-
-
Notifications
You must be signed in to change notification settings - Fork 5.5k
/
Copy pathabstractarray.jl
1725 lines (1506 loc) · 44.1 KB
/
abstractarray.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
## Type aliases for convenience ##
typealias AbstractVector{T} AbstractArray{T,1}
typealias AbstractMatrix{T} AbstractArray{T,2}
## Basic functions ##
size{T,n}(t::AbstractArray{T,n}, d) = (d>n ? 1 : size(t)[d])
eltype(x) = Any
eltype{T,n}(::AbstractArray{T,n}) = T
eltype{T,n}(::Type{AbstractArray{T,n}}) = T
eltype{T<:AbstractArray}(::Type{T}) = eltype(super(T))
iseltype(x,T) = eltype(x) <: T
isinteger(x::AbstractArray) = all(isinteger,x)
isinteger{T<:Integer,n}(x::AbstractArray{T,n}) = true
isreal(x::AbstractArray) = all(isreal,x)
isreal{T<:Real,n}(x::AbstractArray{T,n}) = true
ndims{T,n}(::AbstractArray{T,n}) = n
ndims{T,n}(::Type{AbstractArray{T,n}}) = n
ndims{T<:AbstractArray}(::Type{T}) = ndims(super(T))
length(t::AbstractArray) = prod(size(t))::Int
endof(a::AbstractArray) = length(a)
first(a::AbstractArray) = a[1]
first(a) = next(a,start(a))[1]
last(a) = a[end]
function stride(a::AbstractArray, i::Integer)
if i > ndims(a)
return length(a)
end
s = 1
for n=1:(i-1)
s *= size(a, n)
end
return s
end
strides(a::AbstractArray) = ntuple(ndims(a), i->stride(a,i))::Dims
function isassigned(a::AbstractArray, i::Int...)
# TODO
try
a[i...]
true
catch
false
end
end
# used to compute "end" for last index
function trailingsize(A, n)
s = 1
for i=n:ndims(A)
s *= size(A,i)
end
return s
end
## Bounds checking ##
function checkbounds(sz::Int, I::Real)
I = to_index(I)
if I < 1 || I > sz
throw(BoundsError())
end
end
function checkbounds(sz::Int, I::AbstractVector{Bool})
if length(I) > sz
throw(BoundsError())
end
end
function checkbounds{T<:Integer}(sz::Int, I::Ranges{T})
if !isempty(I) && (minimum(I) < 1 || maximum(I) > sz)
throw(BoundsError())
end
end
function checkbounds{T <: Real}(sz::Int, I::AbstractArray{T})
for i in I
i = to_index(i)
if i < 1 || i > sz
throw(BoundsError())
end
end
end
function checkbounds(A::AbstractArray, I::AbstractArray{Bool})
if !isequal(size(A), size(I)) throw(BoundsError()) end
end
checkbounds(A::AbstractArray, I) = checkbounds(length(A), I)
function checkbounds(A::AbstractMatrix, I, J)
checkbounds(size(A,1), I)
checkbounds(size(A,2), J)
end
function checkbounds(A::AbstractArray, I, J)
checkbounds(size(A,1), I)
sz = size(A,2)
for i = 3:ndims(A)
sz *= size(A, i) # TODO: sync. with decision on issue #1030
end
checkbounds(sz, J)
end
function checkbounds(A::AbstractArray, I::Union(Real,AbstractArray)...)
n = length(I)
if n > 0
for dim = 1:(n-1)
checkbounds(size(A,dim), I[dim])
end
sz = size(A,n)
for i = n+1:ndims(A)
sz *= size(A,i) # TODO: sync. with decision on issue #1030
end
checkbounds(sz, I[n])
end
end
## Bounds-checking without errors ##
in_bounds(l::Int, i::Integer) = 1 <= i <= l
function in_bounds(sz::Dims, I::Int...)
