-
-
Notifications
You must be signed in to change notification settings - Fork 5.5k
/
Copy patharraymath.jl
284 lines (239 loc) · 5.77 KB
/
arraymath.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
# This file is a part of Julia. License is MIT: https://julialang.org/license
## Binary arithmetic operators ##
for f in (:+, :-)
@eval function ($f)(A::AbstractArray, B::AbstractArray)
promote_shape(A, B) # check size compatibility
broadcast_preserving_zero_d($f, A, B)
end
end
function +(A::Array, Bs::Array...)
for B in Bs
promote_shape(A, B) # check size compatibility
end
broadcast_preserving_zero_d(+, A, Bs...)
end
for f in (:/, :\, :*)
if f !== :/
@eval ($f)(A::Number, B::AbstractArray) = broadcast_preserving_zero_d($f, A, B)
end
if f !== :\
@eval ($f)(A::AbstractArray, B::Number) = broadcast_preserving_zero_d($f, A, B)
end
end
## data movement ##
"""
reverse(A; dims=:)
Reverse `A` along dimension `dims`, which can be an integer (a
single dimension), a tuple of integers (a tuple of dimensions)
or `:` (reverse along all the dimensions, the default). See
also [`reverse!`](@ref) for in-place reversal.
# Examples
```jldoctest
julia> b = Int64[1 2; 3 4]
2×2 Matrix{Int64}:
1 2
3 4
julia> reverse(b, dims=2)
2×2 Matrix{Int64}:
2 1
4 3
julia> reverse(b)
2×2 Matrix{Int64}:
4 3
2 1
```
!!! compat "Julia 1.6"
Prior to Julia 1.6, only single-integer `dims` are supported in `reverse`.
"""
reverse(A::AbstractArray; dims=:) = _reverse(A, dims)
_reverse(A, dims) = reverse!(copymutable(A); dims)
"""
reverse!(A; dims=:)
Like [`reverse`](@ref), but operates in-place in `A`.
!!! compat "Julia 1.6"
Multidimensional `reverse!` requires Julia 1.6.
"""
reverse!(A::AbstractArray; dims=:) = _reverse!(A, dims)
_reverse!(A::AbstractArray{<:Any,N}, ::Colon) where {N} = _reverse!(A, ntuple(identity, Val{N}()))
_reverse!(A, dim::Integer) = _reverse!(A, (Int(dim),))
_reverse!(A, dims::NTuple{M,Integer}) where {M} = _reverse!(A, Int.(dims))
function _reverse!(A::AbstractArray{<:Any,N}, dims::NTuple{M,Int}) where {N,M}
dimrev = ntuple(k -> k in dims, Val{N}()) # boolean tuple indicating reversed dims
if N < M || M != sum(dimrev)
throw(ArgumentError("invalid dimensions $dims in reverse!"))
end
M == 0 && return A # nothing to reverse
# swapping loop only needs to traverse ≈half of the array
halfsz = ntuple(k -> k == dims[1] ? size(A,k) ÷ 2 : size(A,k), Val{N}())
last1 = ntuple(k -> lastindex(A,k)+firstindex(A,k), Val{N}()) # offset for reversed index
for i in CartesianIndices(ntuple(k -> firstindex(A,k):firstindex(A,k)-1+@inbounds(halfsz[k]), Val{N}()))
iₜ = Tuple(i)
iᵣ = CartesianIndex(ifelse.(dimrev, last1 .- iₜ, iₜ))
@inbounds A[iᵣ], A[i] = A[i], A[iᵣ]
end
if M > 1 && isodd(size(A, dims[1]))
# middle slice for odd dimensions must be recursively flipped
mid = firstindex(A, dims[1]) + (size(A, dims[1]) ÷ 2)
midslice = CartesianIndices(ntuple(k -> k == dims[1] ? (mid:mid) : (firstindex(A,k):lastindex(A,k)), Val{N}()))
_reverse!(view(A, midslice), dims[2:end])
end
return A
end
# fix ambiguity with array.jl:
_reverse!(A::AbstractVector, dim::Tuple{Int}) = _reverse!(A, first(dim))
"""
rotl90(A)
Rotate matrix `A` left 90 degrees.
