-
-
Notifications
You must be signed in to change notification settings - Fork 5.5k
/
Copy pathmath.jl
1340 lines (1231 loc) · 43.1 KB
/
math.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
module Math
export sin, cos, tan, sinh, cosh, tanh, asin, acos, atan,
asinh, acosh, atanh, sec, csc, cot, asec, acsc, acot,
sech, csch, coth, asech, acsch, acoth,
sinpi, cospi, sinc, cosc,
cosd, cotd, cscd, secd, sind, tand,
acosd, acotd, acscd, asecd, asind, atand, atan2,
radians2degrees, degrees2radians,
log, log2, log10, log1p, exponent, exp, exp2, exp10, expm1,
cbrt, sqrt, erf, erfc, erfcx, erfi, dawson,
ceil, floor, trunc, round, significand,
lgamma, hypot, gamma, lfact, max, min, ldexp, frexp,
clamp, modf, ^,
airy, airyai, airyprime, airyaiprime, airybi, airybiprime,
besselj0, besselj1, besselj, bessely0, bessely1, bessely,
hankelh1, hankelh2, besseli, besselk, besselh,
beta, lbeta, eta, zeta, polygamma, invdigamma, digamma, trigamma,
erfinv, erfcinv
import Base: log, exp, sin, cos, tan, sinh, cosh, tanh, asin,
acos, atan, asinh, acosh, atanh, sqrt, log2, log10,
max, min, ceil, floor, trunc, round, ^, exp2, exp10
import Core.Intrinsics.nan_dom_err
# non-type specific math functions
clamp(x::Real, lo::Real, hi::Real) = (x > hi ? hi : (x < lo ? lo : x))
clamp{T<:Real}(x::AbstractArray{T,1}, lo::Real, hi::Real) = [clamp(xx, lo, hi) for xx in x]
clamp{T<:Real}(x::AbstractArray{T,2}, lo::Real, hi::Real) =
[clamp(x[i,j], lo, hi) for i in 1:size(x,1), j in 1:size(x,2)]
clamp{T<:Real}(x::AbstractArray{T}, lo::Real, hi::Real) =
reshape([clamp(xx, lo, hi) for xx in x], size(x))
function sinpi(x::Real)
if isinf(x)
return throw(DomainError())
elseif isnan(x)
return nan(x)
end
rx = float(rem(x,2))
arx = abs(rx)
if arx == 0.0
# return -0.0 iff x == -0.0
return x == 0.0 ? x : arx
elseif arx < 0.25
return sin(pi*rx)
elseif arx <= 0.75
arx = 0.5 - arx
return copysign(cos(pi*arx),rx)
elseif arx < 1.25
rx = copysign(1.0,rx) - rx
return sin(pi*rx)
elseif arx <= 1.75
arx = 1.5 - arx
return -copysign(cos(pi*arx),rx)
else
rx = rx - copysign(2.0,rx)
return sin(pi*rx)
end
end
function cospi(x::Real)
if isinf(x)
return throw(DomainError())
elseif isnan(x)
return nan(x)
end
rx = abs(float(rem(x,2)))
if rx <= 0.25
return cos(pi*rx)
elseif rx < 0.75
rx = 0.5 - rx
return sin(pi*rx)
elseif rx <= 1.25
rx = 1.0 - rx
return -cos(pi*rx)
elseif rx < 1.75
rx = rx - 1.5
return sin(pi*rx)
else
rx = 2.0 - rx
return cos(pi*rx)
end
end
sinpi(x::Integer) = zero(x)
cospi(x::Integer) = isodd(x) ? -one(x) : one(x)
function sinpi(z::Complex)
zr, zi = reim(z)
if !isfinite(zi) && zr == 0 return complex(zr, zi) end
if isnan(zr) && !isfinite(zi) return complex(zr, zi) end
if !isfinite(zr) && zi == 0 return complex(oftype(zr, NaN), zi) end
if !isfinite(zr) && isfinite(zi) return complex(oftype(zr, NaN), oftype(zi, NaN)) end
if !isfinite(zr) && !isfinite(zi) return complex(zr, oftype(zi, NaN)) end
pizi = pi*zi
complex(sinpi(zr)*cosh(pizi), cospi(zr)*sinh(pizi))
end
function cospi(z::Complex)
zr, zi = reim(z)
