performing some calculation or action, a generated function declaration returns a quoted expression which
then forms the body for the method corresponding to the types of the arguments. When called, the body expression
is first evaluated and compiled, then the returned expression is compiled and run. To make this efficient, the result is
often cached. And to make this inferable, only a limited subset of the language is usable. Thus, generated functions
provide a flexible framework to move work from run-time to compile-time, at the expense of greater restrictions on
the allowable constructs.

When defining generated functions, there are four main differences to ordinary functions:

1. You annotate the function declaration with the @generated macro. This adds some information to the AST
that lets the compiler know that this is a generated function.

2. In the body of the generated function you only have access to the types of the arguments - not their values -
and any function that was defined before the definition of the generated function.

3. Instead of calculating something or performing some action, you return a quoted expression which, when eval-
uated, does what you want.

4. Generated functions must not mutate or observe any non-constant global state (including, for example, 10, locks,
non-local dictionaries, or using method_exists). This means they can only read global constants, and cannot
have any side effects. In other words, they must be completely pure. Due to an implementation limitation, this
also means that they currently cannot define a closure or untyped generator.

It's easiest to illustrate this with an example. We can declare a generated function foo as

julia> @generated function foo(x)
Core.println(x)
return :(x * X)
end
foo (generic function with 1 method)

Note that the body returns a quoted expression, namely : (x * x), rather than just the value of x * x.

From the caller’s perspective, they are very similar to regular functions; in fact, you don’t have to know if you're calling
a regular or generated function - the syntax and result of the call is just the same. Let's see how foo behaves:

julia> x = foo(2); # note: output is from println() statement in the body
Int64

julia> x # now we print x
4

julia> y = foo("bar");
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String

julia> y
"barbar”

So, we see that in the body of the generated function, x is the type of the passed argument, and the value returned by
the generated function, is the result of evaluating the quoted expression we returned from the definition, now with
the value of x.

What happens if we evaluate foo again with a type that we have already used?

julia> foo(4)
16

Note that there is no printout of Int64. We can see that the body of the generated function was only executed once
here, for the specific set of argument types, and the result was cached. After that, for this example, the expression
returned from the generated function on the first invocation was re-used as the method body. However, the actual
caching behavior is an implementation-defined performance optimization, so it is invalid to depend too closely on this
behavior.

The number of times a generated function is generated might be only once, but it might also be more often, or appear
to not happen at all. As a consequence, you should never write a generated function with side effects - when, and how
often, the side effects occur is undefined. (This is true for macros too - and just like for macros, the use of eval()
in a generated function is a sign that you're doing something the wrong way.) However, unlike macros, the runtime
system cannot correctly handle a call to eval(), so it is disallowed.

It is also important to see how @generated functions interact with method redefinition. Following the principle that
a correct @generated function must not observe any mutable state or cause any mutation of global state, we see
the following behavior. Observe that the generated function cannot call any method that was not defined prior to the
definition of the generated function itself.

Initially f (x) has one definition

‘julia> f(x) = "original definition";

Define other operations that use f(x):

julia> g(x) = f(x);

julia> @generated gen1(x) = f(x);

julia> @generated gen2(x)

()

We now add some new definitions for f(x):

julia> f(x::Int) = "definition for Int";

julia> f(x::Type{Int}) = "definition for Type{Int}";

and compare how these results differ:
julia> f(1)

"definition for Int"

julia> g(1)
"definition for Int"

julia> geni(1)
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"original definition"

julia> gen2(1)
"definition for Int"

Each method of a generated function has its own view of defined functions:

julia> @generated geni(x::Real) = f(x);

julia> geni(1)
"definition for Type{Int}"

The example generated function foo above did not do anything a normal function foo(x) = x * x could not do
(except printing the type on the first invocation, and incurring higher overhead). However, the power of a generated
function lies in its ability to compute different quoted expressions depending on the types passed to it:

julia> @generated function bar(x)
if x <: Integer
return :(x * 2)
else
return :(x)
end
end
bar (generic function with 1 method)

julia> bar(4)
16

julia> bar("baz")
"baz"

(although of course this contrived example would be more easily implemented using multiple dispatch...)

Abusing this will corrupt the runtime system and cause undefined behavior:

julia> @generated function baz(x)
if rand() < .9
return :(x"2)
else
return :("boo!")
end
end
baz (generic function with 1 method)

Since the body of the generated function is non-deterministic, its behavior, and the behavior of all subsequent code is
undefined.

Don'’t copy these examples!

These examples are hopefully helpful to illustrate how generated functions work, both in the definition end and at the
call site; however, don’t copy them, for the following reasons:

e the foo function has side-effects (the call to Core.println), and it is undefined exactly when, how often or
how many times these side-effects will occur
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e the bar function solves a problem that is better solved with multiple dispatch - defining bar(x) = x and
bar(x::Integer) = x * 2 will do the same thing, but it is both simpler and faster.

e the baz function is pathologically insane

Note that the set of operations that should not be attempted in a generated function is unbounded, and the runtime
system can currently only detect a subset of the invalid operations. There are many other operations that will simply
corrupt the runtime system without notification, usually in subtle ways not obviously connected to the bad definition.
Because the function generator is run during inference, it must respect all of the limitations of that code.

Some operations that should not be attempted include:

1. Caching of native pointers.
2. Interacting with the contents or methods of Core.Inference in any way.

3. Observing any mutable state.

- Inference on the generated function may be run at any time, including while your code is attempting to
observe or mutate this state.

4. Taking any locks: C code you call out to may use locks internally, (for example, it is not problematic to call
malloc, even though most implementations require locks internally) but don’t attempt to hold or acquire any
while executing Julia code.

5. Calling any function that is defined after the body of the generated function. This condition is relaxed for
incrementally-loaded precompiled modules to allow calling any function in the module.

Alright, now that we have a better understanding of how generated functions work, let’s use them to build some more
advanced (and valid) functionality...

An advanced example

Julia’s base library has a sub2ind () function to calculate a linear index into an n-dimensional array, based on a set of
n multilinear indices - in other words, to calculate the index i that can be used to index into an array A using A[i],
instead of A[x,y, z, ...]. One possible implementation is the following:

julia> function sub2ind_loop(dims::NTuple{N}, I::Integer...) where N
ind = I[N] - 1
for i = N-1:-1:1
ind = I[i]-1 + dims[i]*ind
end
return ind + 1
end
sub2ind_loop (generic function with 1 method)

julia> sub2ind_loop((3, 5), 1, 2)
4

The same thing can be done using recursion:

julia> sub2ind_rec(dims::Tuple{}) = 1;

julia> sub2ind_rec(dims: :Tuple{}, i1::Integer, I::Integer...) =
i1 == 1 ? sub2ind_rec(dims, I...) : throw(BoundsError());
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julia> sub2ind_rec(dims::Tuple{Integer, Vararg{Integer}}, il1::Integer) = i1;

julia> sub2ind_rec(dims::Tuple{Integer, Vararg{Integer}}, il1::Integer, I::Integer...) =
i1 + dims[1] * (sub2ind_rec(Base.tail(dims), I...) - 1);

julia> sub2ind_rec((3, 5), 1, 2)
4

Both these implementations, although different, do essentially the same thing: a runtime loop over the dimensions of
the array, collecting the offset in each dimension into the final index.

However, all the information we need for the loop is embedded in the type information of the arguments. Thus, we can
utilize generated functions to move the iteration to compile-time; in compiler parlance, we use generated functions
to manually unroll the loop. The body becomes almost identical, but instead of calculating the linear index, we build
up an expression that calculates the index:

julia> @generated function sub2ind_gen(dims::NTuple{N}, I::Integer...) where N
ex = :(I[SN] - 1)
for i = (N - 1):-1:1
ex = :(I[$i] - 1 + dims[$i] * Sex)
end
return :(Sex + 1)
end
sub2ind_gen (generic function with 1 method)

julia> sub2ind_gen((3, 5), 1, 2)
4

What code will this generate?
An easy way to find out is to extract the body into another (regular) function:

julia> @generated function sub2ind_gen(dims::NTuple{N}, I::Integer...) where N
return sub2ind_gen_impl(dims, I...)
end
sub2ind_gen (generic function with 1 method)

julia> function sub2ind_gen_impl(dims::Type{T}, I...) where T <: NTuple{N,Any} where N

length(I) == N || return :(error("partial indexing is unsupported"))
ex = :(I[SN] - 1)
for i = (N-1):-1:1
ex = :(I[$i] - 1 + dims[$8i] * Sex)
end
return :(Sex + 1)
end

sub2ind_gen_impl (generic function with 1 method)

We can now execute sub2ind_gen_impl and examine the expression it returns:

julia> sub2ind_gen_impl(Tuple{Int,Int}, Int, Int)
(T[] - 1) + dims[1] * (I[2] - 1)) + 1)

So, the method body that will be used here doesn't include a loop at all - just indexing into the two tuples, multiplication
and addition/subtraction. All the looping is performed compile-time, and we avoid looping during execution entirely.
Thus, we only loop once per type, in this case once per N (except in edge cases where the function is generated more
than once - see disclaimer above).
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Multi-dimensional Arrays

Julia, like most technical computing languages, provides a first-class array implementation. Most technical comput-
ing languages pay a lot of attention to their array implementation at the expense of other containers. Julia does
not treat arrays in any special way. The array library is implemented almost completely in Julia itself, and derives its
performance from the compiler, just like any other code written in Julia. As such, it’s also possible to define custom
array types by inheriting from AbstractArray. See the manual section on the AbstractArray interface for more
details on implementing a custom array type.

An array is a collection of objects stored in a multi-dimensional grid. In the most general case, an array may contain
objects of type Any. For most computational purposes, arrays should contain objects of a more specific type, such as
Float64 or Int32.

In general, unlike many other technical computing languages, Julia does not expect programs to be written in a vector-
ized style for performance. Julia’s compiler uses type inference and generates optimized code for scalar array indexing,
allowing programs to be written in a style that is convenient and readable, without sacrificing performance, and using
less memory at times.

In Julia, all arguments to functions are passed by reference. Some technical computing languages pass arrays by value,
and this is convenient in many cases. In Julia, modifications made to input arrays within a function will be visible in the
parent function. The entire Julia array library ensures that inputs are not modified by library functions. User code, if it
needs to exhibit similar behavior, should take care to create a copy of inputs that it may modify.

22.1 Arrays

Basic Functions

Function Description

eltype(A) the type of the elements contained in A

length(A) the number of elements in A

ndims(A) the number of dimensions of A

size(A) a tuple containing the dimensions of A

size(A,n) the size of A along dimension n

indices(A) a tuple containing the valid indices of A
indices(A,n) | arange expressing the valid indices along dimension n
eachindex(A) | an efficient iterator for visiting each position in A
stride(A, k) the stride (linear index distance between adjacent elements) along dimension k
strides(A) a tuple of the strides in each dimension
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Construction and Initialization

Many functions for constructing and initializing arrays are provided. In the following list of such functions, calls with a
dims. .. argument can either take a single tuple of dimension sizes or a series of dimension sizes passed as a variable
number of arguments. Most of these functions also accept a first input T, which is the element type of the array. If
the type T is omitted it will default to Float64.

Function Description
Ar- an uninitialized dense Array
ray{T}(dims..|)
zeros(T, an Array of all zeros
dims...)
zeros(A) an array of all zeros with the same type, element type and shape as A
ones(T, an Array of all ones
dims...)
ones(A) an array of all ones with the same type, element type and shape as A
trues(dims...) aBitArray with all values true
trues(A) a BitArray with all values true and the same shape as A
falses(dims.. |)aBitArray with all values false
falses(A) a BitArray with all values false and the same shape as A
reshape(A, an array containing the same data as A, but with different dimensions
dims...)
copy(A) copy A
deepcopy(A) copy A, recursively copying its elements
similar (A, an uninitialized array of the same type as A (dense, sparse, etc.), but with the specified
T, dims...) element type and dimensions. The second and third arguments are both optional, defaulting
to the element type and dimensions of A if omitted.
reinter- an array with the same binary data as A, but with element type T
pret(T,
A)
rand(T, an Array with random, iid * and uniformly distributed values in the half-open interval [0, 1)
dims...)
randn(T, an Array with random, iid and standard normally distributed values
dims...)
eye(T, n) n-by-n identity matrix
eye(T, m, n) m-by-n identity matrix
linspace(start, range of n linearly spaced elements from start to stop
stop, n)
filll (A, x) fill the array A with the value x
fill(x, an Array filled with the value x
dims...)
The syntax [A, B, C, ...] constructs a 1-d array (vector) of its arguments. If all arguments have a common pro-

motion type then they get converted to that type using convert().

Concatenation
Arrays can be constructed and also concatenated using the following functions:

Scalar values passed to these functions are treated as 1-element arrays.

Liid, independently and identically distributed.
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Function Description

cat(k, A...) | concatenate input n-d arrays along the dimension k
vcat(A...) shorthand for cat(1, A...)

hcat(A...) shorthand for cat(2, A...)

The concatenation functions are used so often that they have special syntax:

Expression Calls

[A; B; C; ...] veat()
[ABC ...] hcat()
[AB; CD; ...] | hvcat()

hvcat () concatenates in both dimension 1 (with semicolons) and dimension 2 (with spaces).

Typed array initializers

An array with a specific element type can be constructed using the syntax T[A, B, C, ...]. This will construct a
1-d array with element type T, initialized to contain elements A, B, C, etc. For example Any[x, y, z] constructs a
heterogeneous array that can contain any values.

Concatenation syntax can similarly be prefixed with a type to specify the element type of the result.

julia> [[1 2] [3 4]]
1x4 Array{Int64,2}:
1 2 3 4

julia> Int8[[1 2] [3 4]]
1x4 Array{Int8,2}:
1 2 3 4

Comprehensions

Comprehensions provide a general and powerful way to construct arrays. Comprehension syntax is similar to set
construction notation in mathematics:

‘A = [ F(x,y,...) for x=rx, y=ry, ... ]

The meaning of this form is that F(x,y, .. .) is evaluated with the variables x, y, etc. taking on each value in their
given list of values. Values can be specified as any iterable object, but will commonly be ranges like 1:nor2:(n-1),
or explicit arrays of values like [1.2, 3.4, 5.7]. The result is an N-d dense array with dimensions that are the
concatenation of the dimensions of the variable ranges rx, ry, etc. and each F(x, y, . . .) evaluation returns a scalar.

The following example computes a weighted average of the current element and its left and right neighbor along a 1-d
grid. :

julia> x = rand(8)
8-element Array{Float64,1}:
0.843025

.869052

.365105

.699456

.977653

.994953

000 0O
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0.41084
0.809411

julia> [ 0.25%x[i-1] + 0.5*%x[1] + 0.25*x[i+1] for i=2:length(x)-1 ]
6-element Array{Float64,1}:

0.736559

.57468

.685417

.912429

. 8446

.656511

0O 0O 000

The resulting array type depends on the types of the computed elements. In order to control the type explicitly, a
type can be prepended to the comprehension. For example, we could have requested the result in single precision by
writing:

‘Float32[ 0.25%x[1i-1] + 0.5%x[1i] + ©.25%x[1i+1] for i=2:length(x)-1 ]

Generator Expressions

Comprehensions can also be written without the enclosing square brackets, producing an object known as a generator.
This object can be iterated to produce values on demand, instead of allocating an array and storing them in advance
(see Iteration). For example, the following expression sums a series without allocating memory:

julia> sum(1/n*2 for n=1:1000)
1.6439345666815615

When writing a generator expression with multiple dimensions inside an argument list, parentheses are needed to
separate the generator from subsequent arguments:

julia> map(tuple, 1/(i+j) for i=1:2, j=1:2, [1:4;])
ERROR: syntax: invalid iteration specification

All comma-separated expressions after for are interpreted as ranges. Adding parentheses lets us add a third argument
to map:

julia> map(tuple, (1/(i+j) for i=1:2, j=1:2), [1 3; 2 4])
2x2 Array{Tuple{Float64,Int64},2}:

(0.5, 1) (9.333333, 3)

(0.333333, 2) (8.25, 4)

Ranges in generators and comprehensions can depend on previous ranges by writing multiple for keywords:

julia> [(i,j) for i=1:3 for j=1:i]
6-element Array{Tuple{Int64,Int64},1}:
(1, 1)
2, 1

)
)
)
)
)

W N =N
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In such cases, the result is always 1-d.

Generated values can be filtered using the if keyword:

julia> [(i,j) for i=1:3 for j=1:1i if i+j == 4]
2-element Array{Tuple{Int64,Int64},1}:

(2, 2)

(3, 1)

Indexing
The general syntax for indexing into an n-dimensional array A is:

|x = A[I_1, 1.2, ..., I.n]

where each I_k may be a scalar integer, an array of integers, or any other supported index. This includes Colon (:)
to select all indices within the entire dimension, ranges of the form a:c or a:b:c to select contiguous or strided
subsections, and arrays of booleans to select elements at their true indices.

If all the indices are scalars, then the result X is a single element from the array A. Otherwise, X is an array with the
same number of dimensions as the sum of the dimensionalities of all the indices.

If allindices are vectors, for example, then the shape of Xwould be (1ength(I_1), length(I_2), ..., length(I_n)),
with location (i_1, i_2, ..., i_n) of X containing thevalue A[I_1[i_1], I_2[i_2], ..., I_n[i_n]].If

I_1 is changed to a two-dimensional matrix, then X becomes an n+1-dimensional array of shape (size(I_1, 1),
size(I_1, 2), length(I_2), ..., length(I_n)). The matrix adds a dimension. The location (i_1, i_2,

i_3, ..., i_{n+1}) containsthevalueat A[I_1[i_1, i_2], I_2[i_3], ..., I_n[i_{n+1}]1]. All dimen-

sions indexed with scalars are dropped. For example, the result of A[2, I, 3] isan array with size size(I). Its ith
element is populated by A[2, I[i], 3].

As a special part of this syntax, the end keyword may be used to represent the last index of each dimension within the
indexing brackets, as determined by the size of the innermost array being indexed. Indexing syntax without the end
keyword is equivalent to a call to getindex:

|X = getindex(A, I_1, I.2, ..., I_n)

Example:

julia> x = reshape(1:16, 4, 4)
4x4 Base.ReshapedArray{Int64,2,UnitRange{Int64}, Tuple{}}:

1 5 9 13
2 6 10 14
3 7 11 15
4 8 12 16

julia> x[2:3, 2:end-1]
2x2 Array{Int64,2}:

6 10

7 11

julia> x[1, [2 3; 4 1]]
2x2 Array{Int64,2}:

5 9

13 1
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Empty ranges of the form n:n-1 are sometimes used to indicate the inter-index location between n-1 and n. For
example, the searchsorted() function uses this convention to indicate the insertion point of a value not found in a
sorted array:

julia> a = [1,2,5,6,7];
julia> searchsorted(a, 3)
3:2
Assignment
The general syntax for assigning values in an n-dimensional array A is:
|AlI_1, 12, ..., I.n] =X
where each I_k may be a scalar integer, an array of integers, or any other supported index. This includes Colon (:)

to select all indices within the entire dimension, ranges of the form a:c or a:b:c to select contiguous or strided
subsections, and arrays of booleans to select elements at their true indices.

If Xis an array, it must have the same number of elements as the product of the lengths of the indices: prod(length(I_1),

length(I_2), ..., length(I_n)).ThevalueinlocationI_1[i_1], I_2[i_2], ..., I_n[i_n]ofAisover-
written with the value X[i_1, i_2, ..., i_n]. If Xis not an array, its value is written to all referenced locations
of A.

Just as in Indexing, the end keyword may be used to represent the last index of each dimension within the indexing
brackets, as determined by the size of the array being assigned into. Indexed assignment syntax without the end
keyword is equivalent to a call to setindex! ():

setindex!(A, X, I_1, I_2, ..., I_n)

Example:

julia> x = collect(reshape(1:9, 3, 3))
3x3 Array{Int64,2}:

1 4 7

2 5 8

3 6 9

julia> x[1:2, 2:3] = -1
-1

julia> x
3x3 Array{Int64,2}:
S

2 -1 -1

3 6 9

Supported index types

In the expression A[I_1, I_2, ..., I_n], each I_k may be a scalarindex, an array of scalar indices, or an object
that represents an array of scalar indices and can be converted to such by to_indices:

1. Ascalar index. By default this includes:

- Non-boolean integers
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- CartesianIndex{N}s, which behave like an N-tuple of integers spanning multiple dimensions (see below
for more details)

2. An array of scalar indices. This includes:

Vectors and multidimensional arrays of integers

Empty arrays like [ ], which select no elements

Ranges of the form a:c or a:b:c, which select contiguous or strided subsections from a to c (inclusive)

- Any custom array of scalar indices that is a subtype of AbstractArray

Arrays of CartesianIndex{N} (see below for more details)

3. An object that represents an array of scalar indices and can be converted to such by to_indices. By default
this includes:

- Colon() (:), which represents all indices within an entire dimension or across the entire array

- Arrays of booleans, which select elements at their true indices (see below for more details)

Cartesian indices

The special CartesianIndex{N} object represents a scalar index that behaves like an N-tuple of integers spanning
multiple dimensions. For example:

julia> A = reshape(1:32, 4, 4, 2);

julia> A[3, 2, 1]
7

julia> A[CartesianIndex(3, 2, 1)] == A[3, 2, 1] == 7
true

Considered alone, this may seem relatively trivial; CartesianIndex simply gathers multiple integers together into
one object that represents a single multidimensional index. When combined with other indexing forms and iterators
that yield CartesianIndexes, however, this can lead directly to very elegant and efficient code. See Iteration below,
and for some more advanced examples, see this blog post on multidimensional algorithms and iteration.

Arrays of CartesianIndex{N} are also supported. They represent a collection of scalar indices that each span N
dimensions, enabling a form of indexing that is sometimes referred to as pointwise indexing. For example, it enables
accessing the diagonal elements from the first "page” of A from above:

julia> page = A[:,:,1]
4x4 Array{Int64,2}:

1 5 9 13

2 6 10 14

3 7 11 15

4 8 12 16

julia> page[[CartesianIndex(1,1),
CartesianIndex(2,2),
CartesianIndex(3,3),
CartesianIndex(4,4)]]
4-element Array{Int64,1}:
1
6
11
16



https://julialang.org/blog/2016/02/iteration
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This can be expressed much more simply with dot broadcasting and by combining it with a normal integer index (instead
of extracting the first page from A as a separate step). It can even be combined with a : to extract both diagonals

from the two pages at the same time:

1

6
11
16

1 17
6 22
11 27
16 32

Warning

julia> A[CartesianIndex.(indices(A, 1), indices(A, 2)),
4x2 Array{Int64,2}:

julia> A[CartesianIndex.(indices(A, 1), indices(A, 2)), 1]
4-element Array{Int64,1}:

1]

CartesianIndex and arrays of CartesianIndex are not compatible with the end keyword to rep-
resent the last index of a dimension. Do not use end in indexing expressions that may contain either

CartesianIndex or arrays thereof.

Logical indexing

Often referred to as logical indexing or indexing with a logical mask, indexing by a boolean array selects elements
at the indices where its values are true. Indexing by a boolean vector B is effectively the same as indexing by the
vector of integers that is returned by find(B). Similarly, indexing by a N-dimensional boolean array is effectively
the same as indexing by the vector of CartesianIndex{N}s where its values are true. A logical index must be a
vector of the same length as the dimension it indexes into, or it must be the only index provided and match the size
and dimensionality of the array it indexes into. It is generally more efficient to use boolean arrays as indices directly
instead of first calling find ().

julia> x = reshape(1:16, 4, 4)
4x4 Base.ReshapedArray{Int64,2,UnitRange{Int64}, Tuple{}}:

1T 5

2 6
3 7
4 8

julia> x[[false, true, true, false],

9 13
10 14
11 15
12 16

2x4 Array{Int64,2}:

2 6
3 7

10 14
11 15

julia> mask =
4x4 Array{Bool,2}:

true
true
false
true

julia> x[mask]

false
false
false

true

map (ispow2, x)

false
false
false
false

false
false
false

true

5-element Array{Int64,1}:

0]
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Iteration

The recommended ways to iterate over a whole array are

for a in A
# Do something with the element a
end

for i in eachindex(A)
# Do something with i and/or A[i]
end

The first construct is used when you need the value, but not index, of each element. In the second construct, i will be
an Int if Ais an array type with fast linear indexing; otherwise, it will be a CartesianIndex:

julia> A = rand(4,3);
julia> B = view(A, 1:3, 2:3);

julia> for i in eachindex(B)
@show i
end
= CartesianIndex{2}((1
= CartesianIndex{2}((2,
= CartesianIndex{2}((3,
= CartesianIndex{2}((1
= CartesianIndex{2}((2
= CartesianIndex{2}((3

)

(i = O S S S A =

)

In contrast with for i = 1:1length(A),iterating with eachindex provides an efficient way to iterate over any array
type.

Array traits

If you write a custom AbstractArray type, you can specify that it has fast linear indexing using

Base.IndexStyle(: :Type{<:MyArray}) = IndexLinear()

This setting will cause eachindex iteration over a MyArray to use integers. If you don't specify this trait, the default
value IndexCartesian() is used.

Array and Vectorized Operators and Functions

The following operators are supported for arrays:

1. Unary arithmetic - -, +
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2. Binary arithmetic - -, +, %, /, \, A

3. Comparison - ==, ! =, = (isapprox),

Most of the binary arithmetic operators listed above also operate elementwise when one argument is scalar: -, +, and
* when either argument is scalar, and / and \ when the denominator is scalar. For example, [1, 2] + 3 == [4,
5]and [6, 4] / 2 == [3, 2].

Additionally, to enable convenient vectorization of mathematical and other operations, Julia provides the dot syntax
f.(args...),eg. sin.(x) ormin. (x,y), for elementwise operations over arrays or mixtures of arrays and scalars
(a Broadcasting operation); these have the additional advantage of "fusing” into a single loop when combined with
other dot calls, e.g. sin. (cos.(x)).

Also, every binary operator supports a dot version that can be applied to arrays (and combinations of arrays and scalars)
in such fused broadcasting operations, e.g. z .== sin.(x .* y).

Note that comparisons such as == operate on whole arrays, giving a single boolean answer. Use dot operators like
. == for elementwise comparisons. (For comparison operations like <, only the elementwise . < version is applicable to
arrays.)

Also notice the difference between max. (a, b), which broadcasts max() elementwise over a and b, and maxi-
mum(a), which finds the largest value within a. The same relationship holds for min. (a, b) and minimum(a).