n = length(I)
for dim = 1:(n-1)
if !(1 <= I[dim] <= sz[dim])
return false
end
end
s = sz[n]
for i = n+1:length(sz)
s *= sz[i]
end
1 <= I[n] <= s
end
## Constructors ##
# default arguments to similar()
similar{T}(a::AbstractArray{T}) = similar(a, T, size(a))
similar (a::AbstractArray, T) = similar(a, T, size(a))
similar{T}(a::AbstractArray{T}, dims::Dims) = similar(a, T, dims)
similar{T}(a::AbstractArray{T}, dims::Int...) = similar(a, T, dims)
similar (a::AbstractArray, T, dims::Int...) = similar(a, T, dims)
function reshape(a::AbstractArray, dims::Dims)
if prod(dims) != length(a)
error("reshape: invalid dimensions")
end
copy!(similar(a, dims), a)
end
reshape(a::AbstractArray, dims::Int...) = reshape(a, dims)
vec(a::AbstractArray) = reshape(a,length(a))
vec(a::AbstractVector) = a
function squeeze(A::AbstractArray, dims)
d = ()
for i in 1:ndims(A)
if in(i,dims)
if size(A,i) != 1
error("squeezed dims must all be size 1")
end
else
d = tuple(d..., size(A,i))
end
end
reshape(A, d)
end
function fill!(A::AbstractArray, x)
for i = 1:length(A)
A[i] = x
end
return A
end
function copy!(dest::AbstractArray, src)
i = 1
for x in src
dest[i] = x
i += 1
end
return dest
end
# copy with minimal requirements on src
# if src is not an AbstractArray, moving to the offset might be O(n)
function copy!(dest::AbstractArray, doffs::Integer, src, soffs::Integer=1)
st = start(src)
for j = 1:(soffs-1)
_, st = next(src, st)
end
i = doffs
while !done(src,st)
val, st = next(src, st)
dest[i] = val
i += 1
end
return dest
end
# NOTE: this is to avoid ambiguity with the deprecation of
# copy!(dest::AbstractArray, src, doffs::Integer)
# Remove this when that deprecation is removed.
function copy!(dest::AbstractArray, doffs::Integer, src::Integer)
dest[doffs] = src
return dest
end
# this method must be separate from the above since src might not have a length
function copy!(dest::AbstractArray, doffs::Integer, src, soffs::Integer, n::Integer)
n == 0 && return dest
st = start(src)
for j = 1:(soffs-1)
_, st = next(src, st)
end
for i = doffs:(doffs+n-1)
done(src,st) && throw(BoundsError())
val, st = next(src, st)
dest[i] = val
end
return dest
end
# if src is an AbstractArray and a source offset is passed, use indexing
function copy!(dest::AbstractArray, doffs::Integer, src::AbstractArray, soffs::Integer, n::Integer=length(src))
for i = 0:(n-1)
dest[doffs+i] = src[soffs+i]
end
return dest
end
copy(a::AbstractArray) = copy!(similar(a), a)
copy(a::AbstractArray{None}) = a # cannot be assigned into so is immutable
zero{T}(x::AbstractArray{T}) = fill!(similar(x), zero(T))
## iteration support for arrays as ranges ##
start(a::AbstractArray) = 1
next(a::AbstractArray,i) = (a[i],i+1)
done(a::AbstractArray,i) = (i > length(a))
isempty(a::AbstractArray) = (length(a) == 0)
## Conversions ##
for (f,t) in ((:char, Char),
(:int, Int),
(:int8, Int8),
(:int16, Int16),
(:int32, Int32),
(:int64, Int64),
(:int128, Int128),
(:uint, Uint),
(:uint8, Uint8),
(:uint16, Uint16),
(:uint32, Uint32),
(:uint64, Uint64),
(:uint128,Uint128))
@eval begin
($f)(x::AbstractArray{$t}) = x
function ($f)(x::AbstractArray)
y = similar(x,$t)
i = 1
for e in x
y[i] = ($f)(e)
i += 1
end
y
end
end
end
for (f,t) in ((:integer, Integer),
(:unsigned, Unsigned))
@eval begin
($f){T<:$t}(x::AbstractArray{T}) = x
function ($f)(x::AbstractArray)
y = similar(x,typeof(($f)(one(eltype(x)))))
i = 1
for e in x
y[i] = ($f)(e)
i += 1
end
y
end
end
end
bool(x::AbstractArray{Bool}) = x
bool(x::AbstractArray) = copy!(similar(x,Bool), x)
for (f,t) in ((:float16, Float16),
(:float32, Float32),