if !isfinite(zi) && zr == 0
return complex(isnan(zi) ? zi : oftype(zi, Inf),
isnan(zi) ? zr : zr*-sign(zi))
end
if !isfinite(zr) && isinf(zi)
return complex(oftype(zr, Inf), oftype(zi, NaN))
end
if isinf(zr)
return complex(oftype(zr, NaN), zi==0 ? -copysign(zi, zr) : oftype(zi, NaN))
end
if isnan(zr) && zi==0 return complex(zr, abs(zi)) end
pizi = pi*zi
complex(cospi(zr)*cosh(pizi), -sinpi(zr)*sinh(pizi))
end
@vectorize_1arg Number sinpi
@vectorize_1arg Number cospi
sinc(x::Number) = x==0 ? one(x) : oftype(x,sinpi(x)/(pi*x))
sinc(x::Integer) = x==0 ? one(x) : zero(x)
sinc{T<:Integer}(x::Complex{T}) = sinc(float(x))
@vectorize_1arg Number sinc
cosc(x::Number) = x==0 ? zero(x) : oftype(x,(cospi(x)-sinpi(x)/(pi*x))/x)
cosc(x::Integer) = cosc(float(x))
cosc{T<:Integer}(x::Complex{T}) = cosc(float(x))
@vectorize_1arg Number cosc
radians2degrees(z::Real) = oftype(z, 57.29577951308232*z)
degrees2radians(z::Real) = oftype(z, 0.017453292519943295*z)
radians2degrees(z::Integer) = radians2degrees(float(z))
degrees2radians(z::Integer) = degrees2radians(float(z))
@vectorize_1arg Real radians2degrees
@vectorize_1arg Real degrees2radians
for (finv, f) in ((:sec, :cos), (:csc, :sin), (:cot, :tan),
(:sech, :cosh), (:csch, :sinh), (:coth, :tanh),
(:secd, :cosd), (:cscd, :sind), (:cotd, :tand))
@eval begin
($finv)(z) = 1 ./ (($f)(z))
end
end
for (fa, fainv) in ((:asec, :acos), (:acsc, :asin), (:acot, :atan),
(:asech, :acosh), (:acsch, :asinh), (:acoth, :atanh))
@eval begin
($fa)(y) = ($fainv)(1 ./ y)
end
end
function sind(x::Real)
if isinf(x)
return throw(DomainError())
elseif isnan(x)
return nan(x)
end
rx = rem(x,360.0)
arx = abs(rx)
if arx == 0.0
# return -0.0 iff x == -0.0
return x == 0.0 ? x : arx
elseif arx < 45.0
return sin(degrees2radians(rx))
elseif arx <= 135.0
arx = 90.0 - arx
return copysign(cos(degrees2radians(arx)),rx)
elseif arx < 225.0
rx = copysign(180.0,rx) - rx
return sin(degrees2radians(rx))
elseif arx <= 315.0
arx = 270.0 - arx
return -copysign(cos(degrees2radians(arx)),rx)
else
rx = rx - copysign(360.0,rx)
return sin(degrees2radians(rx))
end
end
@vectorize_1arg Real sind
function cosd(x::Real)
if isinf(x)
return throw(DomainError())
elseif isnan(x)
return nan(x)
end
rx = abs(rem(x,360.0))
if rx <= 45.0
return cos(degrees2radians(rx))
elseif rx < 135.0
rx = 90.0 - rx
return sin(degrees2radians(rx))
elseif rx <= 225.0
rx = 180.0 - rx
return -cos(degrees2radians(rx))
elseif rx < 315.0
rx = rx - 270.0
return sin(degrees2radians(rx))
else
rx = 360.0 - rx
return cos(degrees2radians(rx))
end
end
@vectorize_1arg Real cosd
tand(x::Real) = sind(x) / cosd(x)
@vectorize_1arg Real tand
for (fd, f) in ((:sind, :sin), (:cosd, :cos), (:tand, :tan))
@eval begin
($fd)(z) = ($f)(degrees2radians(z))
end
end
for (fd, f) in ((:asind, :asin), (:acosd, :acos), (:atand, :atan),
(:asecd, :asec), (:acscd, :acsc), (:acotd, :acot))
@eval begin
($fd)(y) = radians2degrees(($f)(y))
@vectorize_1arg Real $fd
end
end
log(b,x) = log(x)/log(b)
hypot(x::Real, y::Real) = hypot(promote(x,y)...)