Broadcasting

It is sometimes useful to perform element-by-element binary operations on arrays of different sizes, such as adding
a vector to each column of a matrix. An inefficient way to do this would be to replicate the vector to the size of the
matrix:

julia> a = rand(2,1); A = rand(2,3);

julia> repmat(a,1,3)+A

2x3 Array{Float64,2}:
1.20813 1.82068 1.25387
1.56851 1.86401 1.67846

This is wasteful when dimensions get large, so Julia offers broadcast (), which expands singleton dimensions in array
arguments to match the corresponding dimension in the other array without using extra memory, and applies the given
function elementwise:

julia> broadcast(+, a, A)

2x3 Array{Float64,2}:
1.20813 1.82068 1.25387
1.56851 1.86401 1.67846

julia> b = rand(1,2)
1x2 Array{Float64,2}:
0.867535 0.00457906

julia> broadcast(+, a, b)

2x2 Array{Float64,2}:
1.71056 0.847604
1.73659 0.873631
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Dotted operators such as .+ and . * are equivalent to broadcast calls (except that they fuse, as described below).
Thereis also a broadcast! () function to specify an explicit destination (which can also be accessed in a fusing fash-
ion by .= assignment), and functions broadcast_getindex() and broadcast_setindex! () that broadcast the
indices before indexing. Moreover, f. (args. . .) isequivalenttobroadcast(f, args...),providingaconvenient
syntax to broadcast any function (dot syntax). Nested "dot calls” f. (. . .) (including calls to .+ etcetera) automatically
fuse into a single broadcast call.

Additionally, broadcast () is not limited to arrays (see the function documentation), it also handles tuples and treats
any argument that is not an array, tuple or Ref (except for Ptr) as a "scalar”.

julia> convert.(Float32, [1, 2])
2-element Array{Float32,1}:

1.0

2.0

julia> ceil.((UInt8,), [1.2 3.4; 5.6 6.7])
2x2 Array{UInt8,2}:

0x02 0x04

0x06 0x07

julia> string.(1:3, ". ", ["First", "Second", "Third"])
3-element Array{String,1}:

"1. First"

"2. Second"

"3. Third"

Implementation

The base array type in Julia is the abstract type AbstractArray{T, N}. It is parametrized by the number of dimensions
N and the element type T. AbstractVector and AbstractMatrix are aliases for the 1-d and 2-d cases. Operations
on AbstractArray objects are defined using higher level operators and functions, in a way that is independent of
the underlying storage. These operations generally work correctly as a fallback for any specific array implementation.

The AbstractArray type includes anything vaguely array-like, and implementations of it might be quite differ-
ent from conventional arrays. For example, elements might be computed on request rather than stored. However,
any concrete AbstractArray{T,N} type should generally implement at least size(A) (returning an Int tuple),
getindex(A,i) and getindex(A,i1, ..., iN); mutable arrays should also implement setindex! (). It is rec-
ommended that these operations have nearly constant time complexity, or technically O(1) complexity, as otherwise
some array functions may be unexpectedly slow. Concrete types should also typically provide a similar (A, T=el-
type(A),dims=size(A)) method, which is used to allocate a similar array for copy () and other out-of-place oper-
ations. No matter how an AbstractArray{T, N} is represented internally, T is the type of object returned by integer
indexing (A[1, ..., 1], when Ais not empty) and N should be the length of the tuple returned by size().

DenseArray is an abstract subtype of AbstractArray intended to include all arrays that are laid out at regular
offsets in memory, and which can therefore be passed to external C and Fortran functions expecting this memory
layout. Subtypes should provide a method stride(A, k) that returns the "stride” of dimension k: increasing the
index of dimension k by 1 should increase the index i of getindex (A, i) by stride(A, k). If a pointer conversion
method Base.unsafe_convert(Ptr{T}, A) is provided, the memory layout should correspond in the same way
to these strides.

The Array type is a specific instance of DenseAr ray where elements are stored in column-major order (see additional
notes in Performance Tips). Vector and Matrix are aliases for the 1-d and 2-d cases. Specific operations such as
scalar indexing, assignment, and a few other basic storage-specific operations are all that have to be implemented for
Array, so that the rest of the array library can be implemented in a generic manner.
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SubArray is a specialization of AbstractArray that performs indexing by reference rather than by copying. A Sub-
Array is created with the view() function, which is called the same way as getindex() (with an array and a series
of index arguments). The result of view() looks the same as the result of getindex( ), except the data is left in
place. view() stores the input index vectors in a SubArray object, which can later be used to index the original array
indirectly. By putting the @views macro in front of an expression or block of code, any array[...] slice in that
expression will be converted to create a SubArray view instead.

StridedVector and StridedMatrix are convenient aliases defined to make it possible for Julia to call a wider range
of BLAS and LAPACK functions by passing them either Array or SubAr ray objects, and thus saving inefficiencies from
memory allocation and copying.

The following example computes the QR decomposition of a small section of a larger array, without creating any tem-
poraries, and by calling the appropriate LAPACK function with the right leading dimension size and stride parameters.

julia> a = rand(10,10)
10x10 Array{Float64,2}:

0.561255 0.226678 0.203391 0.308912 0.750307 0.235023 0.217964
0.718915 0.537192 0.556946 0.996234 0.666232 0.509423 0.660788
0.493501 0.0565622 0.118392 0.493498 0.262048 0.940693 0.252965
0.0470779 ©.736979 0.264822 0.228787 0.161441 ©.897023 0.567641
0.343935 0.32327 0.795673 ©0.452242 0.468819 0.628507 0.511528
0.935597 0.991511 0.571297 ©.74485 0.84589 0.178834 0.284413
0.160706 0.672252 0.133158 0.65554 0.371826 ©.770628 0.0531208
0.306617 0.836126 0.301198 0.0224702 0.39344 0.0370205 0.536062
0.890947 0.168877 0.32002 0.486136 0.096078 ©0.172048 0.77672
0.507762 0.573567 0.220124 ©.165816 0.211049 ©.433277 0.539476

julia> b = view(a, 2:2:8,2:2:4)
4x2 SubAr-
— ray{Float64,2,Array{Float64,2},Tuple{StepRange{Int64,Int64},StepRange{Int64,Int64}}, false}:
0.537192 0.996234
0.736979 0.228787
0.991511 ©.74485
0.836126 ©0.0224702

julia> (q,r) = qr(b);

julia> q

4x2 Array{Float64,2}:
-0.338809 0.78934
-0.464815 -0.230274
-0.625349 0.194538
-0.527347 -0.534856

julia> r

2x2 Array{Float64,2}:
-1.58553 -0.921517
0.0 0.866567

22.2 Sparse Matrices

Sparse matrices are matrices that contain enough zeros that storing them in a special data structure leads to savings in
space and execution time. Sparse matrices may be used when operations on the sparse representation of a matrix lead
to considerable gains in either time or space when compared to performing the same operations on a dense matrix.


https://en.wikipedia.org/wiki/Sparse_matrix
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Compressed Sparse Column (CSC) Storage

In Julia, sparse matrices are stored in the Compressed Sparse Column (CSC) format. Julia sparse matrices have the
type SparseMatrixCSC{Tv, Ti}, where Tv is the type of the stored values, and Ti is the integer type for storing
column pointers and row indices.:

struct SparseMatrixCSC{Tv,Ti<:Integer} <: AbstractSparseMatrix{Tv,Ti}
m::Int # Number of rows
n::Int # Number of columns
colptr::Vector{Ti} # Column i is in colptr[i]:(colptr[i+1]-1)
rowval: :Vector{Ti} # Row indices of stored values
nzval::Vector{Tv} #

end

Stored values, typically nonzeros

The compressed sparse column storage makes it easy and quick to access the elements in the column of a sparse
matrix, whereas accessing the sparse matrix by rows is considerably slower. Operations such as insertion of previously
unstored entries one at a time in the CSC structure tend to be slow. This is because all elements of the sparse matrix
that are beyond the point of insertion have to be moved one place over.

All operations on sparse matrices are carefully implemented to exploit the CSC data structure for performance, and to
avoid expensive operations.

If you have data in CSC format from a different application or library, and wish to import it in Julia, make sure that you
use 1-based indexing. The row indices in every column need to be sorted. If your SparseMatrixCSC object contains
unsorted row indices, one quick way to sort them is by doing a double transpose.

In some applications, it is convenient to store explicit zero values in a SparseMatrixCSC. These are accepted by func-
tions in Base (but there is no guarantee that they will be preserved in mutating operations). Such explicitly stored zeros
are treated as structural nonzeros by many routines. The nnz () function returns the number of elements explicitly
stored in the sparse data structure, including structural nonzeros. In order to count the exact number of actual values
that are nonzero, use countnz( ), which inspects every stored element of a sparse matrix.

Sparse matrix constructors

The simplest way to create sparse matrices is to use functions equivalent to the zeros() and eye () functions that
Julia provides for working with dense matrices. To produce sparse matrices instead, you can use the same names with
an sp prefix:

julia> spzeros(3,5)
3x5 SparseMatrixCSC{Float64,Int64} with @ stored entries

julia> speye(3,5)

3x5 SparseMatrixCSC{Float64,Int64} with 3 stored entries:
[1, 1] = 1.0
[2, 2] = 1.0
[3, 3] = 1.0

The sparse () function is often a handy way to construct sparse matrices. It takes as its input a vector I of row indices,
a vector J of column indices, and a vector V of stored values. sparse(I,J,V) constructs a sparse matrix such that
S[I[k], JIK]] = VIKk].

julia> I = [1, 4, 3, 5]; J = [4, 7, 18, 9]; V = [1, 2, -5, 3];

julia> S = sparse(I,J,V)
5x18 SparseMatrixCSC{Int64,Int64} with 4 stored entries:


https://en.wikipedia.org/wiki/Sparse_matrix#Compressed_sparse_column_.28CSC_or_CCS.29
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[1, 41 =1
[4, 71 = 2
[5, 9] = 3
[3, 18] = -5

The inverse of the sparse () functionis findn( ), which retrieves the inputs used to create the sparse matrix.
julia> findn(S)
([1, 4, 5, 31, [4, 7, 9, 18])

julia> findnz(S)
([1, 4, 5, 31, [4, 7, 9, 18], [1, 2, 3, -5])

Another way to create sparse matrices is to convert a dense matrix into a sparse matrix using the sparse () function:

julia> sparse(eye(5))
5x5 SparseMatrixCSC{Float64,Int64} with 5 stored entries:
[1, 1] = 1.0
[2, 2] = 1.0
[3, 3] = 1.8
[4, 4] = 1.0
[5, 5] = 1.0

You can go in the other direction using the full() function. The issparse() function can be used to query if a
matrix is sparse.

julia> issparse(speye(5))
true

Sparse matrix operations

Arithmetic operations on sparse matrices also work as they do on dense matrices. Indexing of, assignment into, and
concatenation of sparse matrices work in the same way as dense matrices. Indexing operations, especially assignment,
are expensive, when carried out one element at a time. In many cases it may be better to convert the sparse matrix
into (I,J,V) format using findnz( ), manipulate the values or the structure in the dense vectors (I, J, V), and then
reconstruct the sparse matrix.

Correspondence of dense and sparse methods

The following table gives a correspondence between built-in methods on sparse matrices and their corresponding
methods on dense matrix types. In general, methods that generate sparse matrices differ from their dense counterparts
in that the resulting matrix follows the same sparsity pattern as a given sparse matrix S, or that the resulting sparse
matrix has density d, i.e. each matrix element has a probability d of being non-zero.

Details can be found in the Sparse Vectors and Matrices section of the standard library reference.
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Sparse Dense Description
spze- ze- Creates a m-by-n matrix of zeros. (spzeros(m, n) is empty.)
ros(m,n) ros(m,n)

spones(S) | ones(m, ) Creates a matrix filled with ones. Unlike the dense version, spones () has the same
sparsity pattern as S.

speye(n) eye(n) Creates a n-by-n identity matrix.

full(S) sparse(A) Interconverts between dense and sparse formats.

sprand(m, n|, dand(m, ) Creates a m-by-n random matrix (of density d) with iid non-zero elements distributed
uniformly on the half-open interval [0, 1).

sprandn(m, prépdn (m,|nCreates a m-by-n random matrix (of density d) with iid non-zero elements distributed
according to the standard normal (Gaussian) distribution.

sprandn(m, n répin (m,|nCxeates a m-by-n random matrix (of density d) with iid non-zero elements distributed
according to the X distribution. (Requires the Distributions package.)
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Linear algebra

In addition to (and as part of) its support for multi-dimensional arrays, Julia provides native implementations of many
common and useful linear algebra operations. Basic operations, such as trace, det, and inv are all supported:

julia> A = [1 2 3; 416; 7 81]
3x3 Array{Int64,2}:

1 2 3

4 1 6

7 8 1

julia> trace(A)
3

julia> det(A)
104.0

julia> inv(A)

3x3 Array{Float64,2}:
-0.451923 0.211538 0.0865385
0.365385 -0.192308 0.0576923
0.240385 0.0576923 -0.0673077

As well as other useful operations, such as finding eigenvalues or eigenvectors:

julia> A = [1.5 2 -4; 3 -1 -6; -10 2.3 4]
3x3 Array{Float64,2}:
1.5 2.0 -4.0
3.0 -1.06 -6.0
-16.6 2.3 4.0

julia> eigvals(A)

3-element Array{Complex{Float64},1}:
9.31908+0.0im
-2.40954+2.720951im
-2.40954-2.720951im

julia> eigvecs(A)
3x3 Array{Complex{Float64},2}:
-0.488645+0.0im ©0.182546-0.398131im 0.182546+0.398131im
-0.540358+0.0im 0.692926+0.0im 0.692926-0.01im
0.68501+0.0im ©0.254058-0.513301im ©0.254058+0.5133011im
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In addition, Julia provides many factorizations which can be used to speed up problems such as linear solve or matrix
exponentiation by pre-factorizing a matrix into a form more amenable (for performance or memory reasons) to the
problem. See the documentation on factorize for more information. As an example:

julia> A = [1.5 2 -4; 3 -1 -6; -10 2.3 4]
3x3 Array{Float64,2}:

1.5 2.0 -4.0

3.0 -1.0 -6.0
-10.0 2.3 4.0

julia> factorize(A)

Base.LinAlg.LU{Float64,Array{Float64,2}} with factors L and U:
[1.0 6.0 0.6; -0.15 1.0 ©.0; -0.3 -0.132196 1.0]

[-16.0 2.3 4.8; 0.0 2.345 -3.4; 0.0 0.0 -5.24947]

Since A is not Hermitian, symmetric, triangular, tridiagonal, or bidiagonal, an LU factorization may be the best we can
do. Compare with:

julia> B = [1.5 2 -4; 2 -1 -3; -4 -3 5]
3x3 Array{Float64,2}:
1.5 2.0 -4.0
2.0 -1.6 -3.0
-4.0 -3.0 5.0

julia> factorize(B)
Base.LinAlg.BunchKaufman{Float64,Array{Float64,2}}([-1.64286 0.142857 -0.8; 2.0 -2.8 -0.6; -4.0
— -3.0 5.0], [1, 2, 3], 'U', true, false, 0)

Here, Julia was able to detect that B is in fact symmetric, and used a more appropriate factorization. Often it's possible
to write more efficient code for a matrix that is known to have certain properties e.g. it is symmetric, or tridiagonal.
Julia provides some special types so that you can "tag” matrices as having these properties. For instance:

julia> B = [1.5 2 -4; 2 -1 -3; -4 -3 5]
3x3 Array{Float64,2}:

1.5 2.0 -4.0

2.0 -1.6 -3.0

-4.0 -3.0 5.0

julia> sB = Symmetric(B)

3x3 Symmetric{Float64,Array{Float64,2}}:
1.5 2.0 -4.0
2.0 -1.6 -3.0

-4.06 -3.8 5.0

sB has been tagged as a matrix that's (real) symmetric, so for later operations we might perform on it, such as eigenfac-
torization or computing matrix-vector products, efficiencies can be found by only referencing half of it. For example:

julia> B = [1.5 2 -4; 2 -1 -3; -4 -3 5]
3x3 Array{Float64,2}:

1.5 2.0 -4.0

2.6 -1.86 -3.0

-4.06 -3.0 5.0
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julia> sB = Symmetric(B)
3x3 Symmetric{Float64,Array{Float64,2}}:
1.5 2.0 -4.0
2.0 -1.0 -3.0
-4.0 -3.0 5.0

julia> x = [1; 2; 3]
3-element Array{Int64,1}:
1

2

3

julia> sB\x

3-element Array{Float64,1}:
-1.73913
-1.1087
-1.45652

The \ operation here performs the linear solution. Julia’s parser provides convenient dispatch to specialized methods
for the transpose of a matrix left-divided by a vector, or for the various combinations of transpose operations in matrix-
matrix solutions. Many of these are further specialized for certain special matrix types. For example, A\B will end up
calling Base.LinAlg.A_1div_B! while A" \B will end up calling Base.LinAlg.Ac_ldiv_B, even though we used
the same left-division operator. This works for matrices too: A. '\B. ' would call Base.LinAlg.At_ldiv_Bt. The
left-division operator is pretty powerful and it's easy to write compact, readable code that is flexible enough to solve
all sorts of systems of linear equations.

23.1 Special matrices

Matrices with special symmetries and structures arise often in linear algebra and are frequently associated with various
matrix factorizations. Julia features a rich collection of special matrix types, which allow for fast computation with
specialized routines that are specially developed for particular matrix types.

The following tables summarize the types of special matrices that have been implemented in Julia, as well as whether
hooks to various optimized methods for them in LAPACK are available.

Type Description
Hermitian Hermitian matrix

UpperTriangular | Upper triangular matrix
LowerTriangular | Lower triangular matrix

Tridiagonal Tridiagonal matrix
SymTridiagonal Symmetric tridiagonal matrix
Bidiagonal Upper/lower bidiagonal matrix
Diagonal Diagonal matrix
UniformScaling Uniform scaling operator

Elementary operations

Legend:

Matrix factorizations

Legend:


http://www2.imm.dtu.dk/pubdb/views/publication_details.php?id=3274
https://en.wikipedia.org/wiki/Hermitian_matrix
https://en.wikipedia.org/wiki/Triangular_matrix
https://en.wikipedia.org/wiki/Triangular_matrix
https://en.wikipedia.org/wiki/Tridiagonal_matrix
https://en.wikipedia.org/wiki/Bidiagonal_matrix
https://en.wikipedia.org/wiki/Diagonal_matrix
https://en.wikipedia.org/wiki/Uniform_scaling

230 CHAPTER 23. LINEAR ALGEBRA
Matrix type + - * \ Other functions with optimized methods
Hermitian MV inv(), sqrtm(), expm()
UpperTriangular MV MV inv(), det()

LowerTriangular MV MV inv(), det()

SymTridiagonal M| M| MS MV eigmax(), eigmin()
Tridiagonal M| M| MS MV

Bidiagonal M| M| MS MV

Diagonal M| M| MV MV inv(), det(), logdet(), /()
UniformScaling M | M| MVS | MVS | /()

Key Description

M (matrix) | An optimized method for matrix-matrix operations is available

V (vector) An optimized method for matrix-vector operations is available

S (scalar) An optimized method for matrix-scalar operations is available

Matrix type LAPACK | eig() | eigvals() | eigvecs() | svd() | svdvals()
Hermitian HE ARI

UpperTriangular | TR A A A

LowerTriangular | TR A A A

SymTridiagonal ST A ARI AV

Tridiagonal GT

Bidiagonal BD A A
Diagonal DI A

The uniform scaling operator

A UniformScaling operator represents a scalar times the identity operator, A*I. The identity operator I is defined
as a constant and is an instance of UniformScaling. The size of these operators are generic and match the other
matrix in the binary operations +, -, * and \. For A+I and A-I this means that A must be square. Multiplication with
the identity operator I is a noop (except for checking that the scaling factor is one) and therefore almost without
overhead.

23.2 Matrix factorizations

Matrix factorizations (a.k.a. matrix decompositions) compute the factorization of a matrix into a product of matrices,
and are one of the central concepts in linear algebra.

The following table summarizes the types of matrix factorizations that have been implemented in Julia. Details of their
associated methods can be found in the Linear Algebra section of the standard library documentation.


https://en.wikipedia.org/wiki/Matrix_decomposition
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Key Description Example

A (all) An optimized method to find all the characteristic values and/or vectors is available e.g.
eigvals(M)

R An optimized method to find the i1th through the ihth characteristic values are eigvals(M,

(range) | available il, ih)

| (in- An optimized method to find the characteristic values in the interval [v1, vh] is eigvals(M,

terval) | available vl, vh)

V (vec- | An optimized method to find the characteristic vectors corresponding to the eigvecs(M,

tors) characteristic values x=[x1, x2,...] isavailable X)

Type Description

Cholesky Cholesky factorization

CholeskyPivoted | Pivoted Cholesky factorization

LU LU factorization

LUTridiagonal LU factorization for Tridiagonal matrices

UmfpackLU LU factorization for sparse matrices (computed by UMFPack)

QR QR factorization

QRCompactWy Compact WY form of the QR factorization

QRPivoted Pivoted QR factorization

Hessenberg Hessenberg decomposition

Eigen Spectral decomposition

SVD Singular value decomposition

GeneralizedSVD Generalized SVD



https://en.wikipedia.org/wiki/Cholesky_decomposition
https://en.wikipedia.org/wiki/Pivot_element
https://en.wikipedia.org/wiki/LU_decomposition
https://en.wikipedia.org/wiki/QR_decomposition
https://en.wikipedia.org/wiki/QR_decomposition
http://mathworld.wolfram.com/HessenbergDecomposition.html
https://en.wikipedia.org/wiki/Eigendecomposition_(matrix)
https://en.wikipedia.org/wiki/Singular_value_decomposition
https://en.wikipedia.org/wiki/Generalized_singular_value_decomposition#Higher_order_version
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Networking and Streams

Julia provides a rich interface to deal with streaming /O objects such as terminals, pipes and TCP sockets. This in-
terface, though asynchronous at the system level, is presented in a synchronous manner to the programmer and it is
usually unnecessary to think about the underlying asynchronous operation. This is achieved by making heavy use of
Julia cooperative threading (coroutine) functionality.

24.1 Basic Stream I/O

All Julia streams expose at least a read () and awrite() method, taking the stream as their first argument, e.g.:

julia> write(STDOUT, "Hello World"); # suppress return value 11 with ;
Hello World
julia> read(STDIN, Char)

"\n': ASCII/Unicode U+B@0a (category Cc: Other, control)

Note that write( ) returns 11, the number of bytes (in "Hello World") written to STDOUT, but this return value is
suppressed with the ;.

Here Enter was pressed again so that Julia would read the newline. Now, as you can see from this example, write()
takes the data to write as its second argument, while read() takes the type of the data to be read as the second
argument.

For example, to read a simple byte array, we could do:

julia> x = zeros(UInt8, 4)
4-element Array{UInt8,1}:
0x00
0x00
0x00
0x00

julia> read! (STDIN, x)
abcd
4-element Array{UInt8,1}:
0x61
0x62
0x63
0x64

233
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However, since this is slightly cumbersome, there are several convenience methods provided. For example, we could
have written the above as:

julia> read(STDIN,4)

abcd
4-element Array{UInt8,1}:
0x61

0x62

0x63

0x64

or if we had wanted to read the entire line instead:

julia> readline(STDIN)
abcd
"abcd"

Note that depending on your terminal settings, your TTY may be line buffered and might thus require an additional
enter before the data is sent to Julia.

To read every line from STDIN you can use eachline():

for line in eachline(STDIN)
print("Found S$line")
end

or read() if you wanted to read by character instead:

while !eof(STDIN)
x = read(STDIN, Char)
println("Found: $x")
end

24.2 Textl/O

Note that the write() method mentioned above operates on binary streams. In particular, values do not get con-
verted to any canonical text representation but are written out as is:

julia> write(STDOUT,0x61); # suppress return value 1 with ;
a

Note that a is written to STDOUT by the write () function and that the returned value is 1 (since 8x61 is one byte).

For text I/0, use the print () or show() methods, depending on your needs (see the standard library reference for a
detailed discussion of the difference between the two):

julia> print(STDOUT, ©0x61)
97
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24.3 10 Output Contextual Properties

Sometimes 10 output can benefit from the ability to pass contextual information into show methods. The I0Context
object provides this framework for associating arbitrary metadata with an 1O object. For example, showcompact adds
a hinting parameter to the 10 object that the invoked show method should print a shorter output (if applicable).

24.4 Working with Files

Like many other environments, Julia has an open (') function, which takes a filename and returns an I0Stream object
that you can use to read and write things from the file. For example if we have a file, hello. txt, whose contents are
Hello, World!:

julia> f = open("hello.txt")
I0Stream(<file hello.txt>)

julia> readlines(f)
1-element Array{String,1}:
"Hello, World!'"

If you want to write to a file, you can open it with the write ("w") flag:

julia> f = open("hello.txt","w")
I0OStream(<file hello.txt>)

julia> write(f, "Hello again.")
12

If you examine the contents of hello.txt at this point, you will notice that it is empty; nothing has actually been
written to disk yet. This is because the I0Stream must be closed before the write is actually flushed to disk:

julia> close(f)

Examining hello. txt again will show its contents have been changed.

Opening a file, doing something to its contents, and closing it again is a very common pattern. To make this easier,
there exists another invocation of open () which takes a function as its first argument and filename as its second,
opens the file, calls the function with the file as an argument, and then closes it again. For example, given a function:

function read_and_capitalize(f::I0OStream)
return uppercase(readstring(f))
end

You can call:

julia> open(read_and_capitalize, "hello.txt")
"HELLO AGAIN."

to open hello.txt, call read_and_capitalize on it,close hello.txt and return the capitalized contents.

To avoid even having to define a named function, you can use the do syntax, which creates an anonymous function
on the fly:
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julia> open("hello.txt") do f
uppercase(readstring(f))
end
"HELLO AGAIN."