(:float64, Float64),
(:complex64, Complex64),
(:complex128, Complex128))
@eval ($f)(x::AbstractArray{$t}) = x
@eval ($f)(x::AbstractArray) = copy!(similar(x,$t), x)
end
float{T<:FloatingPoint}(x::AbstractArray{T}) = x
complex{T<:Complex}(x::AbstractArray{T}) = x
float (x::AbstractArray) = copy!(similar(x,typeof(float(one(eltype(x))))), x)
complex (x::AbstractArray) = copy!(similar(x,typeof(complex(one(eltype(x))))), x)
dense(x::AbstractArray) = x
full(x::AbstractArray) = x
## range conversions ##
for fn in _numeric_conversion_func_names
@eval begin
$fn(r::Range ) = Range($fn(r.start), $fn(r.step), r.len)
$fn(r::Range1) = Range1($fn(r.start), r.len)
end
end
## Unary operators ##
conj{T<:Real}(x::AbstractArray{T}) = x
conj!{T<:Real}(x::AbstractArray{T}) = x
real{T<:Real}(x::AbstractVector{T}) = x
real{T<:Real}(x::AbstractArray{T}) = x
imag{T<:Real}(x::AbstractVector{T}) = zero(x)
imag{T<:Real}(x::AbstractArray{T}) = zero(x)
+{T<:Number}(x::AbstractArray{T}) = x
*{T<:Number}(x::AbstractArray{T}) = x
## Binary arithmetic operators ##
*(A::Number, B::AbstractArray) = A .* B
*(A::AbstractArray, B::Number) = A .* B
/(A::Number, B::AbstractArray) = A ./ B
/(A::AbstractArray, B::Number) = A ./ B
\(A::Number, B::AbstractArray) = B ./ A
\(A::AbstractArray, B::Number) = B ./ A
./(x::AbstractArray, y::AbstractArray ) = throw(MethodError(./, (x,y)))
./(x::Number,y::AbstractArray ) = throw(MethodError(./, (x,y)))
./(x::AbstractArray, y::Number) = throw(MethodError(./, (x,y)))
.^(x::AbstractArray, y::AbstractArray ) = throw(MethodError(.^, (x,y)))
.^(x::Number,y::AbstractArray ) = throw(MethodError(.^, (x,y)))
.^(x::AbstractArray, y::Number) = throw(MethodError(.^, (x,y)))
## code generator for specializing on the number of dimensions ##
#otherbodies are the bodies that reside between loops, if its a 2 dimension array.
function make_loop_nest(vars, ranges, body)
otherbodies = cell(length(vars),2)
#println(vars)
for i = 1:2*length(vars)
otherbodies[i] = nothing
end
make_loop_nest(vars, ranges, body, otherbodies)
end
function make_loop_nest(vars, ranges, body, otherbodies)
expr = body
len = size(otherbodies)[1]
for i=1:length(vars)
v = vars[i]
r = ranges[i]
l = otherbodies[i]
j = otherbodies[i+len]
expr = quote
$l
for ($v) = ($r)
$expr
end
$j
end
end
expr
end
## genbodies() is a function that creates an array (potentially 2d),
## where the first element is inside the inner most array, and the last
## element is outside most loop, and all the other arguments are
## between each loop. If it creates a 2d array, it just means that it
## specifies what it wants to do before and after each loop.
## If genbodies creates an array it must of length N.
function gen_cartesian_map(cache, genbodies, ranges, exargnames, exargs...)
if ranges === ()
ranges = (1,)
end
N = length(ranges)
if !haskey(cache,N)
if isdefined(genbodies,:code)
mod = genbodies.code.module
else
mod = Main
end
dimargnames = { symbol(string("_d",i)) for i=1:N }
ivars = { symbol(string("_i",i)) for i=1:N }
bodies = genbodies(ivars)
## creating a 2d array, to pass as bodies
if isa(bodies,Array)
if (ndims(bodies)==2)
#println("2d array noticed")
body = bodies[1]
bodies = bodies[2:end,:]
elseif (ndims(bodies)==1)
#println("1d array noticed")
body = bodies[1]
bodies_tmp = cell(N,2)
for i = 1:N
bodies_tmp[i] = bodies[i+1]
bodies_tmp[i+N] = nothing
end
bodies = bodies_tmp
end
else
#println("no array noticed")
body = bodies
bodies = cell(N,2)
for i=1:2*N
bodies[i] = nothing
end
end
fexpr =
quote
local _F_
function _F_($(dimargnames...), $(exargnames...))