function hypot{T<:Real}(x::T, y::T)
x = abs(x)
y = abs(y)
if x < y
x, y = y, x
end
if x == 0
r = y/one(x)
else
r = y/x
end
x * sqrt(one(r)+r*r)
end
# type specific math functions
const libm = Base.libm_name
const openlibm_extras = "libopenlibm-extras"
# functions with no domain error
for f in (:cbrt, :sinh, :cosh, :tanh, :atan, :asinh, :exp, :erf, :erfc, :exp2, :expm1)
@eval begin
($f)(x::Float64) = ccall(($(string(f)),libm), Float64, (Float64,), x)
($f)(x::Float32) = ccall(($(string(f,"f")),libm), Float32, (Float32,), x)
($f)(x::Real) = ($f)(float(x))
@vectorize_1arg Number $f
end
end
# fallback definitions to prevent infinite loop from $f(x::Real) def above
cbrt(x::FloatingPoint) = x^(1//3)
exp2(x::FloatingPoint) = 2^x
for f in (:sinh, :cosh, :tanh, :atan, :asinh, :exp, :erf, :erfc, :expm1)
@eval ($f)(x::FloatingPoint) = error("not implemented for ", typeof(x))
end
# TODO: GNU libc has exp10 as an extension; should openlibm?
exp10(x::Float64) = 10.0^x
exp10(x::Float32) = 10.0f0^x
exp10(x::Integer) = exp10(float(x))
@vectorize_1arg Number exp10
# functions that return NaN on non-NaN argument for domain error
for f in (:sin, :cos, :tan, :asin, :acos, :acosh, :atanh, :log, :log2, :log10,
:lgamma, :sqrt, :log1p)
@eval begin
($f)(x::Float64) = nan_dom_err(ccall(($(string(f)),libm), Float64, (Float64,), x), x)
($f)(x::Float32) = nan_dom_err(ccall(($(string(f,"f")),libm), Float32, (Float32,), x), x)
($f)(x::Real) = ($f)(float(x))
@vectorize_1arg Number $f
end
end
for f in (:ceil, :trunc, :significand) # :rint, :nearbyint
@eval begin
($f)(x::Float64) = ccall(($(string(f)),libm), Float64, (Float64,), x)
($f)(x::Float32) = ccall(($(string(f,"f")),libm), Float32, (Float32,), x)
@vectorize_1arg Real $f
end
end
round(x::Float32) = ccall((:roundf, libm), Float32, (Float32,), x)
@vectorize_1arg Real round
floor(x::Float32) = ccall((:floorf, libm), Float32, (Float32,), x)
@vectorize_1arg Real floor
atan2(x::Real, y::Real) = atan2(promote(float(x),float(y))...)
atan2{T<:FloatingPoint}(x::T, y::T) = Base.no_op_err("atan2", T)
for f in (:atan2, :hypot)
@eval begin
($f)(x::Float64, y::Float64) = ccall(($(string(f)),libm), Float64, (Float64, Float64,), x, y)
($f)(x::Float32, y::Float32) = ccall(($(string(f,"f")),libm), Float32, (Float32, Float32), x, y)
@vectorize_2arg Number $f
end
end
gamma(x::Float64) = nan_dom_err(ccall((:tgamma,libm), Float64, (Float64,), x), x)
gamma(x::Float32) = nan_dom_err(ccall((:tgammaf,libm), Float32, (Float32,), x), x)
gamma(x::Real) = gamma(float(x))
@vectorize_1arg Number gamma
function lgamma_r(x::Float64)
signp = Array(Int32, 1)
y = ccall((:lgamma_r,libm), Float64, (Float64, Ptr{Int32}), x, signp)
return y, signp[1]
end
function lgamma_r(x::Float32)
signp = Array(Int32, 1)
y = ccall((:lgamma_r,libm), Float32, (Float32, Ptr{Int32}), x, signp)
return y, signp[1]
end
lgamma_r(x::Real) = lgamma_r(float(x))
lfact(x::Real) = (x<=1 ? zero(float(x)) : lgamma(x+one(x)))
@vectorize_1arg Number lfact
max(x::Float64, y::Float64) = ccall((:fmax,libm), Float64, (Float64,Float64), x, y)
max(x::Float32, y::Float32) = ccall((:fmaxf,libm), Float32, (Float32,Float32), x, y)
@vectorize_2arg Real max
min(x::Float64, y::Float64) = ccall((:fmin,libm), Float64, (Float64,Float64), x, y)
min(x::Float32, y::Float32) = ccall((:fminf,libm), Float32, (Float32,Float32), x, y)
@vectorize_2arg Real min
function exponent(x::Float64)
if x==0 || !isfinite(x)