24.5 A simple TCP example

Let's jump right in with a simple example involving TCP sockets. Let’s first create a simple server:

julia> @async begin
server = listen(2000)
while true
sock = accept(server)
println("Hello World\n")
end
end
Task (runnable) @0x00007fd31dc11ae0

To those familiar with the Unix socket API, the method names will feel familiar, though their usage is somewhat simpler
than the raw Unix socket API. The first call to 1isten () will create a server waiting for incoming connections on the
specified port (2000) in this case. The same function may also be used to create various other kinds of servers:

julia> listen(2000) # Listens on localhost:2000 (IPv4)
TCPServer(active)

julia> listen(ip"127.0.0.1",2000) # Equivalent to the first
TCPServer(active)

julia> listen(ip"::1",2000) # Listens on localhost:2606 (IPv6)
TCPServer(active)

julia> listen(IPv4(0),2001) # Listens on port 2001 on all IPv4 interfaces
TCPServer(active)

julia> listen(IPv6(0),2001) # Listens on port 2001 on all IPv6 interfaces
TCPServer (active)

julia> listen("testsocket") # Listens on a UNIX domain socket/named pipe
PipeServer(active)

Note that the return type of the last invocation is different. This is because this server does not listen on TCP, but
rather on a named pipe (Windows) or UNIX domain socket. The difference is subtle and has to do with the accept ()
and connect () methods. The accept () method retrieves a connection to the client that is connecting on the server
we just created, while the connect () function connects to a server using the specified method. The connect()
function takes the same arguments as 1isten( ), so, assuming the environment (i.e. host, cwd, etc.) is the same you
should be able to pass the same arguments to connect () as you did to listen to establish the connection. So let’s try
that out (after having created the server above):

julia> connect(2600)
TCPSocket(open, B8 bytes waiting)

julia> Hello World
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As expected we saw "Hello World” printed. So, let’s actually analyze what happened behind the scenes. When we
called connect (), we connect to the server we had just created. Meanwhile, the accept function returns a server-side
connection to the newly created socket and prints "Hello World” to indicate that the connection was successful.

A great strength of Julia is that since the API is exposed synchronously even though the 1/O is actually happening
asynchronously, we didn’t have to worry callbacks or even making sure that the server gets to run. When we called
connect() the current task waited for the connection to be established and only continued executing after that was
done. In this pause, the server task resumed execution (because a connection request was now available), accepted
the connection, printed the message and waited for the next client. Reading and writing works in the same way. To
see this, consider the following simple echo server:

julia> @async begin
server = listen(2001)
while true
sock = accept(server)
@async while isopen(sock)
write(sock, readline(sock))
end
end
end
Task (runnable) @0x00007fd31dc12e60

julia> clientside = connect(2601)
TCPSocket (RawFD(28) open, @ bytes waiting)

julia> @async while true
write(STDOUT, readline(clientside))
end
Task (runnable) @8x00007fd31dc11870

julia> println(clientside, "Hello World from the Echo Server")
Hello World from the Echo Server

As with other streams, use close () to disconnect the socket:

‘ julia> close(clientside)

24.6 Resolving IP Addresses

One of the connect () methods that does not follow the 1isten() methods is connect(host: :String, port),
which will attempt to connect to the host given by the host parameter on the port given by the port parameter. It
allows you to do things like:

julia> connect("google.com", 80)
TCPSocket(RawFD(30) open, @ bytes waiting)

At the base of this functionality is getaddrinfo( ), which will do the appropriate address resolution:

julia> getaddrinfo("google.com")
ip"74.125.226.225"
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Parallel Computing

Most modern computers possess more than one CPU, and several computers can be combined together in a cluster.
Harnessing the power of these multiple CPUs allows many computations to be completed more quickly. There are
two major factors that influence performance: the speed of the CPUs themselves, and the speed of their access to
memory. In a cluster, it's fairly obvious that a given CPU will have fastest access to the RAM within the same computer
(node). Perhaps more surprisingly, similar issues are relevant on a typical multicore laptop, due to differences in the
speed of main memory and the cache. Consequently, a good multiprocessing environment should allow control over
the "ownership” of a chunk of memory by a particular CPU. Julia provides a multiprocessing environment based on
message passing to allow programs to run on multiple processes in separate memory domains at once.

Julia's implementation of message passing is different from other environments such as MPI 1. Communication in Julia
is generally "one-sided”, meaning that the programmer needs to explicitly manage only one process in a two-process
operation. Furthermore, these operations typically do not look like "message send” and "message receive” but rather
resemble higher-level operations like calls to user functions.

Parallel programming in Julia is built on two primitives: remote references and remote calls. A remote reference is an
object that can be used from any process to refer to an object stored on a particular process. A remote call is a request
by one process to call a certain function on certain arguments on another (possibly the same) process.

Remote references come in two flavors: Future and RemoteChannel.

A remote call returns a Future to its result. Remote calls return immediately; the process that made the call proceeds
to its next operation while the remote call happens somewhere else. You can wait for a remote call to finish by calling
wait () on the returned Future, and you can obtain the full value of the result using fetch().

Onthe other hand, RemoteChannel s are rewritable. For example, multiple processes can co-ordinate their processing
by referencing the same remote Channel.

Each process has an associated identifier. The process providing the interactive Julia prompt always has an id equal to
1. The processes used by default for parallel operations are referred to as "workers”. When there is only one process,
process 1 is considered a worker. Otherwise, workers are considered to be all processes other than process 1.

Let’s try this out. Starting with julia -p n provides n worker processes on the local machine. Generally it makes
sense for n to equal the number of CPU cores on the machine.

$ ./julia -p 2

julia> r = remotecall(rand, 2, 2, 2)
Future(2, 1, 4, Nullable{Any}())

julia> s = @spawnat 2 1 .+ fetch(r)
Future(2, 1, 5, Nullable{Any}())
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julia> fetch(s)

2x2 Array{Float64,2}:
1.18526 1.50912
1.16296 1.60607

The first argument to remotecall() is the function to call. Most parallel programming in Julia does not reference
specific processes or the number of processes available, but remotecall() is considered a low-level interface pro-
viding finer control. The second argument to remotecall() is the id of the process that will do the work, and the
remaining arguments will be passed to the function being called.

As you can see, in the first line we asked process 2 to construct a 2-by-2 random matrix, and in the second line we
asked it to add 1 to it. The result of both calculations is available in the two futures, r and s. The @spawnat macro
evaluates the expression in the second argument on the process specified by the first argument.

Occasionally you might want a remotely-computed value immediately. This typically happens when you read from a
remote object to obtain data needed by the next local operation. The function remotecall_fetch() exists for this
purpose. It is equivalent to fetch(remotecall(...)) butis more efficient.

julia> remotecall_fetch(getindex, 2, r, 1, 1)
0.18526337335308085

Remember that getindex(r, 1, 1) is equivalent to r[1, 11, so this call fetches the first element of the future r.

The syntax of remotecall() is not especially convenient. The macro @spawn makes things easier. It operates on an
expression rather than a function, and picks where to do the operation for you:

julia> r = @spawn rand(2,2)
Future(2, 1, 4, Nullable{Any}())

julia> s = @spawn 1 .+ fetch(r)
Future(3, 1, 5, Nullable{Any}())

julia> fetch(s)

2x2 Array{Float64,2}:
1.38854 1.9098
1.20939 1.57158

Note that we used 1 .+ fetch(r) instead of 1 .+ r. This is because we do not know where the code will run, so
in general a fetch () might be required to move r to the process doing the addition. In this case, @spawn is smart
enough to perform the computation on the process that owns r, so the fetch() will be a no-op (no work is done).

(It is worth noting that @spawn is not built-in but defined in Julia as a macro. It is possible to define your own such
constructs.)

An important thing to remember is that, once fetched, a Future will cache its value locally. Further fetch() calls do
not entail a network hop. Once all referencing Futures have fetched, the remote stored value is deleted.

25.1 Code Availability and Loading Packages

Your code must be available on any process that runs it. For example, type the following into the Julia prompt:
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julia> function rand2(dims...)
return 2*rand(dims...)
end

julia> rand2(2,2)

2x2 Array{Float64,2}:
0.153756 0.368514
1.15119 0.918912

julia> fetch(@spawn rand2(2,2))
ERROR: RemoteException(2, CapturedException(UndefVarError(Symbol("#rand2"))
[...]

Process 1 knew about the function rand2, but process 2 did not.

Most commonly you'll be loading code from files or packages, and you have a considerable amount of flexibility in
controlling which processes load code. Consider a file, DummyModule. j1, containing the following code:

module DummyModule

export MyType, f

mutable struct MyType
a::Int

end

f(x) = x"2+1

println("loaded")

end

Starting Julia with julia -p 2, you can use this to verify the following:

e include("DummyModule.jl") loads the file on just a single process (whichever one executes the statement).

e using DummyModule causes the module to be loaded on all processes; however, the module is brought into
scope only on the one executing the statement.

e Aslong as DummyModule is loaded on process 2, commands like

rr = RemoteChannel(2)
put!(rr, MyType(7))

allow you to store an object of type MyType on process 2 even if DummyModule is not in scope on process 2.

You can force a command to run on all processes using the @everywhere macro. For example, @everywhere can also
be used to directly define a function on all processes:

julia> @everywhere id = myid()

julia> remotecall_fetch(()->id, 2)
2
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A file can also be preloaded on multiple processes at startup, and a driver script can be used to drive the computation:
|julia -p <n> -L filel.jl -L file2.jl driver.jl

The Julia process running the driver script in the example above has an id equal to 1, just like a process providing an
interactive prompt.

The base Julia installation has in-built support for two types of clusters:

o Alocal cluster specified with the -p option as shown above.

o A cluster spanning machines using the --machinefile option. This uses a passwordless ssh login to start
Julia worker processes (from the same path as the current host) on the specified machines.

Functions addprocs(), rmprocs(), workers(), and others are available as a programmatic means of adding, re-
moving and querying the processes in a cluster.

Note that workers do not run a . juliarc. j1 startup script, nor do they synchronize their global state (such as global
variables, new method definitions, and loaded modules) with any of the other running processes.

Other types of clusters can be supported by writing your own custom ClusterManager, as described below in the
ClusterManagers section.

25.2 Data Movement

Sending messages and moving data constitute most of the overhead in a parallel program. Reducing the number of
messages and the amount of data sent is critical to achieving performance and scalability. To this end, it is important
to understand the data movement performed by Julia’s various parallel programming constructs.

fetch() can be considered an explicit data movement operation, since it directly asks that an object be moved to the
local machine. @spawn (and a few related constructs) also moves data, but this is not as obvious, hence it can be called
an implicit data movement operation. Consider these two approaches to constructing and squaring a random matrix:

Method 1:
julia> A = rand(1000,1000);
julia> Bref = @spawn A*2;

[...]

julia> fetch(Bref);

Method 2:

julia> Bref = @spawn rand(1000,1000)"2;

julia> fetch(Bref);

The difference seems trivial, but in fact is quite significant due to the behavior of @spawn. In the first method, a random
matrix is constructed locally, then sent to another process where it is squared. In the second method, a random matrix
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is both constructed and squared on another process. Therefore the second method sends much less data than the
first.

In this toy example, the two methods are easy to distinguish and choose from. However, in a real program designing
data movement might require more thought and likely some measurement. For example, if the first process needs
matrix A then the first method might be better. Or, if computing A is expensive and only the current process has it,
then moving it to another process might be unavoidable. Or, if the current process has very little to do between the
@spawn and fetch(Bref), it might be better to eliminate the parallelism altogether. Or imagine rand (1000, 1000)
is replaced with a more expensive operation. Then it might make sense to add another @spawn statement just for this
step.
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Global variables

Expressions executed remotely via @spawn, or closures specified for remote execution using remotecall may refer
to global variables. Global bindings under module Main are treated a little differently compared to global bindings in
other modules. Consider the following code snippet:

A = rand(10,10)
remotecall_fetch(()->foo(A), 2)

Note that A is a global variable defined in the local workspace. Worker 2 does not have a variable called A under Main.
The act of shipping the closure ()->foo(A) to worker 2 results in Main.A being defined on 2. Main.A continues
to exist on worker 2 even after the call remotecall_fetch returns. Remote calls with embedded global references
(under Main module only) manage globals as follows:

o New global bindings are created on destination workers if they are referenced as part of a remote call.
o Global constants are declared as constants on remote nodes too.

o Globals are re-sent to a destination worker only in the context of a remote call, and then only if its value has
changed. Also, the cluster does not synchronize global bindings across nodes. For example:

A = rand(10,10)
remotecall_fetch(()->foo(A), 2) # worker 2
A = rand(10,10)
remotecall_fetch(()->foo(A), 3) # worker 3
A = nothing

Executing the above snippet results in Main.A on worker 2 having a different value from Main.A on worker 3,
while the value of Main.A on node 1 is set to nothing.

As you may have realized, while memory associated with globals may be collected when they are reassigned on the
master, no such action is taken on the workers as the bindings continue to be valid. clear! can be used to manually
reassign specific globals on remote nodes to nothing once they are no longer required. This will release any memory
associated with them as part of a regular garbage collection cycle.

Thus programs should be careful referencing globals in remote calls. In fact, it is preferable to avoid them altogether
if possible. If you must reference globals, consider using 1let blocks to localize global variables.

For example:
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julia> A = rand(10,10);

julia> remotecall_fetch(()->A, 2);

julia> B = rand(10,10);

julia> let B = B
remotecall_fetch(()->B, 2)

end;

julia> @spawnat 2 whos();

julia> From worker 2: A 800 bytes 10x10 Array{Float64,2}
From worker 2: Base Module
From worker 2: Core Module
From worker 2: Main Module

As can be seen, global variable A is defined on worker 2, but B is captured as a local variable and hence a binding for B
does not exist on worker 2.

26.1 Parallel Map and Loops

Fortunately, many useful parallel computations do not require data movement. A common example is a Monte Carlo
simulation, where multiple processes can handle independent simulation trials simultaneously. We can use @spawn to
flip coins on two processes. First, write the following function in count_heads. j1:

function count_heads(n)
c::Int = 0
for i = 1:n
c += rand(Bool)
end
c

end

The function count_heads simply adds together n random bits. Here is how we can perform some trials on two
machines, and add together the results:

julia> @everywhere include("count_heads.jl")

julia> a = @spawn count_heads(160006000)
Future(2, 1, 6, Nullable{Any}())

julia> b = @spawn count_heads(100006000)
Future(3, 1, 7, Nullable{Any}())

julia> fetch(a)+fetch(b)
100001564

This example demonstrates a powerful and often-used parallel programming pattern. Many iterations run indepen-
dently over several processes, and then their results are combined using some function. The combination process is
called a reduction, since it is generally tensor-rank-reducing: a vector of numbers is reduced to a single number, or a
matrix is reduced to a single row or column, etc. In code, this typically looks like the pattern x = f(x,v[i]), where
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x is the accumulator, f is the reduction function, and the v[i] are the elements being reduced. It is desirable for f to
be associative, so that it does not matter what order the operations are performed in.

Notice that our use of this pattern with count_heads can be generalized. We used two explicit @spawn statements,
which limits the parallelism to two processes. To run on any number of processes, we can use a parallel for loop, which
can be written in Julia using @parallel like this:

nheads = @parallel (+) for i = 1:200000000
Int(rand(Bool))
end

This construct implements the pattern of assigning iterations to multiple processes, and combining them with a speci-
fied reduction (in this case (+)). The result of each iteration is taken as the value of the last expression inside the loop.
The whole parallel loop expression itself evaluates to the final answer.

Note that although parallel for loops look like serial for loops, their behavior is dramatically different. In particular, the
iterations do not happen in a specified order, and writes to variables or arrays will not be globally visible since iterations
run on different processes. Any variables used inside the parallel loop will be copied and broadcast to each process.

For example, the following code will not work as intended:

a = zeros(100000)

@parallel for i = 1:100000
al[i] = i

end

This code will not initialize all of a, since each process will have a separate copy of it. Parallel for loops like these must
be avoided. Fortunately, Shared Arrays can be used to get around this limitation:

a = SharedArray{Float64}(10)
@parallel for i = 1:10

ali] = i
end

Using "outside” variables in parallel loops is perfectly reasonable if the variables are read-only:

a = randn(1000)

@parallel (+) for i = 1:100000
f(a[rand(1:end)])

end

Here each iteration applies f to a randomly-chosen sample from a vector a shared by all processes.

As you could see, the reduction operator can be omitted if it is not needed. In that case, the loop executes asyn-
chronously, i.e. it spawns independent tasks on all available workers and returns an array of Future immediately
without waiting for completion. The caller can wait for the Future completions at a later point by calling fetch() on
them, or wait for completion at the end of the loop by prefixing it with @sync, like @sync @parallel for.

In some cases no reduction operator is needed, and we merely wish to apply a function to all integers in some range (or,
more generally, to all elements in some collection). This is another useful operation called parallel map, implemented
in Julia as the pmap () function. For example, we could compute the singular values of several large random matrices
in parallel as follows:
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julia> M = Matrix{Float64}[rand(1000,10600) for i = 1:10];

julia> pmap(svd, M);

Julia’s pmap () is designed for the case where each function call does a large amount of work. In contrast, @parallel
for can handle situations where each iteration is tiny, perhaps merely summing two numbers. Only worker processes
are used by both pmap () and @parallel for for the parallel computation. In case of @parallel for, the final
reduction is done on the calling process.

26.2 Synchronization With Remote References

26.3 Scheduling

Julia’s parallel programming platform uses Tasks (aka Coroutines) to switch among multiple computations. Whenever
code performs a communication operation like fetch() or wait(), the current task is suspended and a scheduler
picks another task to run. A task is restarted when the event it is waiting for completes.

For many problems, it is not necessary to think about tasks directly. However, they can be used to wait for multiple
events at the same time, which provides for dynamic scheduling. In dynamic scheduling, a program decides what to
compute or where to compute it based on when other jobs finish. This is needed for unpredictable or unbalanced
workloads, where we want to assign more work to processes only when they finish their current tasks.

As an example, consider computing the singular values of matrices of different sizes:

julia> M = Matrix{Float64}[rand(800,800), rand(6600,600), rand(800,800), rand(600,600)];

julia> pmap(svd, M);

If one process handles both 800x800 matrices and another handles both 600x600 matrices, we will not get as much
scalability as we could. The solution is to make a local task to "feed” work to each process when it completes its current
task. For example, consider a simple pmap () implementation:

function pmap(f, 1lst)
np = nprocs() # determine the number of processes available
n = length(1lst)
results = Vector{Any}(n)
i=1
# function to produce the next work item from the queue.
# in this case it's just an index.
nextidx() = (idx=1i; i+=1; idx)
@sync begin
for p=1:np
if p !'= myid() || np == 1
@async begin
while true
idx = nextidx()
if idx > n
break
end
results[idx] = remotecall_fetch(f, p, lst[idx])
end
end

end
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end
end
results
end

@async is similar to @spawn, but only runs tasks on the local process. We use it to create a "feeder” task for each
process. Each task picks the next index that needs to be computed, then waits for its process to finish, then repeats
until we run out of indexes. Note that the feeder tasks do not begin to execute until the main task reaches the end of
the @sync block, at which point it surrenders control and waits for all the local tasks to complete before returning from
the function. The feeder tasks are able to share state via nextidx () because they all run on the same process. No
locking is required, since the threads are scheduled cooperatively and not preemptively. This means context switches
only occur at well-defined points: in this case, when remotecall_fetch() is called.

26.4 Channels

The section on Tasks in Control Flow discussed the execution of multiple functions in a co-operative manner. Chan-
nels can be quite useful to pass data between running tasks, particularly those involving I/O operations.

Examples of operations involving 1/0 include reading/writing to files, accessing web services, executing external pro-
grams, etc. In all these cases, overall execution time can be improved if other tasks can be run while a file is being read,
or while waiting for an external service/program to complete.

A channel can be visualized as a pipe, i.e., it has a write end and read end.

e Multiple writers in different tasks can write to the same channel concurrently via put! () calls.
e Multiple readers in different tasks can read data concurrently via take! () calls.

e As an example:

# Given Channels c1 and c2,
c1 = Channel(32)
c2 = Channel(32)

# and a function “foo()' which reads items from from c1, processes the item read
# and writes a result to c2,
function foo()
while true
data = take!(c1)
[...] # process data
put!(c2, result) # write out result
end
end

# we can schedule 'n’ instances of ‘foo()' to be active concurrently.
for _ in 1:n
@schedule foo()

end

e Channels are created via the Channel{T}(sz) constructor. The channel will only hold objects of type T. If the
type is not specified, the channel can hold objects of any type. sz refers to the maximum number of elements
that can be held in the channel at any time. For example, Channel(32) creates a channel that can hold a
maximum of 32 objects of any type. A Channel{MyType}(64) can hold up to 64 objects of MyType at any
time.
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e If aChannel is empty, readers (on a take! () call) will block until data is available.
e IfaChannelis full, writers (on a put! () call) will block until space becomes available.

e isready() tests for the presence of any object in the channel, while wait () waits for an object to become
available.

e A Channel is in an open state initially. This means that it can be read from and written to freely via take! ()
and put! () calls. close() closes a Channel. On a closed Channel, put! () will fail. For example:

julia> ¢ = Channel(2);

julia> put!(c, 1) # ‘put!" on an open channel succeeds
1

julia> close(c);
julia> put!(c, 2) # ‘put!’ on a closed channel throws an exception.

ERROR: InvalidStateException("Channel is closed.", :closed)
[...]

e take! () and fetch() (which retrieves but does not remove the value) on a closed channel successfully return
any existing values until it is emptied. Continuing the above example:

julia> fetch(c) # Any number of “fetch' calls succeed.
1

julia> fetch(c)
1

julia> take!(c) # The first ‘take!  removes the value.
1

julia> take!(c) # No more data available on a closed channel.
ERROR: InvalidStateException("Channel is closed.", :closed)
[...]

A Channel can be used as an iterable object in a for loop, in which case the loop runs as long as the Channel has
data or is open. The loop variable takes on all values added to the Channel. The for loop is terminated once the
Channel is closed and emptied.

For example, the following would cause the for loop to wait for more data:

julia> ¢ = Channel{Int}(10);
julia> foreach(i->put!(c, i), 1:3) # add a few entries

julia> data = [i for i in c]

while this will return after reading all data:

julia> ¢ = Channel{Int}(10);

julia> foreach(i->put!(c, i), 1:3); # add a few entries
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julia> close(c); # “for’ loops can exit

julia> data = [1i for i in c]
3-element Array{Int64,1}:

1

2

3

Consider a simple example using channels for inter-task communication. We start 4 tasks to process data from a
single jobs channel. Jobs, identified by an id (job_id), are written to the channel. Each task in this simulation reads
a job_1id, waits for a random amout of time and writes back a tuple of job_id and the simulated time to the results
channel. Finally all the results are printed out.

julia> const jobs = Channel{Int}(32);
julia> const results = Channel{Tuple}(32);

julia> function do_work()

for job_id in jobs
exec_time = rand()
sleep(exec_time) # simulates elapsed time doing actual work

# typically performed externally.

put!(results, (job_id, exec_time))

end

end;

julia> function make_jobs(n)
for i in 1:n
put!(jobs, 1)
end
end;

julia> n = 12;
julia> @schedule make_jobs(n); # feed the jobs channel with "n" jobs

julia> for i in 1:4 # start 4 tasks to process requests in parallel
@schedule do_work()
end

julia> @elapsed while n > @ # print out results

job_id, exec_time = take!(results)

println("$job_id finished in $(round(exec_time,2)) seconds")

n=n-1

end

finished in 0.22 seconds
finished in 0.45 seconds
finished in 0.5 seconds
finished in 0.14 seconds
finished in 0.78 seconds
finished in 0.9 seconds
finished in 0.36 seconds

finished in 0.87 seconds

0 OO O NN = WD
0000000

finished in 0.79 seconds



252 CHAPTER 26. GLOBAL VARIABLES

10 finished in ©0.64 seconds
12 finished in ©.5 seconds
11 finished in 0.97 seconds
0.029772311

The current version of Julia multiplexes all tasks onto a single OS thread. Thus, while tasks involving I/O operations
benefit from parallel execution, compute bound tasks are effectively executed sequentially on a single OS thread.
Future versions of Julia may support scheduling of tasks on multiple threads, in which case compute bound tasks will
see benefits of parallel execution too.

26.5 Remote References and AbstractChannels

Remote references always refer to an implementation of an AbstractChannel.

A concrete implementation of an AbstractChannel (like Channel), is required to implement put! (), take!(),
fetch(), isready() andwait (). The remote object referred to by a Future is stored in a Channel{Any}(1),i.e.,
a Channel of size 1 capable of holding objects of Any type.

RemoteChannel, which is rewritable, can point to any type and size of channels, or any other implementation of an
AbstractChannel.

The constructor RemoteChannel(f: :Function, pid)() allows us to construct references to channels holding
more than one value of a specific type. f () is a function executed on pid and it must return an AbstractChannel.

For example, RemoteChannel(()->Channel{Int}(10), pid), will return a reference to a channel of type Int
and size 10. The channel exists on worker pid.

Methods put! (), take! (), fetch(), isready() and wait() on a RemoteChannel are proxied onto the backing
store on the remote process.

RemoteChannel can thus be used to refer to user implemented AbstractChannel objects. A simple example of this
is provided in examples/dictchannel. j1 which uses a dictionary as its remote store.

26.6 Channels and RemoteChannels
e A Channel is local to a process. Worker 2 cannot directly refer to a Channel on worker 3 and vice-versa. A
RemoteChannel, however, can put and take values across workers.
e A RemoteChannel can be thought of as a handle to a Channel.

e The process id, pid, associated with a RemoteChannel identifies the process where the backing store, i.e., the
backing Channel exists.

e Any process with a reference to a RemoteChannel can put and take items from the channel. Data is automat-
ically sent to (or retrieved from) the process a RemoteChannel is associated with.

e Serializing a Channel also serializes any data present in the channel. Deserializing it therefore effectively makes
a copy of the original object.

e On the other hand, serializing a RemoteChannel only involves the serialization of an identifier that identifies
the location and instance of Channel referred to by the handle. A deserialized RemoteChannel object (on any
worker), therefore also points to the same backing store as the original.

The channels example from above can be modified for interprocess communication, as shown below.
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We start 4 workers to process a single jobs remote channel. Jobs, identified by an id (job_id), are written to the
Each remotely executing task in this simulation reads a job_id, waits for arandom amount of time and writes
back a tuple of job_id, time taken and its own pid to the results channel. Finally all the results are printed out on

channel.

the master process.

julia>

julia>

julia>

julia>

julia>

julia>

julia>

julia>

julia>

AN ODN -

finished in
finished in
finished in
finished in
finished in
finished in
3 finished in

addprocs(4); # add worker processes
const jobs = RemoteChannel(()->Channel{Int}(32));
const results = RemoteChannel(()->Channel{Tuple}(32));

@everywhere function do_work(jobs, results) # define work function everywhere
while true
job_id = take!(jobs)
exec_time = rand()
sleep(exec_time) # simulates elapsed time doing actual work
put!(results, (job_id, exec_time, myid()))
end
end

function make_jobs(n)
for i in 1:n
put!(jobs, 1)
end
end;

n=12;
@schedule make_jobs(n); # feed the jobs channel with "n" jobs

for p in workers() # start tasks on the workers to process requests in parallel
@async remote_do(do_work, p, jobs, results)
end

@elapsed while n > 0 # print out results
job_id, exec_time, where = take!(results)
println("Sjob_id finished in $(round(exec_time,2)) seconds on worker Swhere")
n=mn-1
end
.18 seconds on worker
.26 seconds on worker
.12 seconds on worker
.18 seconds on worker
35 seconds on worker
.68 seconds on worker

000000
W N b b~ ob

.73 seconds on worker

11 finished in ©.81 seconds on worker 3
12 finished in 0.62 seconds on worker 3
9 finished in 0.26 seconds on worker 5
8 finished in 0.57 seconds on worker 4
10 finished in ©.58 seconds on worker 2
0.055971741
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26.7 Remote References and Distributed Garbage Collection

Objects referred to by remote references can be freed only when all held references in the cluster are deleted.