# Examples
```jldoctest
julia> a = [1 2; 3 4]
2×2 Matrix{Int64}:
1 2
3 4
julia> rotl90(a)
2×2 Matrix{Int64}:
2 4
1 3
```
"""
function rotl90(A::AbstractMatrix)
ind1, ind2 = axes(A)
B = similar(A, (ind2,ind1))
n = first(ind2)+last(ind2)
for i=axes(A,1), j=ind2
B[n-j,i] = A[i,j]
end
return B
end
"""
rotr90(A)
Rotate matrix `A` right 90 degrees.
# Examples
```jldoctest
julia> a = [1 2; 3 4]
2×2 Matrix{Int64}:
1 2
3 4
julia> rotr90(a)
2×2 Matrix{Int64}:
3 1
4 2
```
"""
function rotr90(A::AbstractMatrix)
ind1, ind2 = axes(A)
B = similar(A, (ind2,ind1))
m = first(ind1)+last(ind1)
for i=ind1, j=axes(A,2)
B[j,m-i] = A[i,j]
end
return B
end
"""
rot180(A)
Rotate matrix `A` 180 degrees.
# Examples
```jldoctest
julia> a = [1 2; 3 4]
2×2 Matrix{Int64}:
1 2
3 4
julia> rot180(a)
2×2 Matrix{Int64}:
4 3
2 1
```
"""
function rot180(A::AbstractMatrix)
B = similar(A)
ind1, ind2 = axes(A,1), axes(A,2)
m, n = first(ind1)+last(ind1), first(ind2)+last(ind2)
for j=ind2, i=ind1
B[m-i,n-j] = A[i,j]
end
return B
end
"""
rotl90(A, k)
Left-rotate matrix `A` 90 degrees counterclockwise an integer `k` number of times.
If `k` is a multiple of four (including zero), this is equivalent to a `copy`.
# Examples
```jldoctest
julia> a = [1 2; 3 4]
2×2 Matrix{Int64}:
1 2
3 4
julia> rotl90(a,1)
2×2 Matrix{Int64}:
2 4
1 3
julia> rotl90(a,2)
2×2 Matrix{Int64}:
4 3
2 1
julia> rotl90(a,3)
2×2 Matrix{Int64}:
3 1
4 2
julia> rotl90(a,4)
2×2 Matrix{Int64}:
1 2
3 4
```
"""
function rotl90(A::AbstractMatrix, k::Integer)
k = mod(k, 4)
k == 1 ? rotl90(A) :
k == 2 ? rot180(A) :
k == 3 ? rotr90(A) : copy(A)
end
"""
rotr90(A, k)
Right-rotate matrix `A` 90 degrees clockwise an integer `k` number of times.
If `k` is a multiple of four (including zero), this is equivalent to a `copy`.
# Examples
```jldoctest
julia> a = [1 2; 3 4]
2×2 Matrix{Int64}:
1 2
3 4
julia> rotr90(a,1)
2×2 Matrix{Int64}:
3 1
4 2
julia> rotr90(a,2)
2×2 Matrix{Int64}:
4 3
2 1
julia> rotr90(a,3)
2×2 Matrix{Int64}:
2 4
1 3
julia> rotr90(a,4)
2×2 Matrix{Int64}:
1 2
3 4
```
"""
rotr90(A::AbstractMatrix, k::Integer) = rotl90(A,-k)
"""
rot180(A, k)
Rotate matrix `A` 180 degrees an integer `k` number of times.
If `k` is even, this is equivalent to a `copy`.
# Examples
```jldoctest
julia> a = [1 2; 3 4]
2×2 Matrix{Int64}:
1 2
3 4
julia> rot180(a,1)
2×2 Matrix{Int64}:
4 3
2 1
julia> rot180(a,2)
2×2 Matrix{Int64}:
1 2
3 4
```
"""
rot180(A::AbstractMatrix, k::Integer) = mod(k, 2) == 1 ? rot180(A) : copy(A)