throw(DomainError())
end
int(ccall((:ilogb,libm), Int32, (Float64,), x))
end
function exponent(x::Float32)
if x==0 || !isfinite(x)
throw(DomainError())
end
int(ccall((:ilogbf,libm), Int32, (Float32,), x))
end
@vectorize_1arg Real exponent
ldexp(x::Float64,e::Int) = ccall((:scalbn,libm), Float64, (Float64,Int32), x, int32(e))
ldexp(x::Float32,e::Int) = ccall((:scalbnf,libm), Float32, (Float32,Int32), x, int32(e))
# TODO: vectorize ldexp
begin
local exp::Array{Int32,1} = zeros(Int32,1)
global frexp
function frexp(x::Float64)
s = ccall((:frexp,libm), Float64, (Float64, Ptr{Int32}), x, exp)
(s, int(exp[1]))
end
function frexp(x::Float32)
s = ccall((:frexpf,libm), Float32, (Float32, Ptr{Int32}), x, exp)
(s, int(exp[1]))
end
function frexp(A::Array{Float64})
f = similar(A)
e = Array(Int, size(A))
for i = 1:length(A)
f[i] = ccall((:frexp,libm), Float64, (Float64, Ptr{Int32}), A[i], exp)
e[i] = exp[1]
end
return (f, e)
end
function frexp(A::Array{Float32})
f = similar(A)
e = Array(Int, size(A))
for i = 1:length(A)
f[i] = ccall((:frexpf,libm), Float32, (Float32, Ptr{Int32}), A[i], exp)
e[i] = exp[1]
end
return (f, e)
end
end
modf(x) = rem(x,one(x)), trunc(x)
^(x::Float64, y::Float64) = ccall((:pow,libm), Float64, (Float64,Float64), x, y)
^(x::Float32, y::Float32) = ccall((:powf,libm), Float32, (Float32,Float32), x, y)
^(x::Float64, y::Integer) = x^float64(y)
^(x::Float32, y::Integer) = x^float32(y)
# special functions
for jy in ("j","y"), nu in (0,1)
jynu = Expr(:quote, symbol(string(jy,nu)))
jynuf = Expr(:quote, symbol(string(jy,nu,"f")))
bjynu = symbol(string("bessel",jy,nu))
if jy == "y"
@eval begin
$bjynu(x::Float64) = nan_dom_err(ccall(($jynu,libm), Float64, (Float64,), x), x)
$bjynu(x::Float32) = nan_dom_err(ccall(($jynuf,libm), Float32, (Float32,), x), x)
end
else
@eval begin
$bjynu(x::Float64) = ccall(($jynu,libm), Float64, (Float64,), x)
$bjynu(x::Float32) = ccall(($jynuf,libm), Float32, (Float32,), x)
end
end
@eval begin
$bjynu(x::Real) = $bjynu(float(x))
$bjynu(x::Complex) = $(symbol(string("bessel",jy)))($nu,x)
@vectorize_1arg Number $bjynu
end
end
let
const ai::Array{Float64,1} = Array(Float64,2)
const ae::Array{Int32,1} = Array(Int32,2)
global airy
function airy(k::Int, z::Complex128)
id = int32(k==1 || k==3)
if k == 0 || k == 1
ccall((:zairy_,openlibm_extras), Void,
(Ptr{Float64}, Ptr{Float64}, Ptr{Int32}, Ptr{Int32},
Ptr{Float64}, Ptr{Float64}, Ptr{Int32}, Ptr{Int32}),
&real(z), &imag(z),
&id, &1,
pointer(ai,1), pointer(ai,2),
pointer(ae,1), pointer(ae,2))
return complex(ai[1],ai[2])
elseif k == 2 || k == 3
ccall((:zbiry_,openlibm_extras), Void,
(Ptr{Float64}, Ptr{Float64}, Ptr{Int32}, Ptr{Int32},
Ptr{Float64}, Ptr{Float64}, Ptr{Int32}, Ptr{Int32}),
&real(z), &imag(z),
&id, &1,
pointer(ai,1), pointer(ai,2),
pointer(ae,1), pointer(ae,2))
return complex(ai[1],ai[2])
else
error("airy: invalid argument")
end
end
end
airy(z) = airy(0,z)
@vectorize_1arg Number airy
airyprime(z) = airy(1,z)
@vectorize_1arg Number airyprime
airyai(z) = airy(0,z)
@vectorize_1arg Number airyai
airyaiprime(z) = airy(1,z)
@vectorize_1arg Number airyaiprime
airybi(z) = airy(2,z)
@vectorize_1arg Number airybi
airybiprime(z) = airy(3,z)
@vectorize_1arg Number airybiprime
airy(k::Number, x::FloatingPoint) = oftype(x, real(airy(k, complex(x))))
airy(k::Number, x::Real) = airy(k, float(x))
airy(k::Number, z::Complex64) = complex64(airy(k, complex128(z)))