$(make_loop_nest(ivars, dimargnames, body, bodies))
end
_F_
end
f = eval(mod,fexpr)
cache[N] = f
else
f = cache[N]
end
return f(ranges..., exargs...)
end
# Generate function bodies which look like this (example for a 3d array):
# offset3 = 0
# stride1 = 1
# stride2 = stride1 * size(A,1)
# stride3 = stride2 * size(A,2)
# for i3 = ind3
# offset2 = offset3 + (i3-1)*stride3
# for i2 = ind2
# offset1 = offset2 + (i2-1)*stride2
# for i1 = ind1
# linearind = offset1 + i1
# <A function, "body", of linearind>
# end
# end
# end
function make_arrayind_loop_nest(loopvars, offsetvars, stridevars, linearind, ranges, body, arrayname)
# Initialize: calculate the strides
offset = offsetvars[end]
s = stridevars[1]
exinit = quote
$offset = 0
$s = 1
end
for i = 2:length(ranges)
sprev = s
s = stridevars[i]
exinit = quote
$exinit
$s = $sprev * size($arrayname, $i-1)
end
end
# Build the innermost loop (iterating over the first index)
v = loopvars[1]
r = ranges[1]
offset = offsetvars[1]
exloop = quote
for ($v) = ($r)
$linearind = $offset + $v
$body
end
end
# Build the remaining loops
for i = 2:length(ranges)
v = loopvars[i]
r = ranges[i]
offset = offsetvars[i-1]
offsetprev = offsetvars[i]
s = stridevars[i]
exloop = quote
for ($v) = ($r)
$offset = $offsetprev + ($v - 1) * $s
$exloop
end
end
end
# Return the combined result
return quote
$exinit
$exloop
end
end
# Like gen_cartesian_map, except it builds a function creating a
# loop nest that computes a single linear index (instead of a
# multidimensional index).
# Important differences:
# - genbody is a scalar-valued function of a single scalar argument,
# the linear index. In gen_cartesian_map, this function can return
# an array to specify "pre-loop" and "post-loop" operations, but
# here those are handled explicitly in make_arrayind_loop_nest.
# - exargnames[1] must be the array for which the linear index is
# being created (it is used to calculate the strides, which in
# turn are used for computing the linear index)
function gen_array_index_map(cache, genbody, ranges, exargnames, exargs...)
N = length(ranges)
if !haskey(cache,N)
dimargnames = { symbol(string("_d",i)) for i=1:N }
loopvars = { symbol(string("_l",i)) for i=1:N }
offsetvars = { symbol(string("_offs",i)) for i=1:N }
stridevars = { symbol(string("_stri",i)) for i=1:N }
linearind = :_li
body = genbody(linearind)
fexpr = quote
local _F_
function _F_($(dimargnames...), $(exargnames...))
$(make_arrayind_loop_nest(loopvars, offsetvars, stridevars, linearind, dimargnames, body, exargnames[1]))
end
return _F_
end
f = eval(fexpr)
cache[N] = f
else
f = cache[N]
end
return f(ranges..., exargs...)
end
## Indexing: getindex ##
getindex(t::AbstractArray, i::Real) = error("indexing not defined for ", typeof(t))
# linear indexing with a single multi-dimensional index
function getindex(A::AbstractArray, I::AbstractArray)
x = similar(A, size(I))
for i=1:length(I)
x[i] = A[I[i]]
end
return x
end
# index A[:,:,...,i,:,:,...] where "i" is in dimension "d"
# TODO: more optimized special cases
slicedim(A::AbstractArray, d::Integer, i) =
A[[ n==d ? i : (1:size(A,n)) for n in 1:ndims(A) ]...]