The node where the value is stored keeps track of which of the workers have a reference to it. Every time a Re-
moteChannel or a (unfetched) Future is serialized to a worker, the node pointed to by the reference is notified. And
every time a RemoteChannel or a (unfetched) Future is garbage collected locally, the node owning the value is again
notified.

The notifications are done via sending of "tracking” messages-an "add reference” message when a reference is serial-
ized to a different process and a "delete reference” message when a reference is locally garbage collected.

Since Futures are write-once and cached locally, the act of fetch()ing a Future also updates reference tracking
information on the node owning the value.

The node which owns the value frees it once all references to it are cleared.

With Futures, serializing an already fetched Future to a different node also sends the value since the original remote
store may have collected the value by this time.

It is important to note that when an object is locally garbage collected depends on the size of the object and the current
memory pressure in the system.

In case of remote references, the size of the local reference object is quite small, while the value stored on the remote
node may be quite large. Since the local object may not be collected immediately, it is a good practice to explicitly
call finalize() on local instances of a RemoteChannel, or on unfetched Futures. Since calling fetch() on a
Future also removes its reference from the remote store, this is not required on fetched Futures. Explicitly calling
finalize() results in an immediate message sent to the remote node to go ahead and remove its reference to the
value.

Once finalized, a reference becomes invalid and cannot be used in any further calls.

26.8 Shared Arrays

Shared Arrays use system shared memory to map the same array across many processes. While there are some similar-
ities to a DArray, the behavior of a SharedArray is quite different. In a DArray, each process has local access to just
a chunk of the data, and no two processes share the same chunk; in contrast, in a SharedArray each "participating”
process has access to the entire array. A SharedArray is a good choice when you want to have a large amount of
data jointly accessible to two or more processes on the same machine.

SharedArray indexing (assignment and accessing values) works just as with regular arrays, and is efficient because
the underlying memory is available to the local process. Therefore, most algorithms work naturally on SharedArrays,
albeit in single-process mode. In cases where an algorithm insists on an Array input, the underlying array can be
retrieved from a SharedArray by calling sdata(). Forother AbstractArray types, sdata() just returns the object
itself, so it’s safe to use sdata() on any Array-type object.

The constructor for a shared array is of the form:
‘ SharedArray{T,N}(dims: :NTuple; init=false, pids=Int[])

which creates an N-dimensional shared array of a bits type T and size dims across the processes specified by pids.
Unlike distributed arrays, a shared array is accessible only from those participating workers specified by the pids
named argument (and the creating process too, if it is on the same host).

If an init function, of signature initfn(S::SharedArray), is specified, it is called on all the participating work-
ers. You can specify that each worker runs the init function on a distinct portion of the array, thereby parallelizing
initialization.


https://github.com/JuliaParallel/DistributedArrays.jl
https://github.com/JuliaParallel/DistributedArrays.jl
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Here's a brief example:

julia> addprocs(3)
3-element Array{Int64,1}:
2
3
4

julia> S = SharedArray{Int,2}((3,4), init = S -> S[Base.localindexes(S)] = myid())
3x4 SharedArray{Int64,2}:

2 2 3 4
2 3 3 4
2 3 4 4

julia> S[3,2] = 7
7

julia> S
3x4 SharedArray{Int64,2}:
2 2 3 4

2 3

3 4
2 7 4 4

Base.localindexes( ) provides disjoint one-dimensional ranges of indexes, and is sometimes convenient for split-
ting up tasks among processes. You can, of course, divide the work any way you wish:

julia> S = SharedArray{Int,2}((3,4), init = S -> S[indexpids(S):length(procs(S)):length(S)] =

— myid())
3x4 SharedArray{Int64,2}:
2 2 2 2

3 3 3 3

4 4 4 4

Since all processes have access to the underlying data, you do have to be careful not to set up conflicts. For example:

@sync begin
for p in procs(S)
@async begin
remotecall_wait(fill!, p, S, p)
end
end
end

would result in undefined behavior. Because each process fills the entire array with its own pid, whichever process is
the last to execute (for any particular element of S) will have its pid retained.

As a more extended and complex example, consider running the following "kernel” in parallel:
lqli,3,t+1] = ql1,3,t] + uli,j,t]

In this case, if we try to split up the work using a one-dimensional index, we are likely to run into trouble: if q[1, j, t]
is near the end of the block assigned to one worker and q[1i, j, t+1] is near the beginning of the block assigned to
another, it's very likely that q[ 1, j, t] will not be ready at the time it's needed for computing q[ i, j, t+1]. In such
cases, one is better off chunking the array manually. Let’s split along the second dimension. Define a function that
returns the (irange, jrange) indexes assigned to this worker:
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julia> @everywhere function myrange(q::SharedArray)
idx = indexpids(q)
if idx == @ # This worker is not assigned a piece
return 1:0, 1:0
end
nchunks = length(procs(q))
splits = [round(Int, s) for s in linspace(9,size(q,2),nchunks+1)]
1:size(q,1), splits[idx]+1:splits[idx+1]

end

Next, define the kernel:

julia> @everywhere function advection_chunk!(q, u, irange, jrange, trange)
@show (irange, jrange, trange) # display so we can see what's happening
for t in trange, j in jrange, i in irange
qli, i, t+1] = qli,j,t] + uli,j,t]
end
q
end

We also define a convenience wrapper for a SharedArray implementation

julia> @everywhere advection_shared_chunk!(qg, u) =
advection_chunk!(q, u, myrange(q)..., 1:size(q,3)-1)

Now let’s compare three different versions, one that runs in a single process:
julia> advection_serial!(q, u) = advection_chunk!(q, u, 1:size(q,1), 1:size(q,2), 1:size(q,3)-1);
one that uses @parallel:

julia> function advection_parallel!(q, u)
for t = 1:size(q,3)-1
@sync @parallel for j = 1:size(q,2)
for i = 1:size(q,1)
qli,j, t+1]= qli,j,t] + uldi,j,t]
end
end
end

q
end;

and one that delegates in chunks:

julia> function advection_shared!(q, u)
@sync begin
for p in procs(q)
@async remotecall_wait(advection_shared_chunk!, p, q, u)
end
end

q
end;
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If we create SharedArrays and time these functions, we get the following results (with julia -p 4):

julia> q = SharedArray{Float64,3}((500,560,500));

julia> u = SharedArray{Float64,3}((500,500,500));

Run the functions once to JIT-compile and @time them on the second run:

julia> @time advection_serial!(q, u);
(irange, jrange, trange) = (1:500,1:500,1:499)
830.220 milliseconds (216 allocations: 13820 bytes)

julia> @time advection_parallel!(q, u);
2.495 seconds (3999 k allocations: 289 MB, 2.09% gc time)

julia> @time advection_shared!(q,u);

From worker 2: (irange, jrange, trange) = (1:500,1:125,1:499)

From worker 4: (irange, jrange, trange) = (1:500,251:375,1:499)
From worker 3: (irange, jrange, trange) = (1:500,126:250,1:499)
From worker 5: (irange, jrange, trange) = (1:500,376:500,1:499)

238.119 milliseconds (2264 allocations: 169 KB)

The biggest advantage of advection_shared! is that it minimizes traffic among the workers, allowing each to com-
pute for an extended time on the assigned piece.

26.9 Shared Arrays and Distributed Garbage Collection

Like remote references, shared arrays are also dependent on garbage collection on the creating node to release ref-
erences from all participating workers. Code which creates many short lived shared array objects would benefit from
explicitly finalizing these objects as soon as possible. This results in both memory and file handles mapping the shared
segment being released sooner.

26.10 ClusterManagers

The launching, management and networking of Julia processes into a logical cluster is done via cluster managers. A
ClusterManager is responsible for

e launching worker processes in a cluster environment
e managing events during the lifetime of each worker

e optionally, providing data transport
A Julia cluster has the following characteristics:

e The initial Julia process, also called the master, is special and has an id of 1.
e Only the master process can add or remove worker processes.

e All processes can directly communicate with each other.

Connections between workers (using the in-built TCP/IP transport) is established in the following manner:



258 CHAPTER 26. GLOBAL VARIABLES

e addprocs() is called on the master process with a ClusterManager object.

e addprocs() calls the appropriate 1aunch () method which spawns required number of worker processes on
appropriate machines.

e Each worker starts listening on a free port and writes out its host and port information to STDOUT.

o The cluster manager captures the STDOUT of each worker and makes it available to the master process.
e The master process parses this information and sets up TCP/IP connections to each worker.

e Every worker is also notified of other workers in the cluster.

e Each worker connects to all workers whose id is less than the worker’s own id.

e In this way a mesh network is established, wherein every worker is directly connected with every other worker.

While the default transport layer uses plain TCPSocket, it is possible for a Julia cluster to provide its own transport.

Julia provides two in-built cluster managers:

e LocalManager, used when addprocs() or addprocs(np::Integer) are called

e SSHManager, used when addprocs(hostnames: :Array) is called with a list of hostnames

LocalManager is used to launch additional workers on the same host, thereby leveraging multi-core and multi-
processor hardware.

Thus, a minimal cluster manager would need to:

e be a subtype of the abstract ClusterManager

e implement launch( ), a method responsible for launching new workers

e implement manage( ), which is called at various events during a worker’s lifetime (for example, sending an
interrupt signal)

addprocs(manager: :FooManager) requires FooManager to implement:

function launch(manager::FooManager, params::Dict, launched::Array, c::Condition)

[...]

end

function manage(manager::FooManager, id::Integer, config::WorkerConfig, op::Symbol)

[...]

end

As an example let us see how the LocalManager, the manager responsible for starting workers on the same host, is
implemented:
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struct LocalManager <: ClusterManager
np::Integer
end

function launch(manager::LocalManager, params::Dict, launched::Array, c::Condition)

[...1]

end

function manage(manager::LocalManager, id::Integer, config::WorkerConfig, op::Symbol)

[...]

end

The launch () method takes the following arguments:

e manager : :ClusterManager: the cluster manager that addprocs() is called with
e params: :Dict: all the keyword arguments passed to addprocs()
e launched: :Array: the array to append one or more WorkerConfig objects to

e c::Condition: the condition variable to be notified as and when workers are launched

The launch() method is called asynchronously in a separate task. The termination of this task signals that all re-
quested workers have been launched. Hence the 1aunch () function MUST exit as soon as all the requested workers
have been launched.

Newly launched workers are connected to each other, and the master process, in an all-to-all manner. Specifying the
command argument --worker <cookie> results in the launched processes initializing themselves as workers and
connections being set up via TCP/IP sockets. Optionally, --bind-to bind_addr[ :port] may also be specified to
enable other workers to connect to it at the specified bind_addr and port. This is useful for multi-homed hosts.

As an example of a non-TCP/IP transport, an implementation may choose to use MPI, in which case --worker must
NOT be specified. Instead, newly launched workers should call init_worker (cookie) before using any of the par-
allel constructs.

For every worker launched, the 1aunch() method must add a WorkerConfig object (with appropriate fields initial-
ized) to launched

mutable struct WorkerConfig
# Common fields relevant to all cluster managers
io::Nullable{IO}
host: :Nullable{AbstractString}
port::Nullable{Integer}

# Used when launching additional workers at a host
count: :Nullable{Union{Int, Symbol}}

exename : :Nullable{AbstractString}

exeflags: :Nullable{Cmd}

# External cluster managers can use this to store information at a per-worker level
# Can be a dict if multiple fields need to be stored.
userdata: :Nullable{Any}

# SSHManager / SSH tunnel connections to workers
tunnel: :Nullable{Bool}
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bind_addr: :Nullable{AbstractString}
sshflags: :Nullable{Cmd}
max_parallel: :Nullable{Integer}
connect_at: :Nullable{Any}

[...]

Most of the fields in WorkerConfig are used by the inbuilt managers. Custom cluster managers would typically specify
only io or host / port:

If io is specified, it is used to read host/port information. A Julia worker prints out its bind address and port
at startup. This allows Julia workers to listen on any free port available instead of requiring worker ports to be
configured manually.

If io is not specified, host and port are used to connect.

count, exename and exeflags are relevant for launching additional workers from a worker. For example, a
cluster manager may launch a single worker per node, and use that to launch additional workers.

- count with an integer value n will launch a total of n workers.
- count with a value of :auto will launch as many workers as the number of cores on that machine.
- exename is the name of the julia executable including the full path.

- exeflags should be set to the required command line arguments for new workers.

tunnel, bind_addr, sshflags and max_parallel are used when a ssh tunnel is required to connect to the
workers from the master process.

userdata is provided for custom cluster managers to store their own worker-specific information.

manage (manager : :FooManager, id::Integer, config::WorkerConfig, op::Symbol) is called at differ-
ent times during the worker’s lifetime with appropriate op values:

with :register/:deregister when a worker is added / removed from the Julia worker pool.

with :interrupt when interrupt(workers) is called. The ClusterManager should signal the appropriate
worker with an interrupt signal.

with :finalize for cleanup purposes.

26.11 Cluster Managers with Custom Transports

Replacing the default TCP/IP all-to-all socket connections with a custom transport layer is a little more involved. Each
Julia process has as many communication tasks as the workers it is connected to. For example, consider a Julia cluster
of 32 processes in an all-to-all mesh network:

e Each Julia process thus has 31 communication tasks.
e Each task handles all incoming messages from a single remote worker in a message-processing loop.

e The message-processing loop waits on an I0 object (for example, a TCPSocket in the default implementation),

reads an entire message, processes it and waits for the next one.
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e Sending messages to a process is done directly from any Julia task-not just communication tasks-again, via the
appropriate I0 object.

Replacing the default transport requires the new implementation to set up connections to remote workers and to
provide appropriate I0 objects that the message-processing loops can wait on. The manager-specific callbacks to be
implemented are:

connect(manager : :FooManager, pid::Integer, config::WorkerConfig)
kill(manager: :FooManager, pid::Int, config: :WorkerConfig)

The default implementation (which uses TCP/IP sockets) is implemented as connect (manager : :ClusterManager,
pid::Integer, config::WorkerConfig).

connect should return a pair of I0 objects, one for reading data sent from worker pid, and the other to write data
that needs to be sent to worker pid. Custom cluster managers can use an in-memory BufferStream as the plumbing
to proxy data between the custom, possibly non-I0 transport and Julia’s in-built parallel infrastructure.

A BufferStream is an in-memory I0Buffer which behaves like an I0-it is a stream which can be handled asyn-
chronously.

Folder examples/clustermanager/@mq contains an example of using ZeroMQ to connect Julia workers in a star
topology with a OMQ broker in the middle. Note: The Julia processes are still all logically connected to each other-any
worker can message any other worker directly without any awareness of OMQ being used as the transport layer.

When using custom transports:

o Julia workers must NOT be started with --worker. Starting with --worker will result in the newly launched
workers defaulting to the TCP/IP socket transport implementation.

e For every incoming logical connection with a worker, Base .process_messages(rd: :I0, wr::I0)() must
be called. This launches a new task that handles reading and writing of messages from/to the worker repre-
sented by the I0 objects.

e init_worker(cookie, manager::FooManager) MUST be called as part of worker process initialization.

e Field connect_at: :Any in WorkerConfig can be set by the cluster manager when launch() is called. The
value of this field is passed inin all connect () callbacks. Typically, it carries information on how to connect to a
worker. For example, the TCP/IP socket transport uses this field to specify the (host, port) tuple at which
to connect to a worker.

kill(manager, pid, config) is called to remove a worker from the cluster. On the master process, the corre-
sponding I0 objects must be closed by the implementation to ensure proper cleanup. The default implementation
simply executes an exit () call on the specified remote worker.

examples/clustermanager/simple is an example that shows a simple implementation using UNIX domain sockets
for cluster setup.

26.12 Network Requirements for LocalManager and SSHManager

Julia clusters are designed to be executed on already secured environments on infrastructure such as local laptops,
departmental clusters, or even the cloud. This section covers network security requirements for the inbuilt Local-
Manager and SSHManager:

e The master process does not listen on any port. It only connects out to the workers.
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e Each worker binds to only one of the local interfaces and listens on the first free port starting from 9009.

e LocalManager, used by addprocs(N), by default binds only to the loopback interface. This means that work-
ers started later on remote hosts (or by anyone with malicious intentions) are unable to connect to the cluster.
An addprocs(4) followed by an addprocs(["remote_host"]) will fail. Some users may need to create
a cluster comprising their local system and a few remote systems. This can be done by explicitly requesting
LocalManager to bind to an external network interface via the restrict keyword argument: addprocs(4;
restrict=false).

e SSHManager, used by addprocs(list_of_remote_hosts), launches workers on remote hosts via SSH. By
default SSH is only used to launch Julia workers. Subsequent master-worker and worker-worker connections
use plain, unencrypted TCP/IP sockets. The remote hosts must have passwordless login enabled. Additional
SSH flags or credentials may be specified via keyword argument sshflags.

e addprocs(list_of_remote_hosts; tunnel=true, sshflags=<ssh keys and other flags>) isuse-
ful when we wish to use SSH connections for master-worker too. A typical scenario for this is a local laptop
running the Julia REPL (i.e., the master) with the rest of the cluster on the cloud, say on Amazon EC2. In this
case only port 22 needs to be opened at the remote cluster coupled with SSH client authenticated via public
key infrastructure (PKI). Authentication credentials can be supplied via sshflags, for example sshflags="-e
<keyfile>".

Note that worker-worker connections are still plain TCP and the local security policy on the remote cluster must
allow for free connections between worker nodes, at least for ports 9009 and above.

Securing and encrypting all worker-worker traffic (via SSH) or encrypting individual messages can be done via
a custom ClusterManager.

26.13 Cluster Cookie

All processes in a cluster share the same cookie which, by default, is a randomly generated string on the master process:
e Base.cluster_cookie() returns the cookie, while Base.cluster_cookie(cookie) () sets it and returns
the new cookie.

e All connections are authenticated on both sides to ensure that only workers started by the master are allowed
to connect to each other.

e The cookie must be passed to the workers at startup via argument --worker <cookie>. Custom Cluster-
Managers can retrieve the cookie on the master by calling Base.cluster_cookie( ). Cluster managers not
using the default TCP/IP transport (and hence not specifying --worker) must call init_worker (cookie,
manager ) with the same cookie as on the master.

Note that environments requiring higher levels of security can implement this via a custom ClusterManager. For
example, cookies can be pre-shared and hence not specified as a startup argument.

26.14 Specifying Network Topology (Experimental)

The keyword argument topology passed to addprocs is used to specify how the workers must be connected to each
other:

e :all_to_all, the default: all workers are connected to each other.

e :master_slave: only the driver process, i.e. pid 1, has connections to the workers.
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e :custom: the launch method of the cluster manager specifies the connection topology via the fields ident and
connect_idents in WorkerConfig. A worker with a cluster-manager-provided identity ident will connect
to all workers specified in connect_idents.

Currently, sending a message between unconnected workers results in an error. This behaviour, as with the function-
ality and interface, should be considered experimental in nature and may change in future releases.

26.15 Multi-Threading (Experimental)

In addition to tasks, remote calls, and remote references, Julia from v@ . 5 forwards will natively support multi-threading.
Note that this section is experimental and the interfaces may change in the future.

Setup
By default, Julia starts up with a single thread of execution. This can be verified by using the command Threads.nthreads():

julia> Threads.nthreads()
]

The number of threads Julia starts up with is controlled by an environment variable called JULIA_NUM_THREADS. Now,
let’s start up Julia with 4 threads:

‘export JULIA_NUM_THREADS=4
(The above command works on bourne shells on Linux and OSX. Note that if you're using a C shell on these platforms,

you should use the keyword set instead of export. If you’re on Windows, start up the command line in the location
of julia.exe and use set instead of export.)

Let’s verify there are 4 threads at our disposal.

julia> Threads.nthreads()
4

But we are currently on the master thread. To check, we use the command Threads. threadid()

julia> Threads.threadid()
1

The @threads Macro
Let's work a simple example using our native threads. Let us create an array of zeros:
julia> a = zeros(10)

10-element Array{Float64,1}:
0.0

OO0 00000
O 0O 0O 0O 0O 0O 0O oO
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Let us operate on this array simultaneously using 4 threads. We'll have each thread write its thread ID into each
location.

Julia supports parallel loops using the Threads.@threads macro. This macro is affixed in front of a for loop to
indicate to Julia that the loop is a multi-threaded region:

julia> Threads.@threads for i = 1:10
a[i] = Threads.threadid()
end

The iteration space is split amongst the threads, after which each thread writes its thread ID to its assigned locations:

julia> a
10-element Array{Float64,1}:
1.0

B A W WNNN=_2
O O O O 0O 00O

Note that Threads.@threads does not have an optional reduction parameter like @parallel.

26.16 @threadcall (Experimental)

All'l/O tasks, timers, REPL commands, etc are multiplexed onto a single OS thread via an event loop. A patched version
of libuv (http:/docs.libuv.org/en/v1.x/) provides this functionality. Yield points provide for co-operatively scheduling
multiple tasks onto the same OS thread. 1/0 tasks and timers yield implicitly while waiting for the event to occur.
Calling yield() explicitly allows for other tasks to be scheduled.

Thus, a task executing a ccall effectively prevents the Julia scheduler from executing any other tasks till the call
returns. This is true for all calls into external libraries. Exceptions are calls into custom C code that call back into Julia
(which may then yield) or C code that calls j1_yield() (C equivalent of yield()).

Note that while Julia code runs on a single thread (by default), libraries used by Julia may launch their own internal
threads. For example, the BLAS library may start as many threads as there are cores on a machine.

The @threadcall macro addresses scenarios where we do not want a ccall to block the main Julia event loop. It
schedules a C function for execution in a separate thread. A threadpool with a default size of 4 is used for this. The
size of the threadpool is controlled via environment variable UV_THREADPOOL _SIZE. While waiting for a free thread,
and during function execution once a thread is available, the requesting task (on the main Julia event loop) yields to
other tasks. Note that @threadcall does not return till the execution is complete. From a user point of view, it is
therefore a blocking call like other Julia APIs.

It is very important that the called function does not call back into Julia.

@threadcall may be removed/changed in future versions of Julia.

LIn this context, MPI refers to the MPI-1 standard. Beginning with MPI-2, the MPI standards committee introduced a new set of communication
mechanisms, collectively referred to as Remote Memory Access (RMA). The motivation for adding RMA to the MPI standard was to facilitate one-
sided communication patterns. For additional information on the latest MPI standard, see http:/mpi-forum.org/docs.


http://docs.libuv.org/en/v1.x/
http://mpi-forum.org/docs/

Chapter 27

Date and DateTime

The Dates module provides two types for working with dates: Date and DateTime, representing day and millisecond
precision, respectively; both are subtypes of the abstract TimeType. The motivation for distinct types is simple: some
operations are much simpler, both in terms of code and mental reasoning, when the complexities of greater precision
don’t have to be dealt with. For example, since the Date type only resolves to the precision of a single date (i.e. no
hours, minutes, or seconds), normal considerations for time zones, daylight savings/summer time, and leap seconds
are unnecessary and avoided.

Both Date and DateTime are basically immutable Int64 wrappers. The single instant field of either type is actu-
ally a UTInstant{P} type, which represents a continuously increasing machine timeline based on the UT second .
The DateTime type is not aware of time zones (naive, in Python parlance), analogous to a LocalDateTime in Java 8.
Additional time zone functionality can be added through the TimeZones.jl package, which compiles the IANA time
zone database. Both Date and DateTime are based on the ISO 8601 standard, which follows the proleptic Gregorian
calendar. One note is that the ISO 8601 standard is particular about BC/BCE dates. In general, the last day of the
BC/BCE era, 1-12-31 BC/BCE, was followed by 1-1-1 AD/CE, thus no year zero exists. The ISO standard, however,
states that 1 BC/BCE is year zero, so 0000-12-31 is the day before 8001-01-01, and year -0001 (yes, negative one
for the year) is 2 BC/BCE, year -0002 is 3 BC/BCE, etc.

27.1 Constructors

Date and DateTime types can be constructed by integer or Period types, by parsing, or through adjusters (more on
those later):

julia> DateTime(2013)
2013-01-01T00:00:00

julia> DateTime(2013,7)
2013-07-01T700:00:00

julia> DateTime(2013,7,1)
2013-07-01T700:00:00

1The notion of the UT second is actually quite fundamental. There are basically two different notions of time generally accepted, one based on
the physical rotation of the earth (one full rotation = 1 day), the other based on the Sl second (a fixed, constant value). These are radically different!
Think about it, a "UT second”, as defined relative to the rotation of the earth, may have a different absolute length depending on the day! Anyway,
the fact that Date and DateTime are based on UT seconds is a simplifying, yet honest assumption so that things like leap seconds and all their
complexity can be avoided. This basis of time is formally called UT or UT1. Basing types on the UT second basically means that every minute has
60 seconds and every day has 24 hours and leads to more natural calculations when working with calendar dates.
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julia> DateTime(2013,7,1,12)
2013-07-01T12:06:00

julia> DateTime(2013,7,1,12,30)
2013-07-01T12:30:00

julia> DateTime(2013,7,1,12,30,59)
2013-07-01T12:30:59

julia> DateTime(2013,7,1,12,30,59,1)
2013-07-01T12:30:59.001

julia> Date(2013)
2013-01-01

julia> Date(2013,7)
2013-07-01

julia> Date(2013,7,1)
2013-07-01

julia> Date(Dates.Year(2013),Dates.Month(7),Dates.Day(1))
2013-07-01

julia> Date(Dates.Month(7),Dates.Year(2013))
2013-07-01

Date or DateTime parsing is accomplished by the use of format strings. Format strings work by the notion of defining
delimited or fixed-width "slots” that contain a period to parse and passing the text to parse and format string to a Date
or DateTime constructor, of the form Date("20615-01-01","y-m-d") or DateTime("20150101", "yyyymmdd").

Delimited slots are marked by specifying the delimiter the parser should expect between two subsequent periods; so
"y-m-d" lets the parser know that between the first and second slots in a date string like "2014-07-16", it should
find the - character. The y, m, and d characters let the parser know which periods to parse in each slot.