airy(k::Number, z::Complex) = airy(convert(Int,k), complex128(z))
@vectorize_2arg Number airy
const cy = Array(Float64,2)
const ae = Array(Int32,2)
const wrk = Array(Float64,2)
function _besselh(nu::Float64, k::Integer, z::Complex128)
ccall((:zbesh_,openlibm_extras), Void,
(Ptr{Float64}, Ptr{Float64}, Ptr{Float64}, Ptr{Int32}, Ptr{Int32},
Ptr{Int32}, Ptr{Float64}, Ptr{Float64}, Ptr{Int32}, Ptr{Int32}),
&real(z), &imag(z), &nu, &1, &k, &1,
pointer(cy,1), pointer(cy,2),
pointer(ae,1), pointer(ae,2))
return complex(cy[1],cy[2])
end
function _besseli(nu::Float64, z::Complex128)
ccall((:zbesi_,openlibm_extras), Void,
(Ptr{Float64}, Ptr{Float64}, Ptr{Float64}, Ptr{Int32}, Ptr{Int32},
Ptr{Float64}, Ptr{Float64}, Ptr{Int32}, Ptr{Int32}),
&real(z), &imag(z), &nu, &1, &1,
pointer(cy,1), pointer(cy,2),
pointer(ae,1), pointer(ae,2))
return complex(cy[1],cy[2])
end
function _besselj(nu::Float64, z::Complex128)
ccall((:zbesj_,openlibm_extras), Void,
(Ptr{Float64}, Ptr{Float64}, Ptr{Float64}, Ptr{Int32}, Ptr{Int32},
Ptr{Float64}, Ptr{Float64}, Ptr{Int32}, Ptr{Int32}),
&real(z), &imag(z), &nu, &1, &1,
pointer(cy,1), pointer(cy,2),
pointer(ae,1), pointer(ae,2))
return complex(cy[1],cy[2])
end
function _besselk(nu::Float64, z::Complex128)
ccall((:zbesk_,openlibm_extras), Void,
(Ptr{Float64}, Ptr{Float64}, Ptr{Float64}, Ptr{Int32}, Ptr{Int32},
Ptr{Float64}, Ptr{Float64}, Ptr{Int32}, Ptr{Int32}),
&real(z), &imag(z), &nu, &1, &1,
pointer(cy,1), pointer(cy,2),
pointer(ae,1), pointer(ae,2))
return complex(cy[1],cy[2])
end
function _bessely(nu::Float64, z::Complex128)
ccall((:zbesy_,openlibm_extras), Void,
(Ptr{Float64}, Ptr{Float64}, Ptr{Float64}, Ptr{Int32},
Ptr{Int32}, Ptr{Float64}, Ptr{Float64}, Ptr{Int32},
Ptr{Float64}, Ptr{Float64}, Ptr{Int32}),
&real(z), &imag(z), &nu, &1, &1,
pointer(cy,1), pointer(cy,2),
pointer(ae,1), pointer(wrk,1),
pointer(wrk,2), pointer(ae,2))
return complex(cy[1],cy[2])
end
function besselh(nu::Float64, k::Integer, z::Complex128)
if nu < 0
s = (k == 1) ? 1 : -1
return _besselh(-nu, k, z) * complex(cospi(nu),-s*sinpi(nu))
end
return _besselh(nu, k, z)
end
function besseli(nu::Float64, z::Complex128)
if nu < 0
return _besseli(-nu,z) - 2_besselk(-nu,z)*sinpi(nu)/pi
else
return _besseli(nu, z)
end
end
function besselj(nu::Float64, z::Complex128)
if nu < 0
return _besselj(-nu,z)cos(pi*nu) + _bessely(-nu,z)*sinpi(nu)
else
return _besselj(nu, z)
end
end
function besselj(nu::Integer, x::FloatingPoint)
return oftype(x, ccall((:jn, libm), Float64, (Cint, Float64), nu, x))
end
function besselj(nu::Integer, x::Float32)
return ccall((:jnf, libm), Float32, (Cint, Float32), nu, x)
end
besselk(nu::Float64, z::Complex128) = _besselk(abs(nu), z)
function bessely(nu::Float64, z::Complex128)
if nu < 0
return _bessely(-nu,z)*cospi(nu) - _besselj(-nu,z)*sinpi(nu)
else
return _bessely(nu, z)
end
end
besselh(nu, z) = besselh(nu, 1, z)
besselh(nu::Real, k::Integer, z::Complex64) = complex64(besselh(float64(nu), k, complex128(z)))
besselh(nu::Real, k::Integer, z::Complex) = besselh(float64(nu), k, complex128(z))
besselh(nu::Real, k::Integer, x::Real) = besselh(float64(nu), k, complex128(x))
@vectorize_2arg Number besselh
besseli(nu::Real, z::Complex64) = complex64(bessely(float64(nu), complex128(z)))
besseli(nu::Real, z::Complex) = besseli(float64(nu), complex128(z))
besseli(nu::Real, x::Integer) = besseli(nu, float64(x))
function besseli(nu::Real, x::FloatingPoint)