function reverse(A::AbstractVector, s=1, n=length(A))
B = similar(A)
for i = 1:s-1
B[i] = A[i]
end
for i = s:n
B[i] = A[n+s-i]
end
for i = n+1:length(A)
B[i] = A[i]
end
B
end
function flipdim(A::AbstractVector, d::Integer)
d > 0 || error("dimension out of range")
d == 1 || return copy(A)
reverse(A)
end
function flipdim(A::AbstractArray, d::Integer)
nd = ndims(A)
sd = d > nd ? 1 : size(A, d)
if sd == 1
return copy(A)
end
B = similar(A)
nnd = 0
for i = 1:nd
nnd += int(size(A,i)==1 || i==d)
end
if nnd==nd
# flip along the only non-singleton dimension
for i = 1:sd
B[i] = A[sd+1-i]
end
return B
end
alli = [ 1:size(B,n) for n in 1:nd ]
for i = 1:sd
B[[ n==d ? sd+1-i : alli[n] for n in 1:nd ]...] = slicedim(A, d, i)
end
return B
end
flipud(A::AbstractArray) = flipdim(A, 1)
fliplr(A::AbstractArray) = flipdim(A, 2)
circshift(a, shiftamt::Real) = circshift(a, [integer(shiftamt)])
function circshift(a, shiftamts)
n = ndims(a)
I = cell(n)
for i=1:n
s = size(a,i)
d = i<=length(shiftamts) ? shiftamts[i] : 0
I[i] = d==0 ? (1:s) : mod([-d:s-1-d], s)+1
end
a[I...]::typeof(a)
end
## Indexing: setindex! ##
# 1-d indexing is assumed defined on subtypes
setindex!(t::AbstractArray, x, i::Real) =
error("setindex! not defined for ",typeof(t))
setindex!(t::AbstractArray, x) = throw(MethodError(setindex!, (t, x)))
## Indexing: handle more indices than dimensions if "extra" indices are 1
# Don't require vector/matrix subclasses to implement more than 1/2 indices,
# respectively, by handling the extra dimensions in AbstractMatrix.
function getindex(A::AbstractVector, i1,i2,i3...)
if i2*prod(i3) != 1
throw(BoundsError())
end
A[i1]
end
function getindex(A::AbstractMatrix, i1,i2,i3,i4...)
if i3*prod(i4) != 1
throw(BoundsError())
end
A[i1,i2]
end
function setindex!(A::AbstractVector, x, i1,i2,i3...)
if i2*prod(i3) != 1
throw(BoundsError())
end
A[i1] = x
end
function setindex!(A::AbstractMatrix, x, i1,i2,i3,i4...)
if i3*prod(i4) != 1
throw(BoundsError())
end
A[i1,i2] = x
end
## get (getindex with a default value) ##
typealias RangeVecIntList{A<:AbstractVector{Int}} Union((Union(Ranges, AbstractVector{Int})...), AbstractVector{Range1{Int}}, AbstractVector{Range{Int}}, AbstractVector{A})
get(A::AbstractArray, i::Integer, default) = in_bounds(length(A), i) ? A[i] : default
get(A::AbstractArray, I::(), default) = similar(A, typeof(default), 0)
get(A::AbstractArray, I::Dims, default) = in_bounds(size(A), I...) ? A[I...] : default
function get!{T}(X::AbstractArray{T}, A::AbstractArray, I::Union(Ranges, AbstractVector{Int}), default::T)
ind = findin(I, 1:length(A))
X[ind] = A[I[ind]]
X[1:first(ind)-1] = default
X[last(ind)+1:length(X)] = default
X
end
get(A::AbstractArray, I::Ranges, default) = get!(similar(A, typeof(default), length(I)), A, I, default)
function get!{T}(X::AbstractArray{T}, A::AbstractArray, I::RangeVecIntList, default::T)
fill!(X, default)
dst, src = indcopy(size(A), I)
X[dst...] = A[src...]
