diff --git a/NEWS.md b/NEWS.md index 7c4d3270eb489..076b00cedd43d 100644 --- a/NEWS.md +++ b/NEWS.md @@ -83,8 +83,9 @@ This section lists changes that do not have deprecation warnings. longer present. Use `first(R)` and `last(R)` to obtain start/stop. ([#20974]) - * The `Diagonal` type definition has changed from `Diagonal{T}` to - `Diagonal{T,V<:AbstractVector{T}}` ([#22718]). + * The `Diagonal` and `Bidiagonal` type definitions have changed from `Diagonal{T}` and + `Bidiagonal{T}` to `Diagonal{T,V<:AbstractVector{T}}` and + `Bidiagonal{T,V<:AbstractVector{T}}` respectively ([#22718], [#22925]). * Spaces are no longer allowed between `@` and the name of a macro in a macro call ([#22868]). @@ -152,8 +153,9 @@ Library improvements * `Char`s can now be concatenated with `String`s and/or other `Char`s using `*` ([#22532]). - * `Diagonal` is now parameterized on the type of the wrapped vector. This allows - for `Diagonal` matrices with arbitrary `AbstractVector`s ([#22718]). + * `Diagonal` and `Bidiagonal` are now parameterized on the type of the wrapped vectors, + allowing `Diagonal` and `Bidiagonal` matrices with arbitrary + `AbstractVector`s ([#22718], [#22925]). * Mutating versions of `randperm` and `randcycle` have been added: `randperm!` and `randcycle!` ([#22723]). @@ -216,6 +218,9 @@ Deprecated or removed * `Bidiagonal` constructors now use a `Symbol` (`:U` or `:L`) for the upper/lower argument, instead of a `Bool` or a `Char` ([#22703]). + * `Bidiagonal` constructors that automatically converted the input vectors to + the same type are deprecated in favor of explicit conversion ([#22925]). + * Calling `nfields` on a type to find out how many fields its instances have is deprecated. Use `fieldcount` instead. Use `nfields` only to get the number of fields in a specific object ([#22350]). diff --git a/base/deprecated.jl b/base/deprecated.jl index d628fde251d8c..2cb868c64a7b8 100644 --- a/base/deprecated.jl +++ b/base/deprecated.jl @@ -1595,6 +1595,15 @@ end # issue #6466 # `write` on non-isbits arrays is deprecated in io.jl. +# PR #22925 +# also uncomment constructor tests in test/linalg/bidiag.jl +function Bidiagonal(dv::AbstractVector{T}, ev::AbstractVector{S}, uplo::Symbol) where {T,S} + depwarn(string("Bidiagonal(dv::AbstractVector{T}, ev::AbstractVector{S}, uplo::Symbol) where {T,S}", + " is deprecated; manually convert both vectors to the same type instead."), :Bidiagonal) + R = promote_type(T, S) + Bidiagonal(convert(Vector{R}, dv), convert(Vector{R}, ev), uplo) +end + # END 0.7 deprecations # BEGIN 1.0 deprecations diff --git a/base/linalg/bidiag.jl b/base/linalg/bidiag.jl index b37ddd03d69c4..4c18334f4f172 100644 --- a/base/linalg/bidiag.jl +++ b/base/linalg/bidiag.jl @@ -1,23 +1,23 @@ # This file is a part of Julia. License is MIT: https://julialang.org/license # Bidiagonal matrices -struct Bidiagonal{T} <: AbstractMatrix{T} - dv::Vector{T} # diagonal - ev::Vector{T} # sub/super diagonal - uplo::Char # upper bidiagonal ('U') or lower ('L') - function Bidiagonal{T}(dv::Vector{T}, ev::Vector{T}, uplo::Char) where T +struct Bidiagonal{T,V<:AbstractVector{T}} <: AbstractMatrix{T} + dv::V # diagonal + ev::V # sub/super diagonal + uplo::Char # upper bidiagonal ('U') or lower ('L') + function Bidiagonal{T}(dv::V, ev::V, uplo::Char) where {T,V<:AbstractVector{T}} if length(ev) != length(dv)-1 throw(DimensionMismatch("length of diagonal vector is $(length(dv)), length of off-diagonal vector is $(length(ev))")) end - new(dv, ev, uplo) + new{T,V}(dv, ev, uplo) end - function Bidiagonal(dv::Vector{T}, ev::Vector{T}, uplo::Char) where T + function Bidiagonal(dv::V, ev::V, uplo::Char) where {T,V<:AbstractVector{T}} Bidiagonal{T}(dv, ev, uplo) end end """ - Bidiagonal(dv, ev, uplo::Symbol) + Bidiagonal(dv::V, ev::V, uplo::Symbol) where V <: AbstractVector Constructs an upper (`uplo=:U`) or lower (`uplo=:L`) bidiagonal matrix using the given diagonal (`dv`) and off-diagonal (`ev`) vectors. The result is of type `Bidiagonal` @@ -41,27 +41,22 @@ julia> ev = [7, 8, 9] 9 julia> Bu = Bidiagonal(dv, ev, :U) # ev is on the first superdiagonal -4×4 Bidiagonal{Int64}: +4×4 Bidiagonal{Int64,Array{Int64,1}}: 1 7 ⋅ ⋅ ⋅ 2 8 ⋅ ⋅ ⋅ 3 9 ⋅ ⋅ ⋅ 4 julia> Bl = Bidiagonal(dv, ev, :L) # ev is on the first subdiagonal -4×4 Bidiagonal{Int64}: +4×4 Bidiagonal{Int64,Array{Int64,1}}: 1 ⋅ ⋅ ⋅ 7 2 ⋅ ⋅ ⋅ 8 3 ⋅ ⋅ ⋅ 9 4 ``` """ -function Bidiagonal(dv::AbstractVector{T}, ev::AbstractVector{T}, uplo::Symbol) where T - Bidiagonal{T}(collect(dv), collect(ev), char_uplo(uplo)) -end - -function Bidiagonal(dv::AbstractVector{Td}, ev::AbstractVector{Te}, uplo::Symbol) where {Td,Te} - T = promote_type(Td,Te) - Bidiagonal(convert(Vector{T}, dv), convert(Vector{T}, ev), uplo) +function Bidiagonal(dv::V, ev::V, uplo::Symbol) where {T,V<:AbstractVector{T}} + Bidiagonal{T}(dv, ev, char_uplo(uplo)) end """ @@ -79,22 +74,24 @@ julia> A = [1 1 1 1; 2 2 2 2; 3 3 3 3; 4 4 4 4] 3 3 3 3 4 4 4 4 -julia> Bidiagonal(A, :U) #contains the main diagonal and first superdiagonal of A -4×4 Bidiagonal{Int64}: +julia> Bidiagonal(A, :U) # contains the main diagonal and first superdiagonal of A +4×4 Bidiagonal{Int64,Array{Int64,1}}: 1 1 ⋅ ⋅ ⋅ 2 2 ⋅ ⋅ ⋅ 3 3 ⋅ ⋅ ⋅ 4 -julia> Bidiagonal(A, :L) #contains the main diagonal and first subdiagonal of A -4×4 Bidiagonal{Int64}: +julia> Bidiagonal(A, :L) # contains the main diagonal and first subdiagonal of A +4×4 Bidiagonal{Int64,Array{Int64,1}}: 1 ⋅ ⋅ ⋅ 2 2 ⋅ ⋅ ⋅ 3 3 ⋅ ⋅ ⋅ 4 4 ``` """ -Bidiagonal(A::AbstractMatrix, uplo::Symbol) = Bidiagonal(diag(A), diag(A, uplo == :U ? 1 : -1), uplo) +function Bidiagonal(A::AbstractMatrix, uplo::Symbol) + Bidiagonal(diag(A, 0), diag(A, uplo == :U ? 1 : -1), uplo) +end function getindex(A::Bidiagonal{T}, i::Integer, j::Integer) where T if !((1 <= i <= size(A,2)) && (1 <= j <= size(A,2))) @@ -164,7 +161,8 @@ promote_rule(::Type{Tridiagonal{T}}, ::Type{Bidiagonal{S}}) where {T,S} = Tridia # No-op for trivial conversion Bidiagonal{T} -> Bidiagonal{T} convert(::Type{Bidiagonal{T}}, A::Bidiagonal{T}) where {T} = A # Convert Bidiagonal to Bidiagonal{T} by constructing a new instance with converted elements -convert(::Type{Bidiagonal{T}}, A::Bidiagonal) where {T} = Bidiagonal(convert(Vector{T}, A.dv), convert(Vector{T}, A.ev), A.uplo) +convert(::Type{Bidiagonal{T}}, A::Bidiagonal) where {T} = + Bidiagonal(convert(AbstractVector{T}, A.dv), convert(AbstractVector{T}, A.ev), A.uplo) # When asked to convert Bidiagonal to AbstractMatrix{T}, preserve structure by converting to Bidiagonal{T} <: AbstractMatrix{T} convert(::Type{AbstractMatrix{T}}, A::Bidiagonal) where {T} = convert(Bidiagonal{T}, A) diff --git a/test/linalg/bidiag.jl b/test/linalg/bidiag.jl index d7b95a00dd9f6..7c9d85b43e5cc 100644 --- a/test/linalg/bidiag.jl +++ b/test/linalg/bidiag.jl @@ -24,10 +24,23 @@ srand(1) end @testset "Constructors" begin - @test Bidiagonal(dv,ev,:U) != Bidiagonal(dv,ev,:L) - @test_throws ArgumentError Bidiagonal(dv,ev,:R) - @test_throws DimensionMismatch Bidiagonal(dv,ones(elty,n),:U) - @test_throws MethodError Bidiagonal(dv,ev) + for (x, y) in ((dv, ev), (GenericArray(dv), GenericArray(ev))) + # from vectors + ubd = Bidiagonal(x, y, :U) + lbd = Bidiagonal(x, y, :L) + @test ubd != lbd + @test ubd.dv === x + @test lbd.ev === y + @test_throws ArgumentError Bidiagonal(x, y, :R) + @test_throws DimensionMismatch Bidiagonal(x, x, :U) + @test_throws MethodError Bidiagonal(x, y) + # from matrix + @test Bidiagonal(ubd, :U) == Bidiagonal(Matrix(ubd), :U) == ubd + @test Bidiagonal(lbd, :L) == Bidiagonal(Matrix(lbd), :L) == lbd + end + # enable when deprecations for 0.7 are dropped + # @test_throws MethodError Bidiagonal(dv, GenericArray(ev), :U) + # @test_throws MethodError Bidiagonal(GenericArray(dv), ev, :U) end @testset "getindex, setindex!, size, and similar" begin @@ -97,29 +110,30 @@ srand(1) end @testset "triu and tril" begin + bidiagcopy(dv, ev, uplo) = Bidiagonal(copy(dv), copy(ev), uplo) @test istril(Bidiagonal(dv,ev,:L)) @test !istril(Bidiagonal(dv,ev,:U)) - @test tril!(Bidiagonal(dv,ev,:U),-1) == Bidiagonal(zeros(dv),zeros(ev),:U) - @test tril!(Bidiagonal(dv,ev,:L),-1) == Bidiagonal(zeros(dv),ev,:L) - @test tril!(Bidiagonal(dv,ev,:U),-2) == Bidiagonal(zeros(dv),zeros(ev),:U) - @test tril!(Bidiagonal(dv,ev,:L),-2) == Bidiagonal(zeros(dv),zeros(ev),:L) - @test tril!(Bidiagonal(dv,ev,:U),1) == Bidiagonal(dv,ev,:U) - @test tril!(Bidiagonal(dv,ev,:L),1) == Bidiagonal(dv,ev,:L) - @test tril!(Bidiagonal(dv,ev,:U)) == Bidiagonal(dv,zeros(ev),:U) - @test tril!(Bidiagonal(dv,ev,:L)) == Bidiagonal(dv,ev,:L) - @test_throws ArgumentError tril!(Bidiagonal(dv,ev,:U),n+1) + @test tril!(bidiagcopy(dv,ev,:U),-1) == Bidiagonal(zeros(dv),zeros(ev),:U) + @test tril!(bidiagcopy(dv,ev,:L),-1) == Bidiagonal(zeros(dv),ev,:L) + @test tril!(bidiagcopy(dv,ev,:U),-2) == Bidiagonal(zeros(dv),zeros(ev),:U) + @test tril!(bidiagcopy(dv,ev,:L),-2) == Bidiagonal(zeros(dv),zeros(ev),:L) + @test tril!(bidiagcopy(dv,ev,:U),1) == Bidiagonal(dv,ev,:U) + @test tril!(bidiagcopy(dv,ev,:L),1) == Bidiagonal(dv,ev,:L) + @test tril!(bidiagcopy(dv,ev,:U)) == Bidiagonal(dv,zeros(ev),:U) + @test tril!(bidiagcopy(dv,ev,:L)) == Bidiagonal(dv,ev,:L) + @test_throws ArgumentError tril!(bidiagcopy(dv,ev,:U),n+1) @test istriu(Bidiagonal(dv,ev,:U)) @test !istriu(Bidiagonal(dv,ev,:L)) - @test triu!