if x < 0 && !isinteger(nu)
throw(DomainError())
end
oftype(x, real(besseli(float64(nu), complex128(x))))
end
@vectorize_2arg Number besseli
function besselj(nu::FloatingPoint, x::FloatingPoint)
if isinteger(nu)
if typemin(Int32) <= nu <= typemax(Int32)
return besselj(int(nu), x)
end
elseif x < 0
throw(DomainError())
end
oftype(x, real(besselj(float64(nu), complex128(x))))
end
besselj(nu::Real, z::Complex64) = complex64(besselj(float64(nu), complex128(z)))
besselj(nu::Real, z::Complex) = besselj(float64(nu), complex128(z))
besselj(nu::Real, x::Integer) = besselj(nu, float(x))
@vectorize_2arg Number besselj
besselk(nu::Real, z::Complex64) = complex64(besselk(float64(nu), complex128(z)))
besselk(nu::Real, z::Complex) = besselk(float64(nu), complex128(z))
besselk(nu::Real, x::Integer) = besselk(nu, float64(x))
function besselk(nu::Real, x::FloatingPoint)
if x < 0
throw(DomainError())
end
oftype(x, real(besselk(float64(nu), complex128(x))))
end
@vectorize_2arg Number besselk
bessely(nu::Real, z::Complex64) = complex64(bessely(float64(nu), complex128(z)))
bessely(nu::Real, z::Complex) = bessely(float64(nu), complex128(z))
bessely(nu::Real, x::Integer) = bessely(nu, float64(x))
function bessely(nu::Real, x::FloatingPoint)
if x < 0
throw(DomainError())
end
if isinteger(nu) && typemin(Int32) <= nu <= typemax(Int32)
return bessely(int(nu), x)
end
oftype(x, real(bessely(float64(nu), complex128(x))))
end
function bessely(nu::Integer, x::FloatingPoint)
if x < 0
throw(DomainError())
end
return oftype(x, ccall((:yn, libm), Float64, (Cint, Float64), nu, x))
end
function bessely(nu::Integer, x::Float32)
if x < 0
throw(DomainError())
end
return ccall((:ynf, libm), Float32, (Cint, Float32), nu, x)
end
@vectorize_2arg Number bessely
hankelh1(nu, z) = besselh(nu, 1, z)
@vectorize_2arg Number hankelh1
hankelh2(nu, z) = besselh(nu, 2, z)
@vectorize_2arg Number hankelh2
function angle_restrict_symm(theta)
P1 = 4 * 7.8539812564849853515625e-01
P2 = 4 * 3.7748947079307981766760e-08
P3 = 4 * 2.6951514290790594840552e-15
y = 2*floor(theta/(2*pi))
r = ((theta - y*P1) - y*P2) - y*P3
if (r > pi)
r -= (2*pi)
end
return r
end
const clg_coeff = [76.18009172947146,
-86.50532032941677,
24.01409824083091,
-1.231739572450155,
0.1208650973866179e-2,
-0.5395239384953e-5]
function clgamma_lanczos(z)
sqrt2pi = 2.5066282746310005
y = x = z
temp = x + 5.5
zz = log(temp)
zz = zz * (x+0.5)
temp -= zz
ser = complex(1.000000000190015, 0)
for j=1:6
y += 1.0
zz = clg_coeff[j]/y
ser += zz
end
zz = sqrt2pi*ser / x
return log(zz) - temp
end
function lgamma(z::Complex)
if real(z) <= 0.5
a = clgamma_lanczos(1-z)
b = log(sinpi(z))
logpi = 1.14472988584940017
z = logpi - b - a
else
z = clgamma_lanczos(z)
end
complex(real(z), angle_restrict_symm(imag(z)))
end
gamma(z::Complex) = exp(lgamma(z))
# Derivatives of the digamma function
function psifn(x::Float64, n::Int, kode::Int, m::Int)
# Translated from http://www.netlib.org/slatec/src/dpsifn.f
# Note: Underflow handling at 380 in original is skipped
const nmax = 100
ans = Array(Float64, m)
#-----------------------------------------------------------------------
# bernoulli numbers
#-----------------------------------------------------------------------
const b = [1.00000000000000000e+00,
-5.00000000000000000e-01,1.66666666666666667e-01,
-3.33333333333333333e-02,2.38095238095238095e-02,
-3.33333333333333333e-02,7.57575757575757576e-02,