X
end
get(A::AbstractArray, I::RangeVecIntList, default) = get!(similar(A, typeof(default), map(length, I)...), A, I, default)
## Concatenation ##
#TODO: ERROR CHECK
cat(catdim::Integer) = Array(None, 0)
vcat() = Array(None, 0)
hcat() = Array(None, 0)
## cat: special cases
hcat{T}(X::T...) = T[ X[j] for i=1, j=1:length(X) ]
hcat{T<:Number}(X::T...) = T[ X[j] for i=1, j=1:length(X) ]
vcat{T}(X::T...) = T[ X[i] for i=1:length(X) ]
vcat{T<:Number}(X::T...) = T[ X[i] for i=1:length(X) ]
function vcat(X::Number...)
T = None
for x in X
T = promote_type(T,typeof(x))
end
hvcat_fill(Array(T,length(X)), X)
end
function hcat(X::Number...)
T = None
for x in X
T = promote_type(T,typeof(x))
end
hvcat_fill(Array(T,1,length(X)), X)
end
function hcat{T}(V::AbstractVector{T}...)
height = length(V[1])
for j = 2:length(V)
if length(V[j]) != height; error("hcat: mismatched dimensions"); end
end
[ V[j][i]::T for i=1:length(V[1]), j=1:length(V) ]
end
function vcat{T}(V::AbstractVector{T}...)
n = 0
for Vk in V
n += length(Vk)
end
a = similar(full(V[1]), n)
pos = 1
for k=1:length(V)
Vk = V[k]
for i=1:length(Vk)
a[pos] = Vk[i]
pos += 1
end
end
a
end
function hcat{T}(A::Union(AbstractMatrix{T},AbstractVector{T})...)
nargs = length(A)
nrows = size(A[1], 1)
ncols = 0
dense = true
for j = 1:nargs
Aj = A[j]
dense &= isa(Aj,Array)
nd = ndims(Aj)
ncols += (nd==2 ? size(Aj,2) : 1)
if size(Aj, 1) != nrows; error("hcat: mismatched dimensions"); end
end
B = similar(full(A[1]), nrows, ncols)
pos = 1
if dense
for k=1:nargs
Ak = A[k]
n = length(Ak)
copy!(B, pos, Ak, 1, n)
pos += n
end
else
for k=1:nargs
Ak = A[k]
p1 = pos+(isa(Ak,AbstractMatrix) ? size(Ak, 2) : 1)-1
B[:, pos:p1] = Ak
pos = p1+1
end
end
return B
end
function vcat{T}(A::AbstractMatrix{T}...)
nargs = length(A)
nrows = sum(a->size(a, 1), A)::Int
ncols = size(A[1], 2)
for j = 2:nargs
if size(A[j], 2) != ncols; error("vcat: mismatched dimensions"); end
end
B = similar(full(A[1]), nrows, ncols)
pos = 1
for k=1:nargs
Ak = A[k]
p1 = pos+size(Ak,1)-1
B[pos:p1, :] = Ak
pos = p1+1
end
return B
end
## cat: general case
function cat(catdim::Integer, X...)
nargs = length(X)
dimsX = map((a->isa(a,AbstractArray) ? size(a) : (1,)), X)
ndimsX = map((a->isa(a,AbstractArray) ? ndims(a) : 1), X)
d_max = maximum(ndimsX)
if catdim > d_max + 1
for i=1:nargs
if dimsX[1] != dimsX[i]
error("cat: all inputs must have same dimensions when concatenating along a higher dimension");
end
end
elseif nargs >= 2
for d=1:d_max
if d == catdim; continue; end
len = d <= ndimsX[1] ? dimsX[1][d] : 1
for i = 2:nargs
if len != (d <= ndimsX[i] ? dimsX[i][d] : 1)
error("cat: dimension mismatch on dimension ", d)
#error("lala $d")
end
end
end
end
cat_ranges = [ catdim <= ndimsX[i] ? dimsX[i][catdim] : 1 for i=1:nargs ]
function compute_dims(d)
if d == catdim
if catdim <= d_max
return sum(cat_ranges)
else
return nargs
end
else
if d <= ndimsX[1]
return dimsX[1][d]
else
return 1
end
end
end
ndimsC = max(catdim, d_max)
dimsC = ntuple(ndimsC, compute_dims)::(Int...)
typeC = promote_type(map(x->isa(x,AbstractArray) ? eltype(x) : typeof(x), X)...)