(Bidiagonal(dv,ev,:L),1) == Bidiagonal(zeros(dv),zeros(ev),:L) - @test triu!(Bidiagonal(dv,ev,:U),1) == Bidiagonal(zeros(dv),ev,:U) - @test triu!(Bidiagonal(dv,ev,:U),2) == Bidiagonal(zeros(dv),zeros(ev),:U) - @test triu!(Bidiagonal(dv,ev,:L),2) == Bidiagonal(zeros(dv),zeros(ev),:L) - @test triu!(Bidiagonal(dv,ev,:U),-1) == Bidiagonal(dv,ev,:U) - @test triu!(Bidiagonal(dv,ev,:L),-1) == Bidiagonal(dv,ev,:L) - @test triu!(Bidiagonal(dv,ev,:L)) == Bidiagonal(dv,zeros(ev),:L) - @test triu!(Bidiagonal(dv,ev,:U)) == Bidiagonal(dv,ev,:U) - @test_throws ArgumentError triu!(Bidiagonal(dv,ev,:U),n+1) + @test triu!(bidiagcopy(dv,ev,:L),1) == Bidiagonal(zeros(dv),zeros(ev),:L) + @test triu!(bidiagcopy(dv,ev,:U),1) == Bidiagonal(zeros(dv),ev,:U) + @test triu!(bidiagcopy(dv,ev,:U),2) == Bidiagonal(zeros(dv),zeros(ev),:U) + @test triu!(bidiagcopy(dv,ev,:L),2) == Bidiagonal(zeros(dv),zeros(ev),:L) + @test triu!(bidiagcopy(dv,ev,:U),-1) == Bidiagonal(dv,ev,:U) + @test triu!(bidiagcopy(dv,ev,:L),-1) == Bidiagonal(dv,ev,:L) + @test triu!(bidiagcopy(dv,ev,:L)) == Bidiagonal(dv,zeros(ev),:L) + @test triu!(bidiagcopy(dv,ev,:U)) == Bidiagonal(dv,ev,:U) + @test_throws ArgumentError triu!(bidiagcopy(dv,ev,:U),n+1) end Tfull = Array(T) @@ -255,7 +269,6 @@ srand(1) end BD = Bidiagonal(dv, ev, :U) @test Matrix{Complex{Float64}}(BD) == BD - end # Issue 10742 and similar diff --git a/test/linalg/cholesky.jl b/test/linalg/cholesky.jl index 3174541a43d46..cda0c07e8e1e8 100644 --- a/test/linalg/cholesky.jl +++ b/test/linalg/cholesky.jl @@ -101,8 +101,7 @@ using Base.LinAlg: BlasComplex, BlasFloat, BlasReal, QRPivoted, PosDefException # test chol of 2x2 Strang matrix S = convert(AbstractMatrix{eltya},full(SymTridiagonal([2,2],[-1]))) - U = Bidiagonal([2,sqrt(eltya(3))],[-1],:U) / sqrt(eltya(2)) - @test full(chol(S)) ≈ full(U) + @test full(chol(S)) ≈ [2 -1; 0 sqrt(eltya(3))] / sqrt(eltya(2)) # test extraction of factor and re-creating original matrix if eltya <: Real diff --git a/test/show.jl b/test/show.jl index 52bd4ac803591..2777be846e7d9 100644 --- a/test/show.jl +++ b/test/show.jl @@ -556,8 +556,8 @@ end # test structured zero matrix printing for select structured types A = reshape(1:16,4,4) @test replstr(Diagonal(A)) == "4×4 Diagonal{$(Int),Array{$(Int),1}}:\n 1 ⋅ ⋅ ⋅\n ⋅ 6 ⋅ ⋅\n ⋅ ⋅ 11 ⋅\n ⋅ ⋅ ⋅ 16" -@test replstr(Bidiagonal(A,:U)) == "4×4 Bidiagonal{$Int}:\n 1 5 ⋅ ⋅\n ⋅ 6 10 ⋅\n ⋅ ⋅ 11 15\n ⋅ ⋅ ⋅ 16" -@test replstr(Bidiagonal(A,:L)) == "4×4 Bidiagonal{$Int}:\n 1 ⋅ ⋅ ⋅\n 2 6 ⋅ ⋅\n ⋅ 7 11 ⋅\n ⋅ ⋅ 12 16" +@test replstr(Bidiagonal(A,:U)) == "4×4 Bidiagonal{$(Int),Array{$(Int),1}}:\n 1 5 ⋅ ⋅\n ⋅ 6 10 ⋅\n ⋅ ⋅ 11 15\n ⋅ ⋅ ⋅ 16" +@test replstr(Bidiagonal(A,:L)) == "4×4 Bidiagonal{$(Int),Array{$(Int),1}}:\n 1 ⋅ ⋅ ⋅\n 2 6 ⋅ ⋅\n ⋅ 7 11 ⋅\n ⋅ ⋅ 12 16" @test replstr(SymTridiagonal(A+A')) == "4×4 SymTridiagonal{$Int}:\n 2 7 ⋅ ⋅\n 7 12 17 ⋅\n ⋅ 17 22 27\n ⋅ ⋅ 27 32" @test replstr(Tridiagonal(diag(A,-1),diag(A),diag(A,+1))) == "4×4 Tridiagonal{$Int}:\n 1 5 ⋅ ⋅\n 2 6 10 ⋅\n ⋅ 7 11 15\n ⋅ ⋅ 12 16" @test replstr(UpperTriangular(copy(A))) == "4×4 UpperTriangular{$Int,Array{$Int,2}}:\n 1 5 9 13\n ⋅ 6 10 14\n ⋅ ⋅ 11 15\n ⋅ ⋅ ⋅ 16"