-2.53113553113553114e-01,1.16666666666666667e+00,
-7.09215686274509804e+00,5.49711779448621554e+01,
-5.29124242424242424e+02,6.19212318840579710e+03,
-8.65802531135531136e+04,1.42551716666666667e+06,
-2.72982310678160920e+07,6.01580873900642368e+08,
-1.51163157670921569e+10,4.29614643061166667e+11,
-1.37116552050883328e+13,4.88332318973593167e+14,
-1.92965793419400681e+16]
trm = Array(Float64, 22)
trmr = Array(Float64, 100)
#***first executable statement dpsifn
if x <= 0.0 throw(DomainError()) end
if n < 0 error("n must be non-negative") end
if kode < 1 | kode > 2 error("kode must be one or two") end
if m < 1 error("m must be larger than one") end
mm = m
const nx = min(-exponent(realmin(Float64)) + 1, exponent(realmax(Float64)))
const r1m5 = log10(2)
const r1m4 = Base.eps(Float64) * 0.5
const wdtol = max(r1m4, 0.5e-18)
#-----------------------------------------------------------------------
# elim = approximate exponential over and underflow limit
#-----------------------------------------------------------------------
const elim = 2.302*(nx*r1m5 - 3.0)
xln = log(x)
nn = n + mm - 1
fn = nn
t = (fn + 1)*xln
#-----------------------------------------------------------------------
# overflow and underflow test for small and large x
#-----------------------------------------------------------------------
if abs(t) > elim
if t <= 0.0 error("n too large") end
error("Overflow, x too small or n+m-1 too large or both")
end
if x < wdtol
ans[1] = x^(-n - 1)
if mm != 1
k = 1
for i = 2:mm
ans[k + 1] = ans[k]/x
k += 1
end
end
if n != 0 return ans end
if kode == 2 ans[1] = ans[1] + xln end
return ans
end
#-----------------------------------------------------------------------
# compute xmin and the number of terms of the series, fln+1
#-----------------------------------------------------------------------
rln = r1m5 * precision(x)
rln = min(rln, 18.06)
fln = max(rln, 3.0) - 3.0
yint = 3.50 + 0.40*fln
slope = 0.21 + fln*(0.0006038*fln + 0.008677)
xm = yint + slope*fn
mx = itrunc(xm) + 1
xmin = mx
if n != 0
xm = -2.302*rln - min(0.0,xln)
arg = xm/n
arg = min(0.0,arg)
eps = exp(arg)
xm = 1.0 - eps
if abs(arg) < 1.0e-3 xm = -arg end
fln = x*xm/eps
xm = xmin - x
if (xm > 7.0) & (fln < 15.0)
nn = itrunc(fln) + 1
np = n + 1
t1 = (n + 1)*xln
t = exp(-t1)
s = t
den = x
for i = 1:nn
den += 1.0
trm[i] = den^(-np)
s += trm[i]
end
ans[1] = s
if n == 0
if kode == 2 ans[1] = s + xln end
end
if mm == 1 return ans end
#-----------------------------------------------------------------------
# generate higher derivatives, j.gt.n
#-----------------------------------------------------------------------
tol = wdtol/5.0
for j = 2:mm
t = t/x
s = t
tols = t*tol
den = x
for i = 1:nn
den += 1.0
trm[i] = trm[i]/den
s += trm[i]
if trm[i] < tols break end
end
ans[j] = s
end
return ans
end
end
xdmy = x
xdmln = xln
xinc = 0.0
if x < xmin
nx = itrunc(x)
xinc = xmin - nx
xdmy = x + xinc
xdmln = log(xdmy)
end
#-----------------------------------------------------------------------
# generate w(n+mm-1,x) by the asymptotic expansion
#-----------------------------------------------------------------------
t = fn*xdmln
t1 = xdmln + xdmln
t2 = t + xdmln
tk = max(abs(t), abs(t1), abs(t2))
if tk > elim error("Underflow") end
tss = exp(-t)
tt = 0.5/xdmy
t1 = tt
tst = wdtol*tt
if nn != 0 t1 = tt + 1.0/fn end
rxsq = 1.0/(xdmy*xdmy)
ta = 0.5*rxsq
t = (fn + 1)*ta
s = t*b[3]
if abs(s) >= tst