Fixed-width slots are specified by repeating the period character the number of times corresponding to the width
with no delimiter between characters. So "yyyymmdd" would correspond to a date string like "20140716". The
parser distinguishes a fixed-width slot by the absence of a delimiter, noting the transition "yyyymm" from one period
character to the next.

Support for text-form month parsing is also supported through the u and U characters, for abbreviated and full-length
month names, respectively. By default, only English month names are supported, so u corresponds to "Jan”, "Feb”,
"Mar”, etc. And U corresponds to "January”, "February”, "March”, etc. Similar to other name=>value mapping functions
dayname () and monthname( ), custom locales can be loaded by passing in the locale=>Dict{String, Int} map-
ping to the MONTHTOVALUEABBR and MONTHTOVALUE dicts for abbreviated and full-name month names, respectively.

One note on parsing performance: using the Date(date_string, format_string) function is fine if only called a
few times. If there are many similarly formatted date strings to parse however, it is much more efficient to first create
aDates.DateFormat, and pass it instead of a raw format string.

julia> df = DateFormat("y-m-d");

julia> dt = Date("2015-01-01",df)
2015-01-01
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julia> dt2 = Date("2015-81-02",df)
2015-01-02

You can also use the dateformat"" string macro. This macro creates the DateFormat object once when the macro
is expanded and uses the same DateFormat object even if a code snippet is run multiple times.

julia> for i = 1:16%5
Date("2015-01-01", dateformat'y-m-d")
end

A full suite of parsing and formatting tests and examples is available in tests/dates/io.jl.

27.2 Durations/Comparisons

Finding the length of time between two Date or DateTime is straightforward given their underlying representation
as UTInstant{Day} and UTInstant{Millisecond}, respectively. The difference between Date is returned in the
number of Day, and DateTime in the number of Millisecond. Similarly, comparing TimeType is a simple matter of
comparing the underlying machine instants (which in turn compares the internal Int64 values).

julia> dt = Date(2012,2,29)
2012-02-29

julia> dt2 = Date(2000,2,1)
2000-02-01

julia> dump(dt)
Date
instant: Base.Dates.UTInstant{Base.Dates.Day}
periods: Base.Dates.Day
value: Int64 734562

julia> dump(dt2)
Date
instant: Base.Dates.UTInstant{Base.Dates.Day}
periods: Base.Dates.Day
value: Int64 730151

julia> dt > dt2
true

julia> dt !'= dt2
true

julia> dt + dt2
ERROR: MethodError: no method matching +(::Date, ::Date)
[...]

julia> dt * dt2
ERROR: MethodError: no method matching *(::Date, ::Date)
[...]

julia> dt / dt2
ERROR: MethodError: no method matching /(::Date, ::Date)



https://github.com/JuliaLang/julia/blob/master/test/dates/io.jl
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julia> dt - dt2
4411 days

julia> dt2 - dt
-4411 days

julia> dt = DateTime(2012,2,29)
2012-02-29700:00 :00

julia> dt2 = DateTime(2000,2,1)
2000-02-01T700:00:00

julia> dt - dt2
381110400000 milliseconds

27.3 Accessor Functions

Because the Date and DateTime types are stored as single Int64 values, date parts or fields can be retrieved through
accessor functions. The lowercase accessors return the field as an integer:

julia> t = Date(2014, 1, 31)
2014-01-31

julia> Dates.year(t)
2014

julia> Dates.month(t)
1

julia> Dates.week(t)
5

julia> Dates.day(t)
31

While propercase return the same value in the corresponding Period type:

julia> Dates.Year(t)
2014 years

julia> Dates.Day(t)
31 days

Compound methods are provided, as they provide a measure of efficiency if multiple fields are needed at the same
time:

julia> Dates.yearmonth(t)
(2014, 1)

julia> Dates.monthday(t)
(1, 31)

julia> Dates.yearmonthday(t)
(2014, 1, 31)
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One may also access the underlying UTInstant or integer value:

julia> dump(t)
Date
instant: Base.Dates.UTInstant{Base.Dates.Day}
periods: Base.Dates.Day
value: Int64 735264

julia> t.instant
Base.Dates.UTInstant{Base.Dates.Day}(735264 days)

julia> Dates.value(t)
735264

27.4 Query Functions

Query functions provide calendrical information about a TimeType. They include information about the day of the
week:

julia> t = Date(2014, 1, 31)

2014-01-31

julia> Dates.dayofweek(t)
5

julia> Dates.dayname(t)
"Friday"

julia> Dates.dayofweekofmonth(t) # 5th Friday of January
5
Month of the year:

julia> Dates.monthname(t)
"January"

julia> Dates.daysinmonth(t)
31

As well as information about the TimeType’s year and quarter:

julia> Dates.isleapyear(t)
false

julia> Dates.dayofyear(t)
31

julia> Dates.quarterofyear(t)
1

julia> Dates.dayofquarter(t)
31

The dayname () and monthname () methods can also take an optional locale keyword that can be used to return the
name of the day or month of the year for other languages/locales. There are also versions of these functions returning
the abbreviated names, namely dayabbr () and monthabbr (). First the mapping is loaded into the LOCALES variable:
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julia> french_months = ["janvier", "février", "mars", "avril", "mai", "juin",
"juillet", "aoGt", "septembre", "octobre", "novembre", "décembre"];

julia> french_monts_abbrev = ["janv","févr", "mars", "avril", "mai", "juin",
"juil", "aodt", "sept”, "oct", "nov", "déc"]:

julia> french_days = ["lundi", "mardi", "mercredi", "jeudi", "vendredi", "samedi”, "dimanche"];

julia> Dates.LOCALES["french"] = Dates.DateLocale(french_months, french_monts_abbrev, french_days
N D

The above mentioned functions can then be used to perform the queries:

julia> Dates.dayname(t;locale="french")

"vendredi”

julia> Dates.monthname(t;locale="french")
"janvier"

julia> Dates.monthabbr(t;locale="french")
"janv"

Since the abbreviated versions of the days are not loaded, trying to use the function dayabbr () will error.

julia> Dates.dayabbr(t;locale="french")
ERROR: BoundsError: attempt to access 1-element Array{String,1} at index [5]
Stacktrace:
[1] #dayabbr#6(::String, ::Function, ::Int64) at ./dates/query.jl:114
[2] (::Base.Dates.#kw##dayabbr)(::Array{Any,1}, ::Base.Dates.#dayabbr, ::Int64) at ./<missing>:0
(repeats 2 times)

27.5 TimeType-Period Arithmetic

It's good practice when using any language/date framework to be familiar with how date-period arithmetic is handled
as there are some tricky issues to deal with (though much less so for day-precision types).

The Dates module approach tries to follow the simple principle of trying to change as little as possible when doing
Period arithmetic. This approach is also often known as calendrical arithmetic or what you would probably guess if
someone were to ask you the same calculation in a conversation. Why all the fuss about this? Let’s take a classic
example: add 1 month to January 31st, 2014. What's the answer? Javascript will say March 3 (assumes 31 days).
PHP says March 2 (assumes 30 days). The fact is, there is no right answer. In the Dates module, it gives the result of
February 28th. How does it figure that out? | like to think of the classic 7-7-7 gambling game in casinos.

Now just imagine that instead of 7-7-7, the slots are Year-Month-Day, or in our example, 2014-01-31. When you
ask to add 1 month to this date, the month slot is incremented, so now we have 2014-02-31. Then the day number
is checked if it is greater than the last valid day of the new month; if it is (as in the case above), the day number is
adjusted down to the last valid day (28). What are the ramifications with this approach? Go ahead and add another
month to our date, 2014-02-28 + Month(1) == 2014-03-28. What? Were you expecting the last day of March?
Nope, sorry, remember the 7-7-7 slots. As few slots as possible are going to change, so we first increment the month
slot by 1, 2014-03-28, and boom, we're done because that’s a valid date. On the other hand, if we were to add 2
months to our original date, 2014-01-31, then we end up with 2014-03-31, as expected. The other ramification of
this approach is a loss in associativity when a specific ordering is forced (i.e. adding things in different orders results
in different outcomes). For example:

julia> (Date(2014,1,29)+Dates.Day(1)) + Dates.Month(1)
2014-02-28


https://codeblog.jonskeet.uk/2010/12/01/the-joys-of-date-time-arithmetic/
http://www.markhneedham.com/blog/2009/01/07/javascript-add-a-month-to-a-date/
http://stackoverflow.com/questions/5760262/php-adding-months-to-a-date-while-not-exceeding-the-last-day-of-the-month
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julia> (Date(2014,1,29)+Dates.Month(1)) + Dates.Day(1)
2014-03-01

What's going on there? In the first line, we're adding 1 day to January 29th, which results in 2014-01-30; then we add
1 month, so we get 2014-02-30, which then adjusts down to 2014-02-28. In the second example, we add 1 month
first, where we get 2014-02-29, which adjusts down to 2014-02-28, and then add 1 day, which results in 2014-03-01.
One design principle that helps in this case is that, in the presence of multiple Periods, the operations will be ordered
by the Periods’ types, not their value or positional order; this means Year will always be added first, then Month, then
Week, etc. Hence the following does result in associativity and Just Works:

julia> Date(26014,1,29) + Dates.Day(1) + Dates.Month(1)
2014-03-01

julia> Date(2614,1,29) + Dates.Month(1) + Dates.Day(1)
2014-03-01

Tricky? Perhaps. What is an innocent Dates user to do? The bottom line is to be aware that explicitly forcing a certain
associativity, when dealing with months, may lead to some unexpected results, but otherwise, everything should work
as expected. Thankfully, that's pretty much the extent of the odd cases in date-period arithmetic when dealing with
time in UT (avoiding the "joys” of dealing with daylight savings, leap seconds, etc.).

As a bonus, all period arithmetic objects work directly with ranges:

julia> dr = Date(2014,1,29):Date(2014,2,3)
2014-01-29:1 day:2014-02-03

julia> collect(dr)
6-element Array{Date,1}:
2014-01-29

2014-01-30

2014-01-31

2014-02-01

2014-02-02

2014-02-03

julia> dr = Date(2014,1,29):Dates.Month(1):Date(2014,07,29)
2014-01-29:1 month:2014-07-29

julia> collect(dr)
7-element Array{Date,1}:

2014-01-29

2014-02-28

2014-03-29

2014-04-29

2014-05-29

2014-06-29

2014-07-29

27.6 Adjuster Functions

As convenient as date-period arithmetics are, often the kinds of calculations needed on dates take on a calendrical
or temporal nature rather than a fixed number of periods. Holidays are a perfect example; most follow rules such
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as "Memorial Day = Last Monday of May”, or "Thanksgiving = 4th Thursday of November”. These kinds of temporal
expressions deal with rules relative to the calendar, like first or last of the month, next Tuesday, or the first and third
Wednesdays, etc.

The Dates module provides the adjuster API through several convenient methods that aid in simply and succinctly
expressing temporal rules. The first group of adjuster methods deal with the first and last of weeks, months, quarters,
and years. They each take a single TimeType as input and return or adjust to the first or last of the desired period
relative to the input.

julia> Dates.firstdayofweek(Date(2014,7,16)) # Adjusts the input to the Monday of the input's week
2014-07-14

julia> Dates.lastdayofmonth(Date(2014,7,16)) # Adjusts to the last day of the input's month
2014-07-31

julia> Dates.lastdayofquarter(Date(2014,7,16)) # Adjusts to the last day of the input's quarter
2014-09-30

The next two higher-order methods, tonext (), and toprev(), generalize working with temporal expressions by
taking a DateFunction as first argument, along with a starting TimeType. ADateFunctionis just a function, usually
anonymous, that takes a single TimeType as input and returns a Boo1l, true indicating a satisfied adjustment criterion.
For example:

julia> istuesday = x->Dates.dayofweek(x) == Dates.Tuesday # Returns true if the day of the week of
— X 1is Tuesday
(::#1) (generic function with 1 method)

julia> Dates.tonext(istuesday, Date(2014,7,13)) # 2014-67-13 is a Sunday
2014-07-15

julia> Dates.tonext(Date(2014,7,13), Dates.Tuesday) # Convenience method provided for day of the
— week adjustments
2014-07-15

This is useful with the do-block syntax for more complex temporal expressions:

julia> Dates.tonext(Date(2014,7,13)) do x
# Return true on the 4th Thursday of November (Thanksgiving)
Dates.dayofweek(x) == Dates.Thursday &&
Dates.dayofweekofmonth(x) == 4 &&
Dates.month(x) == Dates.November
end
2014-11-27

The Base.filter () method can be used to obtain all valid dates/moments in a specified range:

# Pittsburgh street cleaning; Every 2nd Tuesday from April to November
# Date range from January 1st, 2014 to January 1st, 2015
julia> dr = Dates.Date(2014) :Dates.Date(2015);

julia> filter(dr) do x
Dates.dayofweek(x) == Dates.Tue &&
Dates.April <= Dates.month(x) <= Dates.Nov &&
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Dates.dayofweekofmonth(x) == 2
end
8-element Array{Date,1}:
2014-04-08
2014-05-13
2014-06-10
2014-07-08
2014-08-12
2014-09-09
2014-10-14
2014-11-11

Additional examples and tests are available in test/dates/adjusters.jl.

27.7 Period Types

Periods are a human view of discrete, sometimes irregular durations of time. Consider 1 month; it could represent, in
days, a value of 28, 29, 30, or 31 depending on the year and month context. Or a year could represent 365 or 366
days in the case of a leap year. Period types are simple Int64 wrappers and are constructed by wrapping any Int64
convertible type, i.e. Year (1) or Month(3.0). Arithmetic between Period of the same type behave like integers,
and limited Period-Real arithmetic is available.

julia> y1 = Dates.Year(1)
1 year

julia> y2 = Dates.Year(2)
2 years

julia> y3 = Dates.Year(10)
10 years

julia> y1 + y2
3 years

julia> div(y3,y2)
5

julia> y3 - y2
8 years

julia> y3 % y2
0 years

julia> div(y3,3) # mirrors integer division
3 years

27.8 Rounding

Date and DateTime values can be rounded to a specified resolution (e.g., 1 month or 15 minutes) with floor (),
ceil(),or round():

julia> floor(Date(1985, 8, 16), Dates.Month)
1985-08-01


https://github.com/JuliaLang/julia/blob/master/test/dates/adjusters.jl
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julia> ceil(DateTime(2013, 2, 13, 0, 31, 20), Dates.Minute(15))
2013-02-13T00:45:00

julia> round(DateTime(20616, 8, 6, 206, 15), Dates.Day)
2016-08-07T00:00:00

Unlike the numeric round() method, which breaks ties toward the even number by default, the TimeTyperound()
method uses the RoundNearestTiesUp rounding mode. (It's difficult to guess what breaking ties to nearest "even”
TimeType would entail.) Further details on the available RoundingMode s can be found in the API reference.

Rounding should generally behave as expected, but there are a few cases in which the expected behaviour is not
obvious.

Rounding Epoch

In many cases, the resolution specified for rounding (e.g., Dates . Second(30)) divides evenly into the next largest pe-
riod (in this case, Dates.Minute(1)). But rounding behaviour in cases in which this is not true may lead to confusion.
What is the expected result of rounding a DateTime to the nearest 10 hours?

julia> round(DateTime(2016, 7, 17, 11, 55), Dates.Hour(10))
2016-07-17T12:00:00

That may seem confusing, given that the hour (12) is not divisible by 10. The reason that 2616-07-17T12:00:00
was chosen is that it is 17,676,660 hours after 6600-01-01T00:00:00, and 17,676,660 is divisible by 10.

As Julia Date and DateTime values are represented according to the ISO 8601 standard, 66060-01-01T600:00 :00
was chosen as base (or "rounding epoch”) from which to begin the count of days (and milliseconds) used in rounding
calculations. (Note that this differs slightly from Julia’s internal representation of Date s using Rata Die notation; but
since the ISO 8601 standard is most visible to the end user, 0000-01-01T00:00:00 was chosen as the rounding
epoch instead of the 0000-12-31T00 :00 :00 used internally to minimize confusion.)

The only exception to the use of 6000-01-01T60 :00 :00 as the rounding epoch is when rounding to weeks. Rounding
to the nearest week will always return a Monday (the first day of the week as specified by ISO 8601). For this reason,
we use 0000-01-03T00:00:00 (the first day of the first week of year 0000, as defined by ISO 8601) as the base
when rounding to a number of weeks.

Here is a related case in which the expected behaviour is not necessarily obvious: What happens when we round
to the nearest P(2), where P is a Period type? In some cases (specifically, when P <: Dates.TimePeriod) the
answer is clear:

julia> round(DateTime(2016, 7, 17, 8, 55, 30), Dates.Hour(2))
2016-07-17T08:00:00

julia> round(DateTime(2016, 7, 17, 8, 55, 30), Dates.Minute(2))
2016-07-17T08:56:00

This seems obvious, because two of each of these periods still divides evenly into the next larger order period. But in
the case of two months (which still divides evenly into one year), the answer may be surprising:

julia> round(DateTime(20616, 7, 17, 8, 55, 30), Dates.Month(2))
2016-07-01T00:00:00
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Why round to the first day in July, even though it is month 7 (an odd number)? The key is that months are 1-indexed
(the first month is assigned 1), unlike hours, minutes, seconds, and milliseconds (the first of which are assigned 0).

This means that rounding a DateTime to an even multiple of seconds, minutes, hours, or years (because the ISO 8601
specification includes a year zero) will result in a DateTime with an even value in that field, while rounding a DateTime
to an even multiple of months will result in the months field having an odd value. Because both months and years may
contain an irregular number of days, whether rounding to an even number of days will result in an even value in the
days field is uncertain.

See the API reference for additional information on methods exported from the Dates module.






Chapter 28

Interacting With Julia

Julia comes with a full-featured interactive command-line REPL (read-eval-print loop) built into the julia executable.
In addition to allowing quick and easy evaluation of Julia statements, it has a searchable history, tab-completion, many
helpful keybindings, and dedicated help and shell modes. The REPL can be started by simply calling julia with no
arguments or double-clicking on the executable:

$ julia
_ _ ()= | A fresh approach to technical computing
(2) | (2) (2) | Documentation: https://docs.julialang.org
- [ P | Type "?help" for help.
I T R A I
I 1 1= | I | (2| | | Version 0.6.0-dev.2493 (2017-81-31 18:53 UTC)
_/ INZZ | Zl2INZ2'Z] | Commit c99el12c* (@ days old master)
|__/ | x86_64-1linux-gnu
julia>

To exit the interactive session, type 2D - the control key together with the d key on a blank line - or type quit()
followed by the return or enter key. The REPL greets you with a banner and a julia> prompt.

28.1 The different prompt modes

The Julian mode

The REPL has four main modes of operation. The first and most common is the Julian prompt. It is the default mode of
operation; each new line initially starts with julia>. It is here that you can enter Julia expressions. Hitting return or
enter after a complete expression has been entered will evaluate the entry and show the result of the last expression.

julia> string(1 + 2)
ng

There are a number useful features unique to interactive work. In addition to showing the result, the REPL also binds
the result to the variable ans. A trailing semicolon on the line can be used as a flag to suppress showing the result.

julia> string(3 * 4);

julia> ans
Y.

277
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In Julia mode, the REPL supports something called prompt pasting. This activates when pasting text that starts with
julia> into the REPL. In that case, only expressions starting with julia> are parsed, others are removed. This
makes it is possible to paste a chunk of code that has been copied from a REPL session without having to scrub away
prompts and outputs. This feature is enabled by default but can be disabled or enabled at will with Base .REPL . en-
able_promptpaste(::Bool). If it is enabled, you can try it out by pasting the code block above this paragraph
straight into the REPL. This feature does not work on the standard Windows command prompt due to its limitation at
detecting when a paste occurs.

Help mode

When the cursor is at the beginning of the line, the prompt can be changed to a help mode by typing ?. Julia will
attempt to print help or documentation for anything entered in help mode:

julia> ? # upon typing ?, the prompt changes (in place) to: help?>

help?> string

search: string String stringmime Cstring Cwstring RevString readstring randstring bytestring
— SubString

string(xs...)

Create a string from any values using the print function.

Macros, types and variables can also be queried:

help?> @time
@time

A macro to execute an expression, printing the time it took to execute, the number of
allocations,

and the total number of bytes its execution caused to be allocated, before returning the value
of the

expression.

See also @timev, @timed, @elapsed, and @allocated.

help?> AbstractString
search: AbstractString AbstractSparseMatrix AbstractSparseVector AbstractSet

No documentation found.
Summary :

abstract AbstractString <: Any
Subtypes:
Base.Test.GenericString

DirectIndexString
String

Help mode can be exited by pressing backspace at the beginning of the line.
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Shell mode

Just as help mode is useful for quick access to documentation, another common task is to use the system shell to
execute system commands. Just as ? entered help mode when at the beginning of the line, a semicolon (;) will enter
the shell mode. And it can be exited by pressing backspace at the beginning of the line.

julia> ; # upon typing ;, the prompt changes (in place) to: shell>

shell> echo hello
hello

Search modes

In all of the above modes, the executed lines get saved to a history file, which can be searched. To initiate an incremental
search through the previous history, type AR - the control key together with the r key. The prompt will change to
(reverse-i-search) ' :, and as you type the search query will appear in the quotes. The most recent result that
matches the query will dynamically update to the right of the colon as more is typed. To find an older result using the
same query, simply type AR again.

Just as R is a reverse search, S is a forward search, with the prompt (i-search) ' :. The two may be used in
conjunction with each other to move through the previous or next matching results, respectively.

28.2 Key bindings

The Julia REPL makes great use of key bindings. Several control-key bindings were already introduced above (D to exit,
AR and *S for searching), but there are many more. In addition to the control-key, there are also meta-key bindings.
These vary more by platform, but most terminals default to using alt- or option- held down with a key to send the
meta-key (or can be configured to do so).

Customizing keybindings

Julia’s REPL keybindings may be fully customized to a user’s preferences by passing a dictionary to REPL . setup_in-
terface(). The keys of this dictionary may be characters or strings. The key '*' refers to the default action.
Control plus character x bindings are indicated with "*x". Meta plus x can be written "\\Mx". The values of the
custom keymap must be nothing (indicating that the input should be ignored) or functions that accept the signa-
ture (PromptState, AbstractREPL, Char). The REPL.setup_interface() function must be called before
the REPL is initialized, by registering the operation with atreplinit(). For example, to bind the up and down arrow
keys to move through history without prefix search, one could put the following code in . juliarc.jl:

import Base: LineEdit, REPL

const mykeys = Dict{Any, Any}(

# Up Arrow

"\e[A" => (s,0...)->(LineEdit.edit_move_up(s) || LineEdit.history_prev(s,
<« LineEdit.mode(s).hist)),

# Down Arrow

"\e[B" => (s,0...)->(LineEdit.edit_move_up(s) || LineEdit.history_next(s,
— LineEdit.mode(s).hist))

)

function customize_keys(repl)
repl.interface = REPL.setup_interface(repl; extra_repl_keymap = mykeys)

end
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Keybinding

Description

Program control

D

Exit (when buffer is empty)

rC

Interrupt or cancel

AL

Clear console screen

Return/Enter, AJ

New line, executing if it is complete

meta-Return/Enter

Insert new line without executing it

?o0r;

Enter help or shell mode (when at start of a line)

AR, *S

Incremental history search, described above

Cursor movement

Right arrow, *F

Move right one character

Left arrow, *B

Move left one character

Home, *A Move to beginning of line

End, *E Move to end of line

AP Change to the previous or next history entry

N Change to the next history entry

Up arrow Move up one line (or to the previous history entry)

Down arrow Move down one line (or to the next history entry)

Page-up Change to the previous history entry that matches the text before the cursor
Page-down Change to the next history entry that matches the text before the cursor
meta-F Move right one word

meta-B Move left one word

Editing

Backspace, *H Delete the previous character

Delete, AD Forward delete one character (when buffer has text)

meta-Backspace

Delete the previous word

meta-D

Forward delete the next word

AW Delete previous text up to the nearest whitespace

AK "Kill” to end of line, placing the text in a buffer

Y "Yank” insert the text from the kill buffer

AT Transpose the characters about the cursor

rQ Write a number in REPL and press *Q to open editor at corresponding stackframe

atreplinit(customize_keys)

Users should refer to base/LineEdit. j1 to discover the available actions on key input.

28.3 Tab completion

In both the Julian and help modes of the REPL, one can enter the first few characters of a function or type and then
press the tab key to get a list all matches:

julia> stri[TAB]

stride strides

julia> Stri[TAB]

string stringmime strip

StridedArray StridedMatrix StridedVecOrMat StridedVector String
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The tab key can also be used to substitute LaTeX math symbols with their Unicode equivalents, and get a list of LaTeX

matches as well:

julia> \pi[TAB]
julia> n
nm = 3.1415926535897. ..

julia> e\_1[TAB] = [1,0]
julia> e = [1,0]
2-element Array{Int64,1}:
1
0

julia> e\"1[TAB] = [1 0]
julia> e' = [1 0]

1x2 Array{Int64,2}:

1 0

julia> \sqrt[TAB]2 # v 1is equivalent to the sqrt() function
julia> v2
1.4142135623730951

julia> \hbar[TAB](h) = h / 2\pi[TAB]
julia> h(h) = h / 2n

h (generic function with 1 method)

julia> \h[TAB]

\hat \hermitconjmatrix \hkswarow \hrectangle
\hatapprox \hexagon \hookleftarrow \hrectangleblack
\hbar \hexagonblack \hookrightarrow \hslash
\heartsuit \hksearow \house \hspace

julia> a="\alpha[TAB]" # LaTeX completion also works in strings

julia> a="a

A full list of tab-completions can be found in the Unicode Input section of the manual.

Completion of paths works for strings and julia’s shell mode:

julia> path="/[TAB]"

.dockerenv .juliabox/ boot/ etc/ lib/ media/ opt/ root/
«— sbin/ sys/ usr/

.dockerinit bin/ dev/ home/ lib64/ mnt/ proc/ run/

— srv/ tmp/ var/

shell> /[TAB]

.dockerenv .juliabox/ boot/ etc/ lib/ media/ opt/ root/
— sbin/ sys/ usr/

.dockerinit bin/ dev/ home/ lib64/ mnt/ proc/ run/

— srv/ tmp/ var/

Tab completion can help with investigation of the available methods matching the input arguments:

julia> max([TAB] # All methods are displayed, not shown here due to size of the list
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julia> max([1, 2], [TAB] # All methods where "Vector{Int} matches as first argument
max(x, y) in Base at operators.jl:215
max(a, b, ¢, xs...) in Base at operators.jl:281

julia> max([1, 2], max(1, 2), [TAB] # All methods matching the arguments.
max(x, y) in Base at operators.jl:215
max(a, b, ¢, xs...) in Base at operators.jl:281

Keywords are also displayed in the suggested methods, see second line after ; where 1imit and keep are keyword
arguments:

julia> split("1 1 1", [TAB]
split(str::AbstractString) in Base at strings/util.jl:278
split{T<:AbstractString}(str::T, splitter; limit, keep) in Base at strings/util.jl:254

The completion of the methods uses type inference and can therefore see if the arguments match even if the arguments
are output from functions. The function needs to be type stable for the completion to be able to remove non-matching
methods.