C = similar(isa(X[1],AbstractArray) ? full(X[1]) : [X[1]], typeC, dimsC)
range = 1
for k=1:nargs
nextrange = range+cat_ranges[k]
cat_one = [ i != catdim ? (1:dimsC[i]) : (range:nextrange-1) for i=1:ndimsC ]
C[cat_one...] = X[k]
range = nextrange
end
return C
end
vcat(X...) = cat(1, X...)
hcat(X...) = cat(2, X...)
cat{T}(catdim::Integer, A::AbstractArray{T}...) = cat_t(catdim, T, A...)
cat(catdim::Integer, A::AbstractArray...) =
cat_t(catdim, promote_type(map(eltype, A)...), A...)
function cat_t(catdim::Integer, typeC, A::AbstractArray...)
# ndims of all input arrays should be in [d-1, d]
nargs = length(A)
dimsA = map(size, A)
ndimsA = map(ndims, A)
d_max = maximum(ndimsA)
if catdim > d_max + 1
for i=1:nargs
if dimsA[1] != dimsA[i]
error("cat: all inputs must have same dimensions when concatenating along a higher dimension");
end
end
elseif nargs >= 2
for d=1:d_max
if d == catdim; continue; end
len = d <= ndimsA[1] ? dimsA[1][d] : 1
for i = 2:nargs
if len != (d <= ndimsA[i] ? dimsA[i][d] : 1)
error("cat: dimension mismatch on dimension ", d)
end
end
end
end
cat_ranges = [ catdim <= ndimsA[i] ? dimsA[i][catdim] : 1 for i=1:nargs ]
function compute_dims(d)
if d == catdim
if catdim <= d_max
return sum(cat_ranges)
else
return nargs
end
else
if d <= ndimsA[1]
return dimsA[1][d]
else
return 1
end
end
end
ndimsC = max(catdim, d_max)
dimsC = ntuple(ndimsC, compute_dims)::(Int...)
C = similar(full(A[1]), typeC, dimsC)
range = 1
for k=1:nargs
nextrange = range+cat_ranges[k]
cat_one = [ i != catdim ? (1:dimsC[i]) : (range:nextrange-1) for i=1:ndimsC ]
C[cat_one...] = A[k]
range = nextrange
end
return C
end
vcat(A::AbstractArray...) = cat(1, A...)
hcat(A::AbstractArray...) = cat(2, A...)
# 2d horizontal and vertical concatenation
function hvcat(nbc::Integer, as...)
# nbc = # of block columns
n = length(as)
if mod(n,nbc) != 0
error("hvcat: not all rows have the same number of block columns")
end
nbr = div(n,nbc)
hvcat(ntuple(nbr, i->nbc), as...)
end
function hvcat{T}(rows::(Int...), as::AbstractMatrix{T}...)
nbr = length(rows) # number of block rows
nc = 0
for i=1:rows[1]
nc += size(as[i],2)
end
nr = 0
a = 1
for i = 1:nbr
nr += size(as[a],1)
a += rows[i]
end
out = similar(full(as[1]), T, nr, nc)
a = 1
r = 1
for i = 1:nbr
c = 1
szi = size(as[a],1)
for j = 1:rows[i]
Aj = as[a+j-1]
szj = size(Aj,2)
if size(Aj,1) != szi
error("hvcat: mismatched height in block row ", i)
end
if c-1+szj > nc
error("hvcat: block row ", i, " has mismatched number of columns")
end
out[r:r-1+szi, c:c-1+szj] = Aj
c += szj
end
if c != nc+1
error("hvcat: block row ", i, " has mismatched number of columns")
end
r += szi
a += rows[i]
end
out
end
hvcat(rows::(Int...)) = []
function hvcat{T<:Number}(rows::(Int...), xs::T...)
nr = length(rows)
nc = rows[1]
a = Array(T, nr, nc)
k = 1
for i=1:nr
if nc != rows[i]
error("hvcat: row ", i, " has mismatched number of columns")
end
for j=1:nc
a[i,j] = xs[k]
k += 1
end
end
a