tk = 2.0
for k = 4:22
t = t*((tk + fn + 1)/(tk + 1.0))*((tk + fn)/(tk + 2.0))*rxsq
trm[k] = t*b[k]
if abs(trm[k]) < tst break end
s += trm[k]
tk += 2.0
end
end
s = (s + t1)*tss
while true
if xinc != 0.0
#-----------------------------------------------------------------------
# backward recur from xdmy to x
#-----------------------------------------------------------------------
nx = itrunc(xinc)
np = nn + 1
if nx > nmax error("n too large") end
if nn == 0 break end
xm = xinc - 1.0
fx = x + xm
#-----------------------------------------------------------------------
# this loop should not be changed. fx is accurate when x is small
#-----------------------------------------------------------------------
for i = 1:nx
trmr[i] = fx^(-np)
s += trmr[i]
xm -= 1.0
fx = x + xm
end
end
ans[mm] = s
if fn == 0
if kode != 2
ans[1] = s - xdmln
return ans
end
if xdmy == x return ans end
xq = xdmy/x
ans[1] = s - log(xq)
return ans
end
#-----------------------------------------------------------------------
# generate lower derivatives, j.lt.n+mm-1
#-----------------------------------------------------------------------
if mm == 1 return ans end
for j = 2:mm
fn -= 1
tss *= xdmy
t1 = tt
if fn != 0 t1 = tt + 1.0/fn end
t = (fn + 1)*ta
s = t*b[3]
if abs(s) >= tst
tk = 4 + fn
for k = 4:22 #110
trm[k] = trm[k]*(fn + 1)/tk
if abs(trm[k]) < tst break end
s += trm[k]
tk += 2.0
end
end
s = (s + t1)*tss
if xinc != 0.0
if fn == 0 break end
xm = xinc - 1.0
fx = x + xm
for i = 1:nx
trmr[i] = trmr[i]*fx
s += trmr[i]
xm -= 1.0
fx = x + xm
end
end
mx = mm - j + 1
ans[mx] = s
if fn == 0
if kode != 2
ans[1] = s - xdmln
return ans
end
if xdmy == x return ans end
xq = xdmy/x
ans[1] = s - log(xq)
return ans
end
end
if fn == 0 break end
return ans
end
#-----------------------------------------------------------------------
# recursion for n = 0
#-----------------------------------------------------------------------
for i = 1:nx
s += 1.0/(x + nx - i)
end
if kode != 2
ans[1] = s - xdmln
return ans
end
if xdmy == x return ans end
xq = xdmy/x
ans[1] = s - log(xq)
return ans
end
polygamma(k::Int, x::Float64) = (2rem(k,2) - 1)*psifn(x, k, 1, 1)[1]/gamma(k + 1)
polygamma(k::Int, x::Float32) = float32(polygamma(k, float64(x)))
polygamma(k::Int, x::Real) = polygamma(k, float64(x))
digamma(x::Real) = polygamma(0, x)
@vectorize_1arg Real digamma
trigamma(x::Real) = polygamma(1, x)
@vectorize_1arg Real trigamma
# Inverse digamma function
#
# Implementation of fixed point algorithm described in
# "Estimating a Dirichlet distribution" by Thomas P. Minka, 2000
function invdigamma(y::Float64)
# Closed form initial estimates
if y >= -2.22
x_old = exp(y) + 0.5
x_new = x_old
else
x_old = -1.0 / (y - digamma(1.0))
x_new = x_old
end
# Fixed point algorithm
delta = Inf
iteration = 0
while delta > 1e-12 && iteration < 25
iteration += 1
x_new = x_old - (digamma(x_old) - y) / trigamma(x_old)
delta = abs(x_new - x_old)
x_old = x_new
end
return x_new
end
invdigamma(x::Float32) = float32(invdigamma(float64(x)))
invdigamma(x::Real) = invdigamma(float64(x))
@vectorize_1arg Real invdigamma
function beta(x::Number, w::Number)
yx, sx = lgamma_r(x)
yw, sw = lgamma_r(w)
yxw, sxw = lgamma_r(x+w)
return copysign(exp(yx + yw - yxw), sx*sw*sxw)
end
lbeta(x::Number, w::Number) = lgamma(x)+lgamma(w)-lgamma(x+w)
@vectorize_2arg Number beta
@vectorize_2arg Number lbeta
const eta_coeffs =
[.99999999999999999997,