Tab completion can also help completing fields:

julia> Pkg.a[TAB]
add available

Fields for output from functions can also be completed:

julia> split("","")[1].[TABI]
endof offset string

The completion of fields for output from functions uses type inference, and it can only suggest fields if the function is
type stable.

28.4 Customizing Colors

The colors used by Julia and the REPL can be customized, as well. To change the color of the Julia prompt you can add
something like the following to your . juliarc. j1 file, which is to be placed inside your home directory:

function customize_colors(repl)
repl.prompt_color = Base.text_colors][:cyan]
end

atreplinit(customize_colors)

The available color keys can be seen by typing Base.text_colors in the help mode of the REPL. In addition, the
integers O to 255 can be used as color keys for terminals with 256 color support.

You can also change the colors for the help and shell prompts and input and answer text by setting the appropriate
field of repl in the customize_colors function above (respectively, help_color, shell_color, input_color,
and answer_color). For the latter two, be sure that the envcolors field is also set to false.

It is also possible to apply boldface formatting by using Base . text_colors|[ :bold] as a color. For instance, to print
answers in boldface font, one can use the following as a . juliarc.jl:
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function customize_colors(repl)

repl.envcolors = false

repl.answer_color = Base.text_colors|[:bold]
end

atreplinit(customize_colors)

You can also customize the color used to render warning and informational messages by setting the appropriate envi-
ronment variables. For instance, to render error, warning, and informational messages respectively in magenta, yellow,
and cyan you can add the following to your . juliarc.jl file:

ENV["JULIA_ERROR_COLOR"] = :magenta
ENV["JULIA_WARN_COLOR"] = :yellow
ENV["JULIA_INFO_COLOR"] :cyan






Chapter 29

Running External Programs

Julia borrows backtick notation for commands from the shell, Perl, and Ruby. However, in Julia, writing

julia> “echo hello"
‘echo hello®

differs in several aspects from the behavior in various shells, Perl, or Ruby:
¢ Instead of immediately running the command, backticks create a Cmd object to represent the command. You

can use this object to connect the command to others via pipes, run it, and read or write to it.

¢ When the command is run, Julia does not capture its output unless you specifically arrange for it to. Instead,
the output of the command by default goes to STDOUT as it would using 1ibc’s system call.

e The command is never run with a shell. Instead, Julia parses the command syntax directly, appropriately inter-
polating variables and splitting on words as the shell would, respecting shell quoting syntax. The command is
run as julia’s immediate child process, using fork and exec calls.

Here's a simple example of running an external program:

julia> mycommand = ‘echo hello®
“echo hello”

julia> typeof(mycommand)
Cmd

julia> run(mycommand)
hello

The hello is the output of the echo command, sent to STDOUT. The run method itself returns nothing, and throws
an ErrorException if the external command fails to run successfully.

If you want to read the output of the external command, readstring() can be used instead:

julia> a = readstring( echo hello")
"hello\n"

julia> chomp(a) == "hello"
true

285
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More generally, you can use open( ) to read from or write to an external command.

julia> open( less’, "w", STDOUT) do io
for i = 1:3
println(io, 1)
end
end

29.1 Interpolation

Suppose you want to do something a bit more complicated and use the name of a file in the variable file as an
argument to a command. You can use $ for interpolation much as you would in a string literal (see Strings):

julia> file = "/etc/passwd"
"/etc/passwd"

julia> “sort Sfile’
‘sort /etc/passwd’

A common pitfall when running external programs via a shell is that if a file name contains characters that are special
to the shell, they may cause undesirable behavior. Suppose, for example, rather than /etc/passwd, we wanted to
sort the contents of the file /Volumes/External HD/data.csv. Let’s tryit:

julia> file = "/Volumes/External HD/data.csv"
"/Volumes/External HD/data.csv"

julia> “sort S$file’
‘sort '/Volumes/External HD/data.csv'"

How did the file name get quoted? Julia knows that file is meant to be interpolated as a single argument, so it quotes
the word for you. Actually, that is not quite accurate: the value of file is never interpreted by a shell, so there’s no
need for actual quoting; the quotes are inserted only for presentation to the user. This will even work if you interpolate
a value as part of a shell word:

julia> path = "/Volumes/External HD"
"/Volumes/External HD"

julia> name = "data"
"data”

julia> ext = "csv"
-

julia> “sort Spath/Sname.Sext’
‘sort '/Volumes/External HD/data.csv'"®

As you can see, the space in the path variable is appropriately escaped. But what if you want to interpolate multiple
words? In that case, just use an array (or any other iterable container):
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julia> files = ["/etc/passwd","/Volumes/External HD/data.csv"]
2-element Array{String,1}:

"/etc/passwd”

"/Volumes/External HD/data.csv"

julia> “grep foo S$files’
‘grep foo /etc/passwd '/Volumes/External HD/data.csv'"’

If you interpolate an array as part of a shell word, Julia emulates the shell's {a, b, ¢} argument generation:

julia> names = ["foo", "bar", "baz"]
3-element Array{String,1}:

"foo"

"bar"

"baz"

julia> “grep xylophone $names.txt’
‘grep xylophone foo.txt bar.txt baz.txt®

Moreover, if you interpolate multiple arrays into the same word, the shell’s Cartesian product generation behavior is
emulated:

julia> names = ["foo","bar", "baz"]
3-element Array{String,1}:

"foo"

"bar"

"baz"

julia> exts = ["aux", "log"]
2-element Array{String,1}:

julia> “rm -f $names.Sexts’
‘rm -f foo.aux foo.log bar.aux bar.log baz.aux baz.log’

Since you can interpolate literal arrays, you can use this generative functionality without needing to create temporary
array objects first:

julia> “rm -rf $["foo", "bar", "baz", "qux"].$["aux", "log", "pdf"]"
‘rm -rf foo.aux foo.log foo.pdf bar.aux bar.log bar.pdf baz.aux baz.log baz.pdf qux.aux qux.log
— qux.pdf”

29.2 Quoting

Inevitably, one wants to write commands that aren’t quite so simple, and it becomes necessary to use quotes. Here's
a simple example of a Perl one-liner at a shell prompt:

sh$ perl -le '$§|=1; for (8..3) { print }'

4]

1
2
3
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The Perl expression needs to be in single quotes for two reasons: so that spaces don’t break the expression into
multiple shell words, and so that uses of Perl variables like $| (yes, that's the name of a variable in Perl), don’t cause
interpolation. In other instances, you may want to use double quotes so that interpolation does occur:

sh$§ first="A"

sh$ second="B"

sh$ perl -le '$|=1; print for @ARGV' "1: $first" "2: Ssecond"”
1: A

2: B

In general, the Julia backtick syntax is carefully designed so that you can just cut-and-paste shell commands as is into
backticks and they will work: the escaping, quoting, and interpolation behaviors are the same as the shell’s. The only
difference is that the interpolation is integrated and aware of Julia’s notion of what is a single string value, and what is
a container for multiple values. Let’s try the above two examples in Julia:

julia> A = “perl -le '$§|=1; for (0..3) { print }'°
‘perl -le '$|=1; for (0..3) { print }'°

julia> run(A)
0

1
2
3
julia> first = "A"; second = "B";

julia> B = “perl -le 'print for @ARGV' "1: $first" "2: $second"’
‘perl -le 'print for @ARGV' '1: A' '2: B'"

julia> run(B)
1: A
2: B

The results are identical, and Julia’s interpolation behavior mimics the shell’s with some improvements due to the fact
that Julia supports first-class iterable objects while most shells use strings split on spaces for this, which introduces
ambiguities. When trying to port shell commands to Julia, try cut and pasting first. Since Julia shows commands to
you before running them, you can easily and safely just examine its interpretation without doing any damage.

29.3 Pipelines

Shell metacharacters, such as |, &, and >, need to be quoted (or escaped) inside of Julia’s backticks:

julia> run( echo hello '|' sort’)
hello | sort

julia> run( echo hello \| sort’)
hello | sort

This expression invokes the echo command with three words as arguments: hello, |, and sort. The result is that
a single line is printed: hello | sort. How, then, does one construct a pipeline? Instead of using ' | ' inside of
backticks, one uses pipeline():

julia> run(pipeline( echo hello”, “sort’))
hello
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This pipes the output of the echo command to the sort command. Of course, this isn’t terribly interesting since
there’s only one line to sort, but we can certainly do much more interesting things:

julia> run(pipeline( cut -d: -f3 /etc/passwd’, ‘sort -n’, “tail -n57))
210
211
212
213
214

This prints the highest five user IDs on a UNIX system. The cut, sort and tail commands are all spawned as
immediate children of the current julia process, with no intervening shell process. Julia itself does the work to setup
pipes and connect file descriptors that is normally done by the shell. Since Julia does this itself, it retains better control
and can do some things that shells cannot.

Julia can run multiple commands in parallel:

julia> run( echo hello” & “echo world")
world
hello

The order of the output here is non-deterministic because the two echo processes are started nearly simultaneously,
and race to make the first write to the STDOUT descriptor they share with each other and the julia parent process.
Julia lets you pipe the output from both of these processes to another program:

julia> run(pipeline( echo world" & “echo hello”, ‘“sort’))
hello
world

In terms of UNIX plumbing, what's happening here is that a single UNIX pipe object is created and written to by both
echo processes, and the other end of the pipe is read from by the sort command.

IO redirection can be accomplished by passing keyword arguments stdin, stdout, and stderr to the pipeline function:
‘pipeline(‘do_work‘, stdout=pipeline( sort”, "out.txt"), stderr="errs.txt")

Avoiding Deadlock in Pipelines

When reading and writing to both ends of a pipeline from a single process, it is important to avoid forcing the kernel
to buffer all of the data.

For example, when reading all of the output from a command, call readstring(out), notwait(process), since the
former will actively consume all of the data written by the process, whereas the latter will attempt to store the data in
the kernel’s buffers while waiting for a reader to be connected.

Another common solution is to separate the reader and writer of the pipeline into separate Tasks:

writer = @async writeall(process, "data")
reader = @async do_compute(readstring(process))
wait(process)

fetch(reader)
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Complex Example

The combination of a high-level programming language, a first-class command abstraction, and automatic setup of
pipes between processes is a powerful one. To give some sense of the complex pipelines that can be created easily,
here are some more sophisticated examples, with apologies for the excessive use of Perl one-liners:

julia> prefixer(prefix, sleep) = ‘perl -nle '§|=1; print "'Sprefix' ", $_; sleep 'Ssleep';'’;
julia> run(pipeline( perl -le '$|=1; for(8..9){ print; sleep 1 }'", prefixer("A",2) &
— prefixer("B",2)))

A O

B 1

A2

B 3

A4

B 5

A6

B 7

A8

B 9

This is a classic example of a single producer feeding two concurrent consumers: one perl process generates lines
with the numbers O through 9 on them, while two parallel processes consume that output, one prefixing lines with the
letter "A”, the other with the letter "B”. Which consumer gets the first line is non-deterministic, but once that race has
been won, the lines are consumed alternately by one process and then the other. (Setting $|=1 in Perl causes each
print statement to flush the STDOUT handle, which is necessary for this example to work. Otherwise all the output is
buffered and printed to the pipe at once, to be read by just one consumer process.)

Here is an even more complex multi-stage producer-consumer example:
julia> run(pipeline( perl -le '$|=1; for(@..9){ print; sleep 1 }'",

prefixer("X",3) & prefixer("Y",3) & prefixer("Z2",3),
prefixer("A",2) & prefixer("B",2)))

W > W > W > W > W >
X N < X N < X N < X
O 0 N O U WN 2O

This example is similar to the previous one, except there are two stages of consumers, and the stages have different
latency so they use a different number of parallel workers, to maintain saturated throughput.

We strongly encourage you to try all these examples to see how they work.
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Calling C and Fortran Code

Though most code can be written in Julia, there are many high-quality, mature libraries for numerical computing already
written in C and Fortran. To allow easy use of this existing code, Julia makes it simple and efficient to call C and Fortran
functions. Julia has a "no boilerplate” philosophy: functions can be called directly from Julia without any "glue” code,
code generation, or compilation - even from the interactive prompt. This is accomplished just by making an appropriate
call with ccall syntax, which looks like an ordinary function call.

The code to be called must be available as a shared library. Most C and Fortran libraries ship compiled as shared
libraries already, but if you are compiling the code yourself using GCC (or Clang), you will need to use the -shared
and -fPIC options. The machine instructions generated by Julia’s JIT are the same as a native C call would be, so the
resulting overhead is the same as calling a library function from C code. (Non-library function calls in both C and Julia
can be inlined and thus may have even less overhead than calls to shared library functions. When both libraries and
executables are generated by LLVM, it is possible to perform whole-program optimizations that can even optimize
across this boundary, but Julia does not yet support that. In the future, however, it may do so, yielding even greater
performance gains.)

Shared libraries and functions are referenced by a tuple of the form ( :function, "library") or ("function",
"library") where function is the C-exported function name. 1ibrary refers to the shared library name: shared
libraries available in the (platform-specific) load path will be resolved by name, and if necessary a direct path may be
specified.

A function name may be used alone in place of the tuple (just : function or "function"). In this case the name is
resolved within the current process. This form can be used to call C library functions, functions in the Julia runtime,
or functions in an application linked to Julia.

By default, Fortran compilers generate mangled names (for example, converting function names to lowercase or upper-
case, often appending an underscore), and so to call a Fortran function via ccall you must pass the mangled identifier
corresponding to the rule followed by your Fortran compiler. Also, when calling a Fortran function, all inputs must be
passed by reference.

Finally, you can use ccall to actually generate a call to the library function. Arguments to ccall are as follows:

1. A (:function, "library") pair, which must be written as a literal constant,
OR

a function pointer (for example, from d1sym).

2. Return type (see below for mapping the declared C type to Julia)
- This argument will be evaluated at compile-time, when the containing method is defined.
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3. Atuple of input types. The input types must be written as a literal tuple, not a tuple-valued variable or expres-
sion.

- This argument will be evaluated at compile-time, when the containing method is defined.

4. The following arguments, if any, are the actual argument values passed to the function.

As a complete but simple example, the following calls the clock function from the standard C library:

julia> t = ccall((:clock, "libc"), Int32, ())
2292761

julia> t
2292761

julia> typeof(ans)
Int32

clock takes no arguments and returns an Int32. One common gotcha is that a 1-tuple must be written with a trailing
comma. For example, to call the getenv function to get a pointer to the value of an environment variable, one makes
a call like this:

julia> path = ccall((:getenv, "libc"), Cstring, (Cstring,), "SHELL")
Cstring(@oxe0007fff5fbffcas)

julia> unsafe_string(path)
"/bin/bash"

Note that the argument type tuple must be writtenas (Cstring, ), ratherthan (Cstring). Thisisbecause (Cstring)
is just the expression Cstring surrounded by parentheses, rather than a 1-tuple containing Cstring:

julia> (Cstring)
Cstring

julia> (Cstring,)
(Cstring, )

In practice, especially when providing reusable functionality, one generally wraps ccall uses in Julia functions that
set up arguments and then check for errors in whatever manner the C or Fortran function indicates them, propagating
to the Julia caller as exceptions. This is especially important since C and Fortran APIs are notoriously inconsistent
about how they indicate error conditions. For example, the getenv C library function is wrapped in the following Julia
function, which is a simplified version of the actual definition from env . j1:

function getenv(var::AbstractString)
val = ccall((:getenv, "libc"),
Cstring, (Cstring,), var)
if val == C_NULL
error("getenv: undefined variable: ", var)
end
unsafe_string(val)

end
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The C getenv function indicates an error by returning NULL, but other standard C functions indicate errors in various
different ways, including by returning -1, 0, 1 and other special values. This wrapper throws an exception clearly
indicating the problem if the caller tries to get a non-existent environment variable:

julia> getenv("SHELL")
"/bin/bash"

julia> getenv("FOOBAR")
getenv: undefined variable: FOOBAR

Here is a slightly more complex example that discovers the local machine’s hostname:

function gethostname()
hostname = Vector{UInt8}(128)
ccall((:gethostname, "libc"), Int32,
(Ptr{UInt8}, Csize_t),
hostname, sizeof(hostname))
hostname[end] = 0; # ensure null-termination
return unsafe_string(pointer(hostname))
end

This example first allocates an array of bytes, then calls the C library function gethostname to fill the array in with
the hostname, takes a pointer to the hostname buffer, and converts the pointer to a Julia string, assuming that it is a
NUL-terminated C string. It is common for C libraries to use this pattern of requiring the caller to allocate memory to
be passed to the callee and filled in. Allocation of memory from Julia like this is generally accomplished by creating
an uninitialized array and passing a pointer to its data to the C function. This is why we don’t use the Cstring type
here: as the array is uninitialized, it could contain NUL bytes. Converting to a Cstring as part of the ccall checks
for contained NUL bytes and could therefore throw a conversion error.

30.1 Creating C-Compatible Julia Function Pointers

It is possible to pass Julia functions to native C functions that accept function pointer arguments. For example, to
match C prototypes of the form:

typedef returntype (*functiontype)(argumenttype,...)

The function cfunction() generates the C-compatible function pointer for a call to a Julia library function. Argu-
ments to cfunction() are as follows:

1. AlJulia Function
2. Return type

3. Atuple of input types

A classic example is the standard C library gsort function, declared as:

void gsort(void *base, size_t nmemb, size_t size,
int(*compare) (const void *a, const void *b));

The base argument is a pointer to an array of length nmemb, with elements of size bytes each. compare is a callback
function which takes pointers to two elements a and b and returns an integer less/greater than zero if a should appear
before/after b (or zero if any order is permitted). Now, suppose that we have a 1d array A of values in Julia that we
want to sort using the gsort function (rather than Julia’s built-in sort function). Before we worry about calling gsort
and passing arguments, we need to write a comparison function that works for some arbitrary type T:
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julia> function mycompare(a::T, b::T) where T
return convert(Cint, a <b ? -1 : a>b ? +1 : 0)::Cint
end
mycompare (generic function with 1 method)

Notice that we have to be careful about the return type: gsort expects a function returning a C int, so we must be
sure to return Cint via a call to convert and a typeassert.

In order to pass this function to C, we obtain its address using the function cfunction:

julia> const mycompare_c = cfunction(mycompare, Cint, (Ref{Cdouble}, Ref{Cdouble}));

cfunction() accepts three arguments: the Julia function (mycompare), the return type (Cint), and a tuple of the
argument types, in this case to sort an array of Cdouble (Float64) elements.

The final call to gsort looks like this:

julia> A = [1.3, -2.7, 4.4, 3.1]
4-element Array{Float64,1}:

1.3

-2.7

4.4

3.1

julia> ccall(:qsort, Void, (Ptr{Cdouble}, Csize_t, Csize_t, Ptr{Void}),
A, length(A), sizeof(eltype(A)), mycompare_c)

julia> A
4-element Array{Float64,1}:
-2.7

1.3

3.1

4.4

As can be seen, A is changed to the sorted array [-2.7, 1.3, 3.1, 4.4]. Note that Julia knows how to convert
an array into a Ptr{Cdouble}, how to compute the size of a type in bytes (identical to C's sizeof operator), and so
on. For fun, try inserting a print1ln("mycompare($a, $b)") line into mycompare, which will allow you to see the
comparisons that gsort is performing (and to verify that it is really calling the Julia function that you passed to it).

30.2 Mapping C Types to Julia

Itis critical to exactly match the declared C type with its declaration in Julia. Inconsistencies can cause code that works
correctly on one system to fail or produce indeterminate results on a different system.

Note that no C header files are used anywhere in the process of calling C functions: you are responsible for making
sure that your Julia types and call signatures accurately reflect those in the C header file. (The Clang package can be
used to auto-generate Julia code from a C header file.)

Auto-conversion:

Julia automatically inserts calls to the Base.cconvert() function to convert each argument to the specified type.
For example, the following call:

‘ccall((:foo, "libfoo"), Void, (Int32, Float64), x, y)

will behave as if the following were written:


https://github.com/ihnorton/Clang.jl
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ccall((:foo, "libfoo"), Void, (Int32, Float64),
Base.unsafe_convert(Int32, Base.cconvert(Int32, x)),
Base.unsafe_convert(Float64, Base.cconvert(Floaté64, y)))

Base.cconvert() normally just calls convert (), but can be defined to return an arbitrary new object more appro-
priate for passing to C. For example, this is used to convert an Array of objects (e.g. strings) to an array of pointers.

Base.unsafe_convert() handles conversion to Ptr types. It is considered unsafe because converting an object to

a native pointer can hide the object from the garbage collector, causing it to be freed prematurely.

Type Correspondences:

First, a review of some relevant Julia type terminology:

Syntax / Example Description

Keyword

mutable String "Leaf Type” :: A group of related data that includes a type-tag, is managed by

struct the Julia GC, and is defined by object-identity. The type parameters of a leaf
type must be fully defined (no TypeVars are allowed) in order for the
instance to be constructed.

ab- Any, Abstrac- "Super Type” :: A super-type (not a leaf-type) that cannot be instantiated, but

stract tArray{T, N}, can be used to describe a group of types.

type Complex{T}

T{A} Vector{Int} "Type Parameter” :: A specialization of a type (typically used for dispatch or
storage optimization).
"TypeVar” :: The T in the type parameter declaration is referred to as a
TypeVar (short for type variable).

primi- Int,Float64 "Primitive Type” :: A type with no fields, but a size. It is stored and defined

tive by-value.

type

struct Pair{Int, Int} | "Struct”: Atype with all fields defined to be constant. It is defined by-value,
and may be stored with a type-tag.

Complex128 "Is-Bits” :: Aprimitive type, ora struct type where all fields are other
(isbits) isbits types. Itis defined by-value, and is stored without a type-tag.

struct nothing "Singleton” :: a Leaf Type or Struct with no fields.

end

(...)or | (1, 2, 3) "Tuple” :: an immutable data-structure similar to an anonymous struct type,

tu- or a constant array. Represented as either an array or a struct.

ple(...)

Bits Types:

There are several special types to be aware of, as no other type can be defined to behave the same:

e Float32

Exactly corresponds to the float type in C (or REAL*4 in Fortran).

e Float64

Exactly corresponds to the double type in C (or REAL*8 in Fortran).
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e Complex64
Exactly corresponds to the complex float type in C (or COMPLEX*8 in Fortran).

e Complex128
Exactly corresponds to the complex double type in C (or COMPLEX*16 in Fortran).

e Signed

Exactly corresponds to the signed type annotation in C (or any INTEGER type in Fortran). Any Julia type that
is not a subtype of Signed is assumed to be unsigned.

e Ref{T}

Behaves like a Ptr{T} that can manage its memory via the Julia GC.

e Array{T,N}

When an array is passed to C as a Ptr{T} argument, it is not reinterpret-cast: Julia requires that the element
type of the array matches T, and the address of the first element is passed.

Therefore, if an Array contains data in the wrong format, it will have to be explicitly converted using a call such
as trunc(Int32, a).

To pass an array A as a pointer of a different type without converting the data beforehand (for example, to
pass a Float64 array to a function that operates on uninterpreted bytes), you can declare the argument as
Ptr{Void}.

If an array of eltype Ptr{T} is passed as a Ptr{Ptr{T}} argument, Base.cconvert() will attempt to first
make a null-terminated copy of the array with each element replaced by its Base .cconvert () version. This al-
lows, for example, passing an argv pointer array of type Vector {String} to anargument of type Ptr{Ptr{Cchar}}.

On all systems we currently support, basic C/C++ value types may be translated to Julia types as follows. Every C type
also has a corresponding Julia type with the same name, prefixed by C. This can help for writing portable code (and
remembering that an int in C is not the same as an Int in Julia).

System Independent:

The Cstring type is essentially a synonym for Ptr{UInt8}, except the conversion to Cstring throws an error if
the Julia string contains any embedded NUL characters (which would cause the string to be silently truncated if the C
routine treats NUL as the terminator). If you are passing a char* to a C routine that does not assume NUL termination
(e.g. because you pass an explicit string length), or if you know for certain that your Julia string does not contain NUL
and want to skip the check, you can use Ptr{UInt8} as the argument type. Cstring can also be used as the ccall
return type, but in that case it obviously does not introduce any extra checks and is only meant to improve readability
of the call.

System-dependent:

Note

When calling a Fortran function, all inputs must be passed by reference, so all type correspondences
above should contain an additional Ptr{. .} or Ref{. .} wrapper around their type specification.

Warning

For string arguments (char*) the Julia type should be Cstring (if NUL- terminated data is expected)
or either Ptr{Cchar} or Ptr{UInt8} otherwise (these two pointer types have the same effect), as
described above, not String. Similarly, for array arguments (T[] or T*), the Julia type should again be
Ptr{T}, not Vector{T}.
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Warning

Julia’s Char type is 32 bits, which is not the same as the wide character type (wchar_t or wint_t) on
all platforms.

Warning

A return type of Union{} means the function will not returni.e. C++11 [ [noreturn]] orC11 _Nore-
turn (e.g. j1l_throw or longjmp). Do not use this for functions that return no value (void) but do
return, use Void instead.

Note

For wchar_t* arguments, the Julia type should be Cwstring (if the C routine expects a NUL-terminated
string) or Ptr{Cwchar_t } otherwise. Note also that UTF-8 string data in Julia is internally NUL-terminated,
so it can be passed to C functions expecting NUL-terminated data without making a copy (but using the
Cwstring type will cause an error to be thrown if the string itself contains NUL characters).

Note

C functions that take an argument of the type char* can be called by using a Ptr{Ptr{UInt8}} type
within Julia. For example, C functions of the form:

‘int main(int argc, char #*xargv);
can be called via the following Julia code:

argv = [ "a.out", "argl", "arg2" ]
ccall(:main, Int32, (Int32, Ptr{Ptr{UInt8}}), length(argv), argv)

Note

A C function declared to return Void will return the value nothing in Julia.

Struct Type correspondences

Composite types, aka struct in C or TYPE in Fortran90 (or STRUCTURE / RECORD in some variants of F77), can be
mirrored in Julia by creating a struct definition with the same field layout.

When used recursively, isbits types are stored inline. All other types are stored as a pointer to the data. When
mirroring a struct used by-value inside another struct in C, it is imperative that you do not attempt to manually copy
the fields over, as this will not preserve the correct field alignment. Instead, declare an isbits struct type and use
that instead. Unnamed structs are not possible in the translation to Julia.

Packed structs and union declarations are not supported by Julia.

You can get a near approximation of a union if you know, a priori, the field that will have the greatest size (potentially
including padding). When translating your fields to Julia, declare the Julia field to be only of that type.

Arrays of parameters can be expressed with NTuple:

in C:
struct B {
int A[3];
I
b_a_2 = B.A[2];

in Julia:
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struct B
A::NTuple{3, CInt}
end
b_a_2 = B.A[3] # note the difference in indexing (1-based in Julia, @-based in C)

Arrays of unknown size (C99-compliant variable length structs specified by [ ] or [8]) are not directly supported. Of-
ten the best way to deal with these is to deal with the byte offsets directly. For example, if a C library declared a proper
string type and returned a pointer to it:

struct String {
int strlen;
char data[];
b

In Julia, we can access the parts independently to make a copy of that string:

str = from_c::Ptr{Void}
len = unsafe_load(Ptr{Cint}(str))
unsafe_string(str + Core.sizeof(Cint), len)

Type Parameters

The type arguments to ccall are evaluated statically, when the method containing the ccall is defined. They therefore
must take the form of a literal tuple, not a variable, and cannot reference local variables.

This may sound like a strange restriction, but remember that since C is not a dynamic language like Julia, its functions
can only accept argument types with a statically-known, fixed signature.

However, while the type layout must be known statically to compute the ccall ABI, the static parameters of the
function are considered to be part of this static environment. The static parameters of the function may be used as type
parameters in the ccall signature, as long as they don't affect the layout of the type. For example, f(x::T) where
{T} = ccall(:valid, Ptr{T}, (Ptr{T},), x) isvalid, since Ptr is always a word-size primitive type. But,
g(x::T) where {T} = ccall(:notvalid, T, (T,), x) is not valid, since the type layout of T is not known
statically.

SIMD Values
Note: This feature is currently implemented on 64-bit x86 and AArché4 platforms only.

If a C/C++ routine has an argument or return value that is a native SIMD type, the corresponding Julia type is a
homogeneous tuple of VecElement that naturally maps to the SIMD type. Specifically:

e The tuple must be the same size as the SIMD type. For example, a tuple representing an __m128
on x86 must have a size of 16 bytes.

e The element type of the tuple must be an instance of VecElement{T} where T is a primitive type
thatis 1, 2, 4 or 8 bytes.

For instance, consider this C routine that uses AVX intrinsics:
#include <immintrin.h>
__m256 dist( __m256 a, __m256 b ) {

return _mm256_sqrt_ps(_mm256_add_ps(_mm256_mul_ps(a, a),
_mm256_mul_ps(b, b)));
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The following Julia code calls dist using ccall:

const m256 = NTuple{8, VecElement{Float32}}

a = m256(ntuple(i -> VecElement(sin(Float32(i))), 8))
b = m256(ntuple(i -> VecElement(cos(Float32(i))), 8))

function call_dist(a::m256, b::m256)
ccall((:dist, "libdist"), m256, (m256, m256), a, b)
end

println(call_dist(a,b))

The host machine must have the requisite SIMD registers. For example, the code above will not work on hosts without
AVX support.

Memory Ownership
malloc/free

Memory allocation and deallocation of such objects must be handled by calls to the appropriate cleanup routines in the
libraries being used, just like in any C program. Do not try to free an object received from a C library with Libc.free
in Julia, as this may result in the free function being called via the wrong 1ibc library and cause Julia to crash. The
reverse (passing an object allocated in Julia to be freed by an external library) is equally invalid.

When to use T, Ptr{T} and Ref{T}

In Julia code wrapping calls to external C routines, ordinary (non-pointer) data should be declared to be of type T
inside the ccall, as they are passed by value. For C code accepting pointers, Ref {T} should generally be used for the
types of input arguments, allowing the use of pointers to memory managed by either Julia or C through the implicit
call to Base.cconvert(). In contrast, pointers returned by the C function called should be declared to be of output
type Ptr{T}, reflecting that the memory pointed to is managed by C only. Pointers contained in C structs should
be represented as fields of type Ptr{T} within the corresponding Julia struct types designed to mimic the internal
structure of corresponding C structs.

In Julia code wrapping calls to external Fortran routines, all input arguments should be declared as of type Ref{T},
as Fortran passes all variables by reference. The return type should either be Void for Fortran subroutines, or a T for
Fortran functions returning the type T.

30.3 Mapping C Functions to Julia

ccall/cfunction argument translation guide

For translating a C argument list to Julia:

e T, where T is one of the primitive types: char, int, long, short, float, double, complex, enum or any of
their typedef equivalents

- T,where T is an equivalent Julia Bits Type (per the table above)
- if Tis an enum, the argument type should be equivalent to Cint or Cuint

- argument value will be copied (passed by value)

e struct T (including typedef to a struct)
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- T,where T is a Julia leaf type

- argument value will be copied (passed by value)
e void*

- depends on how this parameter is used, first translate this to the intended pointer type, then determine
the Julia equivalent using the remaining rules in this list

- this argument may be declared as Ptr{Void}, if it really is just an unknown pointer
e jl_value_t*

- Any
- argument value must be a valid Julia object

- currently unsupported by cfunction()

e jl_value_t**

Ref {Any}

- argument value must be a valid Julia object (or C_NULL)

currently unsupported by cfunction()

Ref{T}, where T is the Julia type corresponding to T

argument value will be copied if it is an isbits type otherwise, the value must be a valid Julia object
e (T*)(...) (e.g. apointer to a function)
- Ptr{Void} (you may need to use cfunction() explicitly to create this pointer)
e ... (e.g avararg)
- T...,where Tis the Julia type
e va_arg

- not supported

ccall/cfunction return type translation guide

For translating a C return type to Julia:

e void
- Void (this will return the singleton instance nothing: :Void)

e T, where T is one of the primitive types: char, int, long, short, float, double, complex, enum or any of
their typedef equivalents

- T, where T is an equivalent Julia Bits Type (per the table above)
- if Tis an enum, the argument type should be equivalent to Cint or Cuint

- argument value will be copied (returned by-value)
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e struct T (including typedef to a struct)

- T, where T is a Julia Leaf Type

- argument value will be copied (returned by-value)
e voidx*

- depends on how this parameter is used, first translate this to the intended pointer type, then determine
the Julia equivalent using the remaining rules in this list

- this argument may be declared as Ptr{Void}, if it really is just an unknown pointer

jl_value_t*

- Any

- argument value must be a valid Julia object

jl_value_t*x*

Ref{Any}

- argument value must be a valid Julia object (or C_NULL)

If the memory is already owned by Julia, or is an isbits type, and is known to be non-null:

* Ref{T}, where T is the Julia type corresponding to T

*

a return type of Ref{Any} is invalid, it should either be Any (corresponding to j1_value_t*) or
Ptr{Any} (corresponding to Ptr{Any})

* C MUST NOT modify the memory returned via Ref{T} if Tis an isbits type

If the memory is owned by C:

* Ptr{T}, where T is the Julia type corresponding to T
e (T*)(...) (e.g. apointer to afunction)

- Ptr{Void} (you may need to use cfunction() explicitly to create this pointer)

Passing Pointers for Modifying Inputs

Because C doesn't support multiple return values, often C functions will take pointers to data that the function will
modify. To accomplish this within a ccall, you need to first encapsulate the value inside an Ref {T} of the appropriate
type. When you pass this Ref object as an argument, Julia will automatically pass a C pointer to the encapsulated data:

width = Ref{Cint}(0)
range = Ref{Cfloat}(9)
ccall(:foo, Void, (Ref{Cint}, Ref{Cfloat}), width, range)

Upon return, the contents of width and range can be retrieved (if they were changed by foo) by width[] and
range[ ]; that is, they act like zero-dimensional arrays.
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Special Reference Syntax for ccall (deprecated):
The & syntax is deprecated, use the Ref{T} argument type instead.

A prefix & is used on an argument to ccall to indicate that a pointer to a scalar argument should be passed instead of
the scalar value itself (required for all Fortran function arguments, as noted above). The following example computes
a dot product using a BLAS function.

function compute_dot(DX: :Vector{Float64}, DY::Vector{Float64})

@assert length(DX) == length(DY)

n = length(DX)

incx = incy = 1

product = ccall((:ddot_, "1libLAPACK"),
Float64,
(Ptr{Int32}, Ptr{Float64}, Ptr{Int32}, Ptr{Float64}, Ptr{Int32}),
&n, DX, &incx, DY, &incy)

return product

end

The meaning of prefix & is not quite the same as in C. In particular, any changes to the referenced variables will not be
visible in Julia unless the type is mutable (declared via type). However, even for immutable structs it will not cause
any harm for called functions to attempt such modifications (that is, writing through the passed pointers). Moreover,
& may be used with any expression, such as &0 or &f (x).

When a scalar value is passed with & as an argument of type Ptr{T}, the value will first be converted to type T.

30.4 Some Examples of C Wrappers

Here is a simple example of a C wrapper that returns a Ptr type:

mutable struct gsl_permutation
end

# The corresponding C signature is
# gsl_permutation * gsl_permutation_alloc (size_t n);
function permutation_alloc(n::Integer)
output_ptr = ccall(
(:gsl_permutation_alloc, :libgsl),
Ptr{gsl_permutation},
(Csize_t,),
n

name of C function and library
output type

tuple of input types

name of Julia variable to pass in

H oW R B

)
if output_ptr == C_NULL # Could not allocate memory
throw(OutOfMemoryError())
end
return output_ptr
end

The GNU Scientific Library (here assumed to be accessible through :1ibgs1) defines an opaque pointer, gs1_permu-
tation *, as the return type of the C function gsl_permutation_alloc(). As user code never has to look inside
the gs1l_permutation struct, the corresponding Julia wrapper simply needs a new type declaration, gs1_permu-
tation, that has no internal fields and whose sole purpose is to be placed in the type parameter of a Ptr type. The
return type of the ccall is declared as Ptr{gsl_permutation}, since the memory allocated and pointed to by
output_ptr is controlled by C (and not Julia).


https://www.gnu.org/software/gsl/
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The input n is passed by value, and so the function’s input signature is simply declared as (Csize_t, ) without any Ref
or Ptr necessary. (If the wrapper was calling a Fortran function instead, the corresponding function input signature
should instead be (Ref{Csize_t}, ), since Fortran variables are passed by reference.) Furthermore, n can be any
type that is convertable to a Csize_t integer; the ccall implicitly calls Base.cconvert(Csize_t, n).

Here is a second example wrapping the corresponding destructor:

# The corresponding C signature is
# void gsl_permutation_free (gsl_permutation * p);
function permutation_free(p::Ref{gsl_permutation})
ccall(
(:gsl_permutation_free, :libgsl), # name of C function and library
Void, # output type
(Ref{gsl_permutation},), # tuple of input types
p # name of Julia variable to pass in
)
end

Here, the input p is declared to be of type Ref{gsl_permutation}, meaning that the memory that p points to may
be managed by Julia or by C. A pointer to memory allocated by C should be of type Ptr{gsl_permutation}, but
it is convertable using Base.cconvert() and therefore can be used in the same (covariant) context of the input
argument to a ccall. A pointer to memory allocated by Julia must be of type Ref{gsl_permutation}, to ensure
that the memory address pointed to is valid and that Julia’s garbage collector manages the chunk of memory pointed
to correctly. Therefore, the Ref{gsl_permutation} declaration allows pointers managed by C or Julia to be used.

If the C wrapper never expects the user to pass pointers to memory managed by Julia, then using p: :Ptr{gsl_per-
mutation} for the method signature of the wrapper and similarly in the ccall is also acceptable.

Here is a third example passing Julia arrays:

# The corresponding C signature is
# int gsl_sf_bessel_Jn_array (int nmin, int nmax, double x,
# double result_array[])
function sf_bessel_Jn_array(nmin::Integer, nmax::Integer, x::Real)
if nmax < nmin
throw(DomainError())
end
result_array = Vector{Cdouble}(nmax - nmin + 1)
errorcode = ccall(
(:gsl_sf_bessel_Jn_array, :libgsl), # name of C function and library

Cint, # output type

(Cint, Cint, Cdouble, Ref{Cdouble}),# tuple of input types

nmin, nmax, x, result_array # names of Julia variables to pass in
)
if errorcode != 0

error("GSL error code Serrorcode")
end
return result_array
end

The C function wrapped returns an integer error code; the results of the actual evaluation of the Bessel J function
populate the Julia array result_array. This variable can only be used with corresponding input type declaration
Ref{Cdouble}, sinceits memoryis allocated and managed by Julia, not C. The implicit call to Base . cconvert (Ref{Cdou-
ble}, result_array) unpacks the Julia pointer to a Julia array data structure into a form understandable by C.
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Note that for this code to work correctly, result_array must be declared to be of type Ref{Cdouble} and not
Ptr{Cdouble}. The memory is managed by Julia and the Ref signature alerts Julia’s garbage collector to keep man-
aging the memory for result_array while the ccall executes. If Ptr{Cdouble} were used instead, the ccall
may still work, but Julia’s garbage collector would not be aware that the memory declared for result_array is being
used by the external C function. As a result, the code may produce a memory leak if result_array never gets freed
by the garbage collector, or if the garbage collector prematurely frees result_array, the C function may end up
throwing an invalid memory access exception.

30.5 Garbage Collection Safety

When passing datato a ccall, itis best to avoid using the pointer () function. Instead define a convert method and
pass the variables directly to the ccall. ccall automatically arranges that all of its arguments will be preserved from
garbage collection until the call returns. If a C API will store a reference to memory allocated by Julia, after the ccall
returns, you must arrange that the object remains visible to the garbage collector. The suggested way to handle this is
to make a global variable of type Array{Ref, 1} to hold these values, until the C library notifies you that it is finished
with them.

Whenever you have created a pointer to Julia data, you must ensure the original data exists until you are done with
using the pointer. Many methods in Julia such as unsafe_load() and String() make copies of data instead of taking
ownership of the buffer, so that it is safe to free (or alter) the original data without affecting Julia. A notable exception
isunsafe_wrap () which, for performance reasons, shares (or can be told to take ownership of) the underlying buffer.

The garbage collector does not guarantee any order of finalization. That is, if a contained a reference to b and both a
and b are due for garbage collection, there is no guarantee that b would be finalized after a. If proper finalization of a
depends on b being valid, it must be handled in other ways.

30.6 Non-constant Function Specifications

A (name, library) function specification must be a constant expression. However, it is possible to use computed
values as function names by staging through eval as follows:

‘@eval ccall(($(string("a", "b")), "lib"),

This expression constructs a name using string, then substitutes this name into a new ccall expression, which is
then evaluated. Keep in mind that eval only operates at the top level, so within this expression local variables will not
be available (unless their values are substituted with $). For this reason, eval is typically only used to form top-level
definitions, for example when wrapping libraries that contain many similar functions.

If your usage is more dynamic, use indirect calls as described in the next section.

30.7 Indirect Calls

The first argument to ccall can also be an expression evaluated at run time. In this case, the expression must evaluate
to a Ptr, which will be used as the address of the native function to call. This behavior occurs when the first ccall
argument contains references to non-constants, such as local variables, function arguments, or non-constant globals.

For example, you might look up the function via d1sym, then cache it in a global variable for that session. For example:

macro dlsym(func, 1lib)
z, zlocal = gensym(string(func)), gensym()
eval(current_module(), :(global Sz = C_NULL))
z = esc(z)
quote
let S$zlocal::Ptr{Void} = S$z::Ptr{Void}
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if Szlocal == C_NULL
Szlocal = dlsym(S(esc(lib))::Ptr{Void}, S$(esc(func)))
global Sz = Szlocal

end

Szlocal

end
end
end

mylibvar = Libdl.dlopen("mylib")
ccall(@dlsym("myfunc", mylibvar), Void, ())

30.8 Calling Convention

The second argument to ccall can optionally be a calling convention specifier (immediately preceding return type).
Without any specifier, the platform-default C calling convention is used. Other supported conventions are: stdcall,
cdecl, fastcall, and thiscall. For example (from base/libc.jl) we see the same gethostnameccall as
above, but with the correct signature for Windows:

hn = Vector{UInt8}(256)
err = ccall(:gethostname, stdcall, Int32, (Ptr{UInt8}, UInt32), hn, length(hn))

For more information, please see the LLVM Language Reference.

There is one additional special calling convention 11vmcall, which allows inserting calls to LLVM intrinsics directly.
This can be especially useful when targeting unusual platforms such as GPGPUs. For example, for CUDA, we need to
be able to read the thread index:

‘ccall(”llvm.nvvm.read.ptx.sreg.tid.x”, 1llvmcall, Int32, ())

As with any ccall, it is essential to get the argument signature exactly correct. Also, note that there is no compat-
ibility layer that ensures the intrinsic makes sense and works on the current target, unlike the equivalent Julia functions
exposed by Core.Intrinsics.

30.9 Accessing Global Variables

Global variables exported by native libraries can be accessed by name using the cglobal () function. The arguments
to cglobal() are a symbol specification identical to that used by ccall, and a type describing the value stored in
the variable:

julia> cglobal((:errno, :libc), Int32)
Ptr{Int32} @0x00007f418d0816b8

The result is a pointer giving the address of the value. The value can be manipulated through this pointer using un-
safe_load() and unsafe_store! ().


http://llvm.org/docs/LangRef.html#calling-conventions
http://llvm.org/docs/NVPTXUsage.html
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30.10 Accessing Data through a Pointer

The following methods are described as "unsafe” because a bad pointer or type declaration can cause Julia to terminate
abruptly.

Given a Ptr{T}, the contents of type T can generally be copied from the referenced memory into a Julia object using
unsafe_load(ptr, [index]). The index argument is optional (default is 1), and follows the Julia-convention of
1-based indexing. This function is intentionally similar to the behavior of getindex() and setindex! () (e.g. []
access syntax).

The return value will be a new object initialized to contain a copy of the contents of the referenced memory. The
referenced memory can safely be freed or released.

If T is Any, then the memory is assumed to contain a reference to a Julia object (a j1_value_tx*), the result will be a
reference to this object, and the object will not be copied. You must be careful in this case to ensure that the object
was always visible to the garbage collector (pointers do not count, but the new reference does) to ensure the memory
is not prematurely freed. Note that if the object was not originally allocated by Julia, the new object will never be
finalized by Julia's garbage collector. If the Ptr itself is actually a j1_value_t*, it can be converted back to a Julia
object reference by unsafe_pointer_to_objref(ptr). (Juliavaluesv canbe convertedto j1_value_t* pointers,
as Ptr{Void}, by calling pointer_from_objref(v).)

The reverse operation (writing data to a Ptr{T}), can be performed using unsafe_store! (ptr, value, [in-
dex]). Currently, this is only supported for primitive types or other pointer-free (isbits) immutable struct types.

Any operation that throws an error is probably currently unimplemented and should be posted as a bug so that it can
be resolved.

If the pointer of interest is a plain-data array (primitive type or immutable struct), the function unsafe_wrap(Array,
ptr,dims, [own]) may be more useful. The final parameter should be true if Julia should "take ownership” of the
underlying buffer and call free(ptr) when the returned Array object is finalized. If the own parameter is omitted or
false, the caller must ensure the buffer remains in existence until all access is complete.

Arithmetic on the Ptr type in Julia (e.g. using +) does not behave the same as C’s pointer arithmetic. Adding an
integer to a Ptr in Julia always moves the pointer by some number of bytes, not elements. This way, the address
values obtained from pointer arithmetic do not depend on the element types of pointers.

30.11 Thread-safety

Some C libraries execute their callbacks from a different thread, and since Julia isn’t thread-safe you'll need to take
some extra precautions. In particular, you'll need to set up a two-layered system: the C callback should only schedule
(via Julia’s event loop) the execution of your "real” callback. To do this, create a AsyncCondition object and wait on
it:

cond = Base.AsyncCondition()
wait(cond)

The callback you pass to C should only execute a ccall to :uv_async_send, passing cond.handle as the argument,
taking care to avoid any allocations or other interactions with the Julia runtime.

Note that events may be coalesced, so multiple calls to uv_async_send may result in a single wakeup notification to
the condition.

30.12 More About Callbacks

For more details on how to pass callbacks to C libraries, see this blog post.


https://julialang.org/blog/2013/05/callback
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30.13 C++

For direct C++ interfacing, see the Cxx package. For tools to create C++ bindings, see the Cxx\Wrap package.


https://github.com/Keno/Cxx.jl
https://github.com/JuliaInterop/CxxWrap.jl
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C name Fortran Standard Julia Base Type
name Julia Alias
unsigned char CHARACTER Cuchar UInt8
bool (only in C++) Cuchar UInt8
short INTEGER*2, | Cshort Int16
LOGICAL*2
unsigned short Cushort | UInt16
int, BOOL (C, typical) INTEGER*4, | Cint Int32
LOGICAL*4
unsigned int Cuint UInt32
long long INTEGER*8, | Clong- Int64
LOGICAL=*8 long
unsigned long long Culong- | UInté4
long
intmax_t Cint- Int64
max_t
uintmax_t Cuint- UInt64
max_t
float REAL*41i Cfloat Float32
double REAL*8 Cdouble Float64
complex float COMPLEX*8 | Com- Complex{Float32}
plex64
complex double COM- Com- Complex{Float64}
PLEX*16 plex128
ptrdiff_t Cp- Int
trdiff_t
ssize_t Cs- Int
size_t
size_t Csize_t | UInt
void Void
voidand [[noreturn]] Union{}
or _Noreturn
voidx Ptr{Void}
T+* (where T represents an Ref{T}
appropriately defined type)
charx* (orchar[],e.g. a CHARAC- Cstring if NUL-terminated, or Ptr{UInt8} if not
string) TER*N
char#* (or *char[]) Ptr{Ptr{UInt8}}
j1l_value_t* (any Julia Any
Type)
jl_value_t*x*(a Ref {Any}
reference to a Julia Type)
va_arg Not supported
. (variadic function T... (where T is one of the above types, variadic
specification) functions of different argument types are not
supported)




30.13. C++

C name Standard Julia Alias | Julia Base Type

char Cchar Int8 (x86, x86_64), UInt8 (powerpc, arm)
long Clong Int (UNIX), Int32 (Windows)

unsigned long | Culong UInt (UNIX), UInt32 (Windows)
wchar_t Cwchar_t Int32 (UNIX), UInt16 (Windows)
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Handling Operating System Variation

When dealing with platform libraries, it is often necessary to provide special cases for various platforms. The variable
Sys.KERNEL can be used to write these special cases. There are several functions intended to make this easier:
is_unix, is_linux, is_apple, is_bsd, and is_windows. These may be used as follows:

if is_windows()
some_complicated_thing(a)
end

Note that is_linuxand is_apple are mutually exclusive subsets of is_unix. Additionally, thereisamacro@static
which makes it possible to use these functions to conditionally hide invalid code, as demonstrated in the following
examples.

Simple blocks:

‘ccall( (@static is_windows() ? :_fopen : :fopen), ...)

Complex blocks:

@static if is_linux()
some_complicated_thing(a)
else
some_different_thing(a)
end

When chaining conditionals (including if/elseif/end), the @static must be repeated for each level (parentheses op-
tional, but recommended for readability):

@static is_windows() ? :a : (@static is_apple() ? :b : :c)
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Environment Variables

Julia may be configured with a number of environment variables, either in the usual way of the operating system, or
in a portable way from within Julia. Suppose you want to set the environment variable JULIA_EDITOR to vim, then
either type ENV[ "JULIA_EDITOR"] = "vim" for instance in the REPL to make this change on a case by case basis,
or add the same to the user configuration file . juliarc. j1 in the user's home directory to have a permanent effect.
The current value of the same environment variable is determined by evaluating ENV[ "JULIA_EDITOR"].

The environment variables that Julia uses generally start with JULIA. If Base.versioninfo is called with verbose
equal to true, then the output will list defined environment variables relevant for Julia, including those for which
JULIA appears in the name.

32.1 File locations

JULIA_HOME

The absolute path of the directory containing the Julia executable, which sets the global variable Base . JULTA_HOME.
If SUULIA_HOME is not set, then Julia determines the value Base . JULIA_HOME at run-time.

The executable itself is one of
SJULIA_HOME/julia
SJULIA_HOME/julia-debug

by default.

The global variable Base .DATAROOTDIR determines a relative path from Base.JULIA_HOME to the data directory
associated with Julia. Then the path

‘ SJULIA_HOME/SDATAROOTDIR/julia/base

determines the directory in which Julia initially searches for source files (via Base.find_source_file()).

Likewise, the global variable Base . SYSCONFDIR determines a relative path to the configuration file directory. Then
Julia searches for a juliarc.jl file at

$JULTA_HOME/$SYSCONFDIR/julia/juliarc.jl
SJULIA_HOME/../etc/julia/juliarc.jl
by default (via Base.load_juliarc()).

For example, a Linux installation with a Julia executable located at /bin/julia, a DATAROOTDIR of . ./share,and a
SYSCONFDIR of . . /etc will have JULIA_HOME set to /bin, a source-file search path of

/share/julia/base
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and a global configuration search path of

‘ /etc/julia/juliarc.jl

JULIA_LOAD_PATH

A separated list of absolute paths that are to be appended to the variable LOAD_PATH. (In Unix-like systems, the path

separator is :; in Windows systems, the path separator is ;.) The LOAD_PATH variable is where Base . require and
Base.load_in_path() look for code; it defaults to the absolute paths
SJULIA_HOME/../local/share/julia/site/vS$(VERSION.major) .$(VERSION.minor)
SJULIA_HOME/../share/julia/site/v$(VERSION.major).$(VERSION.minor)

so that, e.g., version 0.6 of Julia on a Linux system with a Julia executable at /bin/julia will have a default LOAD_PATH
of

/local/share/julia/site/v0.6
/share/julia/site/v0.6

JULIA_PKGDIR

The path of the parent directory Pkg.Dir . _pkgroot() for the version-specific Julia package repositories. If the path
is relative, then it is taken with respect to the working directory. If SUULIA_PKGDIR is not set, then Pkg.Dir._pkg-
root () defaults to

| $HOME/ . julia

Then the repository location Pkg . dir for a given Julia version is

‘$JULIA_PKGDIR/V$(VERSION.major).S(VERSION.minor)

For example, for a Linux user whose home directory is /home /alice, the directory containing the package repositories
would by default be

‘ /home/alice/.julia

and the package repository for version 0.6 of Julia would be

‘ /home/alice/.julia/ve0.6

JULIA_HISTORY

The absolute path Base.REPL.find_hist_file() of the REPLSs history file. If SJULIA_HISTORY is not set, then
Base.REPL.find_hist_file() defaults to

| $HOME/ . julia_history

JULIA_PKGRESOLVE_ACCURACY

A positive Int that determines how much time the max-sum subroutine MaxSum.maxsum() of the package depen-
dency resolver Base.Pkg. resolve will devote to attempting satisfying constraints before giving up: this value is by
default 1, and larger values correspond to larger amounts of time.

Suppose the value of SUULIA_PKGRESOLVE_ACCURACY is n. Then

e the number of pre-decimation iterations is 20+*n,
e the number of iterations between decimation steps is 18*n, and

e at decimation steps, at most one in every 20*n packages is decimated.
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32.2 External applications

JULIA_SHELL

The absolute path of the shell with which Julia should execute external commands (via Base . repl_cmd()). Defaults
to the environment variable $SHELL, and falls back to /bin/sh if SSHELL is unset.

Note

On Windows, this environment variable is ignored, and external commands are executed directly.

JULIA_EDITOR

The editor returned by Base.editor() and used in, e.g., Base.edit, referring to the command of the preferred
editor, for instance vim.

SJULIA_EDITOR takes precedence over SVISUAL, which in turn takes precedence over SEDITOR. If none of these
environment variables is set, then the editor is taken to be open on Windows and OS X, or /etc/alternatives/ed-
itor if it exists, or emacs otherwise.

Note

SJULIA_EDITOR isnot used in the determination of the editor for Base . Pkg . edit: this function checks
SVISUAL and SEDITOR alone.

32.3 Parallelization

JULIA_CPU_CORES

Overrides the global variable Base . Sys.CPU_CORES, the number of logical CPU cores available.

JULIA_WORKER_TIMEOUT

A Float64 that sets the value of Base.worker_timeout () (default: 60.8). This function gives the number of
seconds a worker process will wait for a master process to establish a connection before dying.

JULIA_NUM_THREADS

An unsigned 64-bit integer (uint64_t) that sets the maximum number of threads available to Julia. If SUULTIA_NUM_THREADS
exceeds the number of available physical CPU cores, then the number of threads is set to the number of cores. If SJU-
LIA_NUM_THREADS is not positive or is not set, or if the number of CPU cores cannot be determined through system

calls, then the number of threads is set to 1.

JULIA_THREAD_SLEEP_THRESHOLD

If set to a string that starts with the case-insensitive substring "infinite", then spinning threads never sleep. Oth-
erwise, SUULIA_THREAD_SLEEP_THRESHOLD is interpreted as an unsigned 64-bit integer (uint64_t) and gives, in
nanoseconds, the amount of time after which spinning threads should sleep.

JULIA_EXCLUSIVE

If set to anything besides 0, then Julia’s thread policy is consistent with running on a dedicated machine: the master
thread is on proc 0, and threads are affinitized. Otherwise, Julia lets the operating system handle thread policy.
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32.4 REPL formatting

Environment variables that determine how REPL output should be formatted at the terminal. Generally, these vari-
ables should be set to ANSI terminal escape sequences. Julia provides a high-level interface with much of the same
functionality: see the section on Interacting With Julia.

JULIA_ERROR_COLOR

The formatting Base.error_color () (default: light red, "\033[91m") that errors should have at the terminal.

JULIA_WARN_COLOR

The formatting Base .warn_color () (default: yellow, "\833[93m") that warnings should have at the terminal.

JULIA_INFO_COLOR

The formatting Base.info_color () (default: cyan, "\033[36m") that info should have at the terminal.

JULIA_INPUT_COLOR

The formatting Base . input_color () (default: normal, "\833[@m") that input should have at the terminal.

JULIA_ANSWER_COLOR

The formatting Base .answer_color () (default: normal, "\033[0m") that output should have at the terminal.

JULIA_STACKFRAME_LINEINFO_COLOR

The formatting Base . stackframe_lineinfo_color () (default: bold, "\033[ 1m") that line info should have during
a stack trace at the terminal.

JULIA_STACKFRAME_FUNCTION_COLOR

The formatting Base . stackframe_function_color () (default: bold, "\033[1m") that function calls should have
during a stack trace at the terminal.

32.5 Debugging and profiling

JULIA_GC_ALLOC_POOL, JULIA_GC_ALLOC_OTHER, JULIA_GC_ALLOC_PRINT

If set, these environment variables take strings that optionally start with the character ' r', followed by a string inter-
polation of a colon-separated list of three signed 64-bit integers (int64_t). This triple of integers a:b :c represents
the arithmetic sequence a,a + b,a + 2xb, ... c.

o If it's the nth time that j1_gc_pool_alloc() has been called, and n belongs to the arithmetic sequence
represented by SUULIA_GC_ALLOC_POOL, then garbage collection is forced.

o If it's the nth time that maybe_collect() has been called, and n belongs to the arithmetic sequence repre-
sented by SUULIA_GC_ALLOC_OTHER, then garbage collection is forced.

o If it's the nth time that j1_gc_collect() has been called, and n belongs to the arithmetic sequence rep-
resented by SJULIA_GC_ALLOC_PRINT, then counts for the number of calls to j1_gc_pool_alloc() and
maybe_collect () are printed.


http://ascii-table.com/ansi-escape-sequences.php
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If the value of the environment variable begins with the character ' r', then the interval between garbage collection
events is randomized.

Note

These environment variables only have an effect if Julia was compiled with garbage-collection debugging
(that is, if WITH_GC_DEBUG_ENV is set to 1 in the build configuration).

JULIA_GC_NO_GENERATIONAL

If set to anything besides 0, then the Julia garbage collector never performs "quick sweeps” of memory.

Note

This environment variable only has an effect if Julia was compiled with garbage-collection debugging
(that is, if WITH_GC_DEBUG_ENYV is set to 1 in the build configuration).

JULIA_GC_WAIT_FOR_DEBUGGER

If set to anything besides 8, then the Julia garbage collector will wait for a debugger to attach instead of aborting
whenever there’s a critical error.

Note

This environment variable only has an effect if Julia was compiled with garbage-collection debugging
(that is, if WITH_GC_DEBUG_ENYV is set to 1 in the build configuration).

ENABLE_JITPROFILING

If set to anything besides 8, then the compiler will create and register an event listener for just-in-time (JIT) profiling.

Note

This environment variable only has an effect if Julia was compiled with JIT profiling support, using either

e Intel's VTune™ Amplifier (USE_INTEL_JITEVENTS set to 1 in the build configuration), or

e OProfile (USE_OPROFILE_JITEVENTS set to 1 in the build configuration).

JULIA_LLVM_ARGS

Arguments to be passed to the LLVM backend.

Note

This environment variable has an effect only if Julia was compiled with JL_DEBUG_BUILD set — in par-
ticular, the julia-debug executable is always compiled with this build variable.

JULIA_DEBUG_LOADING

If set, then Julia prints detailed information about the cache in the loading process of Base.require.


https://software.intel.com/en-us/intel-vtune-amplifier-xe
http://oprofile.sourceforge.net/news/
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Embedding Julia

As we have seen in Calling C and Fortran Code, Julia has a simple and efficient way to call functions written in C. But
there are situations where the opposite is needed: calling Julia function from C code. This can be used to integrate
Julia code into a larger C/C++ project, without the need to rewrite everything in C/C++. Julia has a C API to make this
possible. As almost all programming languages have some way to call C functions, the Julia C API can also be used to
build further language bridges (e.g. calling Julia from Python or C#).

33.1 High-Level Embedding

We start with a simple C program that initializes Julia and calls some Julia code:

#include <julia.h>

int main(int argc, char *argv[])

{
/* required: setup the Julia context #*/
jl_init();

/* run Julia commands */
jl_eval_string("print(sqrt(2.0))");

/* strongly recommended: notify Julia that the
program is about to terminate. this allows
Julia time to cleanup pending write requests
and run all finalizers

*/

jl_atexit_hook(0);

return 0;

In order to build this program you have to put the path to the Julia header into the include path and link against
libjulia. Forinstance, when Juliais installed to SUULIA_DIR, one can compile the above test program test . c with
gcc using:

gcc -o test -fPIC -ISJULIA_DIR/include/julia -LSJULIA_DIR/1lib test.c -ljulia SJULIA_DIR/lib/julia
/libstdc++.50.6

Then if the environment variable JULIA_HOME is set to SJULIA_DIR/bin, the output test program can be executed.

Alternatively, look at the embedding. c program in the Julia source tree in the examples/ folder. The fileui/repl.c
program is another simple example of how to set j1_options options while linking against 1ibjulia.
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The first thing that has to be done before calling any other Julia C function is to initialize Julia. This is done by calling
jl_init, which tries to automatically determine Julia’s install location. If you need to specify a custom location, or
specify which system image to load, use j1_init_with_image instead.

The second statement in the test program evaluates a Julia statement using a call to j1_eval_string.

Before the program terminates, it is strongly recommended to call j1_atexit_hook. The above example program
calls this before returning from main.

Note

Currently, dynamically linking with the 1ibjulia shared library requires passing the RTLD_GLOBAL op-
tion. In Python, this looks like:

>>> julia=CDLL('./libjulia.dylib', RTLD_GLOBAL)
>>> julia.jl_init.argtypes = []

>>> julia.jl_init()

250593296

Note

If the julia program needs to access symbols from the main executable, it may be necessary to add -
W1, --export-dynamic linker flag at compile time on Linux in addition to the ones generated by julia-
config.jl described below. This is not necessary when compiling a shared library.

Using julia-config to automatically determine build parameters

The script julia-config. j1 was created to aid in determining what build parameters are required by a program that
uses embedded Julia. This script uses the build parameters and system configuration of the particular Julia distribution
it is invoked by to export the necessary compiler flags for an embedding program to interact with that distribution.
This script is located in the Julia shared data directory.

Example

#include <julia.h>

int main(int argc, char xargv[])

{
jl_init();
(void)jl_eval_string("println(sqrt(2.0))");
jl_atexit_hook(0);
return 0;

}

On the command line

A simple use of this script is from the command line. Assuming that julia-config. jlislocatedin /usr/local/ju-
lia/share/julia, it can be invoked on the command line directly and takes any combination of 3 flags:

/usr/local/julia/share/julia/julia-config.jl
Usage: julia-config [--cflags|--1ldflags|--1dlibs]

If the above example source is saved in the file embed_example.c, then the following command will compile it into a
running program on Linux and Windows (MSYS2 environment), or if on OS/X, then substitute clang for gcc.:

/usr/local/julia/share/julia/julia-config.jl --cflags --1ldflags --1dlibs | xargs gcc
embed_example.c
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Use in Makefiles

But in general, embedding projects will be more complicated than the above, and so the following allows general
makefile support as well - assuming GNU make because of the use of the shell macro expansions. Additionally, though
many times julia-config.j1 may be found in the directory /usr/local, this is not necessarily the case, but Julia
can be used to locate julia-config. jl too, and the makefile can be used to take advantage of that. The above
example is extended to use a Makefile:

JL_SHARE = $(shell julia -e 'print(joinpath(JULIA_HOME,Base.DATAROOTDIR, "julia"))")
CFLAGS  += $(shell $(JL_SHARE)/julia-config.jl --cflags)
CXXFLAGS += $(shell $(JL_SHARE)/julia-config.jl --cflags)
LDFLAGS += $(shell $(JL_SHARE)/julia-config.jl --1ldflags)
LDLIBS  += $(shell $(JL_SHARE)/julia-config.jl --1dlibs)

all: embed_example

Now the build command is simply make.

33.2 Converting Types

Real applications will not just need to execute expressions, but also return their values to the host program. j1_eval_string
returns a j1_value_t*, which is a pointer to a heap-allocated Julia object. Storing simple data types like Float64 in

this way is called boxing, and extracting the stored primitive data is called unboxing. Our improved sample program

that calculates the square root of 2 in Julia and reads back the result in C looks as follows:

jl_value_t *ret = jl_eval_string("sqrt(2.0)");

if (jl_typeis(ret, jl_float64_type)) {
double ret_unboxed = jl_unbox_float64(ret);
printf("sqrt(2.0) in C: %e \n", ret_unboxed);

}
else {
printf("ERROR: unexpected return type from sqrt(::Float64)\n");
}
In order to check whether ret is of a specific Julia type, we can use the j1_isa, j1_typeis,orjl_is_... functions.

By typing typeof(sqrt(2.0)) into the Julia shell we can see that the return type is Float64 (double in C). To
convert the boxed Julia value into a C double the j1_unbox_float64 function is used in the above code snippet.

Corresponding j1_box_. .. functions are used to convert the other way:

jl_value_t *a = jl_box_float64(3.0);
jl_value_t *b = jl_box_float32(3.0f);
jl_value_t *c = jl_box_int32(3);

As we will see next, boxing is required to call Julia functions with specific arguments.

33.3 Calling Julia Functions

While j1_eval_string allows C to obtain the result of a Julia expression, it does not allow passing arguments com-
puted in C to Julia. For this you will need to invoke Julia functions directly, using j1_call:

jl_function_t *func = jl_get_function(jl_base_module, "sqrt");
jl_value_t *argument = jl_box_float64(2.0);
jl_value_t *ret = jl_calll(func, argument);
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In the first step, a handle to the Julia function sqrt is retrieved by calling j1_get_function. The first argument
passed to j1l_get_function is a pointer to the Base module in which sqrt is defined. Then, the double value is
boxed using j1_box_float64. Finally, in the last step, the function is called using j1_calll. j1_calle, jl_call2,
and j1_call3 functions also exist, to conveniently handle different numbers of arguments. To pass more arguments,
use j1_call:

jl_value_t *jl_call(jl_function_t *f, jl_value_t **args, int32_t nargs)

Its second argument args is an array of j1_value_t* arguments and nargs is the number of arguments.

33.4 Memory Management

As we have seen, Julia objects are represented in C as pointers. This raises the question of who is responsible for
freeing these objects.

Typically, Julia objects are freed by a garbage collector (GC), but the GC does not automatically know that we are
holding a reference to a Julia value from C. This means the GC can free objects out from under you, rendering pointers
invalid.

The GC can only run when Julia objects are allocated. Calls like j1_box_float64 perform allocation, and allocation
might also happen at any point in running Julia code. However, it is generally safe to use pointers in between j1_. ..
calls. But in order to make sure that values can survive j1_. .. calls, we have to tell Julia that we hold a reference to
a Julia value. This can be done using the JL_GC_PUSH macros:

jl_value_t *ret = jl_eval_string("sqrt(2.0)");
JL_GC_PUSH1 (&ret);

// Do something with ret

JL_GC_POP();

The JL_GC_POP call releases the references established by the previous JL_GC_PUSH. Note that JL_GC_PUSH is work-
ing on the stack, so it must be exactly paired with a JL_GC_POP before the stack frame is destroyed.

Several Julia values can be pushed at once using the JL_GC_PUSH2 , JL_GC_PUSH3 , and JL_GC_PUSH4 macros. To
push an array of Julia values one can use the JL_GC_PUSHARGS macro, which can be used as follows:

jl_value_t **args;

JL_GC_PUSHARGS(args, 2); // args can now hold 2 “jl_value_t* objects
args[0] = some_value;

args[1] = some_other_value;

// Do something with args (e.g. call jl_... functions)

JL_GC_POP() ;

The garbage collector also operates under the assumption that it is aware of every old-generation object pointing to
a young-generation one. Any time a pointer is updated breaking that assumption, it must be signaled to the collector
with the j1_gc_wb (write barrier) function like so:

jl_value_t *parent = some_old_value, *child = some_young_value;
((some_specific_typex)parent)->field = child;
jl_gc_wb(parent, child);

It is in general impossible to predict which values will be old at runtime, so the write barrier must be inserted after all
explicit stores. One notable exception is if the parent object was just allocated and garbage collection was not run
since then. Remember that most j1_. .. functions can sometimes invoke garbage collection.

The write barrier is also necessary for arrays of pointers when updating their data directly. For example:
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jl_array_t *some_array = ...; // e.g. a Vector{Any}
void **data = (void**)jl_array_data(some_array);
jl_value_t *some_value = ...;

data[@] = some_value;

jl_gc_wb(some_array, some_value);

Manipulating the Garbage Collector

There are some functions to control the GC. In normal use cases, these should not be necessary.

Function Description

jl_gc_collect() Force a GC run

jl_gc_enable(0) Disable the GC, return previous state as int
jl_gc_enable(1) Enable the GC, return previous state as int
jl_gc_is_enabled() | Return current state asint

33.5 Working with Arrays

Julia and C can share array data without copying. The next example will show how this works.

Julia arrays are represented in C by the datatype j1l_array_t*. Basically, j1_array_t is a struct that contains:

¢ Information about the datatype
o A pointer to the data block
¢ Information about the sizes of the array

To keep things simple, we start with a 1D array. Creating an array containing Floaté64 elements of length 10 is done
by:

jl_value_t* array_type
jl_array_t#* x

jl_apply_array_type(jl_float64_type, 1);
jl_alloc_array_1d(array_type, 10);

Alternatively, if you have already allocated the array you can generate a thin wrapper around its data:
double *existingArray = (doublex)malloc(sizeof(double)*10);
jl_array_t *x = jl_ptr_to_array_ld(array_type, existingArray, 10, 0);
The last argument is a boolean indicating whether Julia should take ownership of the data. If this argument is non-zero,
the GC will call free on the data pointer when the array is no longer referenced.
In order to access the data of x, we can use j1_array_data:

‘double *xData = (doublex)jl_array_data(x);

Now we can fill the array:
for(size_t i=0; i<jl_array_len(x); i++)
xData[i] = i;
Now let us call a Julia function that performs an in-place operation on x:
‘ jl_function_t *func = jl_get_function(jl_base_module, "reverse!");

jl_calli(func, (jl_value_t*)x);

By printing the array, one can verify that the elements of x are now reversed.
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Accessing Returned Arrays

If a Julia function returns an array, the return value of j1_eval_stringand jl_call canbecasttoa jl_array_t*:

jl_function_t *func = jl_get_function(jl_base_module, "reverse");
jl_array_t *y = (jl_array_tx)jl_calll(func, (jl_value_t*)x);

Now the content of y can be accessed as before using j1_array_data. As always, be sure to keep a reference to the
array while it is in use.

Multidimensional Arrays

Julia’s multidimensional arrays are stored in memory in column-major order. Here is some code that creates a 2D array
and accesses its properties:

// Create 2D array of float64 type
jl_value_t *array_type = jl_apply_array_type(jl_float64_type, 2);
jl_array_t *x = jl_alloc_array_2d(array_type, 10, 5);

// Get array pointer

double *p = (double*)jl_array_data(x);
// Get number of dimensions

int ndims = jl_array_ndims(x);

// Get the size of the i-th dim
size_t size® = jl_array_dim(x,0);
size_t sizel = jl_array_dim(x,1);

// Fill array with data
for(size_t i=0; i<sizel; i++)
for(size_t j=0; j<size®; j++)
plj + size@*i] = i + j;

Notice that while Julia arrays use 1-based indexing, the C APl uses 0-based indexing (for example in calling j1_ar-
ray_dim) in order to read as idiomatic C code.

33.6 Exceptions

Julia code can throw exceptions. For example, consider:

‘jl_eval_string(”this_function_does_not_exist()”);

This call will appear to do nothing. However, it is possible to check whether an exception was thrown:

if (jl_exception_occurred())
printf("%s \n", jl_typeof_str(jl_exception_occurred()));

If you are using the Julia C API from a language that supports exceptions (e.g. Python, C#, C++), it makes sense to
wrap each call into 1ibjulia with a function that checks whether an exception was thrown, and then rethrows the
exception in the host language.

Throwing Julia Exceptions

When writing Julia callable functions, it might be necessary to validate arguments and throw exceptions to indicate
errors. A typical type check looks like:

if ('jl_typeis(val, jl_float64_type)) {
jl_type_error(function_name, (jl_value_tx)jl_float64_type, val);
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General exceptions can be raised using the functions:

void jl_error(const char *str);
void jl_errorf(const char *fmt, ...);

jl_error takes a Cstring,and j1l_errorf is called like printf:

‘jl_errorf("argument x = %d is too large", x);

where in this example x is assumed to be an integer.
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Chapter 34

Packages

Julia has a built-in package manager for installing add-on functionality written in Julia. It can also install external
libraries using your operating system'’s standard system for doing so, or by compiling from source. The list of registered
Julia packages can be found at http:/pkg.julialang.org. All package manager commands are found in the Pkg module,
included in Julia’s Base install.

First we'll go over the mechanics of the Pkg family of commands and then we'll provide some guidance on how to get
your package registered. Be sure to read the section below on package naming conventions, tagging versions and the
importance of a REQUIRE file for when you're ready to add your code to the curated METADATA repository.

34.1 Package Status

The Pkg.status() function prints out a summary of the state of packages you have installed. Initially, you'll have no
packages installed:

julia> Pkg.status()

INFO: Initializing package repository /Users/stefan/.julia/v@.6
INFO: Cloning METADATA from git://github.com/Julialang/METADATA.jl
No packages installed.

Your package directory is automatically initialized the first time you run a Pkg command that expects it to exist - which
includes Pkg.status(). Here's an example non-trivial set of required and additional packages:

julia> Pkg.status()
Required packages:
- Distributions 0.2.8
- SHA 0.3.2
Additional packages:
- NumericExtensions 0.2.17
- Stats 0.2.6

These packages are all on registered versions, managed by Pkg. Packages can be in more complicated states, indi-
cated by annotations to the right of the installed package version; we will explain these states and annotations as we
encounter them. For programmatic usage, Pkg.installed() returns a dictionary, mapping installed package names
to the version of that package which is installed:

julia> Pkg.installed()
Dict{String, VersionNumber} with 4 entries:

327


http://pkg.julialang.org

328 CHAPTER 34. PACKAGES

"Distributions” => v"0.2.8"
"Stats” => v"0.2.6"
"SHA" => v"0.3.2"
"NumericExtensions" => v"0.2.17"

34.2 Adding and Removing Packages

Julia’s package manager is a little unusual in that it is declarative rather than imperative. This means that you tell it
what you want and it figures out what versions to install (or remove) to satisfy those requirements optimally - and
minimally. So rather than installing a package, you just add it to the list of requirements and then "resolve” what needs
to be installed. In particular, this means that if some package had been installed because it was needed by a previous
version of something you wanted, and a newer version doesn’t have that requirement anymore, updating will actually
remove that package.

Your package requirements are in the file ~/.julia/v@.6/REQUIRE. You can edit this file by hand and then call
Pkg.resolve() toinstall, upgrade or remove packages to optimally satisfy the requirements, oryou can do Pkg.edit (),
which will open REQUIRE in your editor (configured via the EDITOR or VISUAL environment variables), and then auto-
matically call Pkg . resolve( ) afterwards if necessary. If you only want to add or remove the requirement for a single
package, you can also use the non-interactive Pkg.add() and Pkg.rm() commands, which add or remove a single
requirement to REQUIRE and then call Pkg.resolve().

You can add a package to the list of requirements with the Pkg.add () function, and the package and all the packages
that it depends on will be installed:

julia> Pkg.status()
No packages installed.

julia> Pkg.add("Distributions")

INFO: Cloning cache of Distributions from git://github.com/JuliaStats/Distributions.jl.git

INFO: Cloning cache of NumericExtensions from git://github.com/lindahua/NumericExtensions.jl.git
INFO: Cloning cache of Stats from git://github.com/JuliaStats/Stats.jl.git

INFO: Installing Distributions v@.2.7

INFO: Installing NumericExtensions v0.2.17

INFO: Installing Stats v0.2.6

INFO: REQUIRE updated.

julia> Pkg.status()
Required packages:

- Distributions 0.2.7
Additional packages:

- NumericExtensions 0.2.17

- Stats 0.2.6

What this is doing is first adding Distributions toyour ~/.julia/v@.6/REQUIRE file:

$ cat ~/.julia/v0.6/REQUIRE
Distributions

It then runs Pkg. resolve () using these new requirements, which leads to the conclusion that the Distributions
package should be installed since it is required but not installed. As stated before, you can accomplish the same thing
by editing your ~/ . julia/v@.6/REQUIRE file by hand and then running Pkg.resolve() yourself:

$ echo SHA >> ~/.julia/v@.6/REQUIRE
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julia> Pkg.resolve()
INFO: Cloning cache of SHA from git://github.com/staticfloat/SHA.jl.git
INFO: Installing SHA v0.3.2

julia> Pkg.status()
Required packages:

- Distributions 0.2.7

- SHA 0.3.2
Additional packages:

- NumericExtensions 0.2.17

- Stats 0.2.6

This is functionally equivalent to calling Pkg.add("SHA"), except that Pkg.add() doesn’t change REQUIRE until
after installation has completed, so if there are problems, REQUIRE will be left as it was before calling Pkg.add (). The
format of the REQUIRE file is described in Requirements Specification; it allows, among other things, requiring specific
ranges of versions of packages.

When you decide that you don’t want to have a package around any more, you can use Pkg.rm() to remove the
requirement for it from the REQUIRE file:

julia> Pkg.rm("Distributions")

INFO: Removing Distributions v0.2.7
INFO: Removing Stats v0.2.6

INFO: Removing NumericExtensions v0.2.17
INFO: REQUIRE updated.

julia> Pkg.status()
Required packages:
- SHA 0.3.2

julia> Pkg.rm("SHA")
INFO: Removing SHA v0.3.2
INFO: REQUIRE updated.

julia> Pkg.status()
No packages installed.

Once again, this is equivalent to editing the REQUIRE file to remove the line with each package name on it then
running Pkg.resolve() to update the set of installed packages to match. While Pkg.add() and Pkg.rm() are
convenient for adding and removing requirements for a single package, when you want to add or remove multiple
packages, you can call Pkg.edit() to manually change the contents of REQUIRE and then update your packages
accordingly. Pkg.edit() does not roll back the contents of REQUIRE if Pkg.resolve() fails - rather, you have to
run Pkg.edit () again to fix the files contents yourself.

Because the package manager uses libgit2 internally to manage the package git repositories, users may run into pro-
tocol issues (if behind a firewall, for example), when running Pkg.add( ). By default, all GitHub-hosted packages wil
be accessed via 'https’; this default can be modified by calling Pkg . setprotocol! (). The following command can be
run from the command line in order to tell git to use 'https’ instead of the 'git’ protocol when cloning all repositories,
wherever they are hosted:

git config --global url."https://".insteadOf git://

However, this change will be system-wide and thus the use of Pkg.setprotocol! () is preferable.
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Note

The package manager functions also accept the . j 1 suffix on package names, though the suffixis stripped
internally. For example:

Pkg.add("Distributions.jl")
Pkg.rm("Distributions.jl")

34.3 Offline Installati