-
-
Notifications
You must be signed in to change notification settings - Fork 5.5k
/
abstractarray.jl
1282 lines (1151 loc) · 46.9 KB
/
abstractarray.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# This file is a part of Julia. License is MIT: https://julialang.org/license
using Random, LinearAlgebra, SparseArrays
A = rand(5,4,3)
@testset "Bounds checking" begin
@test checkbounds(Bool, A, 1, 1, 1) == true
@test checkbounds(Bool, A, 5, 4, 3) == true
@test checkbounds(Bool, A, 0, 1, 1) == false
@test checkbounds(Bool, A, 1, 0, 1) == false
@test checkbounds(Bool, A, 1, 1, 0) == false
@test checkbounds(Bool, A, 6, 4, 3) == false
@test checkbounds(Bool, A, 5, 5, 3) == false
@test checkbounds(Bool, A, 5, 4, 4) == false
@test checkbounds(Bool, A, 1) == true # linear indexing
@test checkbounds(Bool, A, 60) == true
@test checkbounds(Bool, A, 61) == false
@test checkbounds(Bool, A, 2, 2, 2, 1) == true # extra indices
@test checkbounds(Bool, A, 2, 2, 2, 2) == false
@test checkbounds(Bool, A, 1, 1) == false
@test checkbounds(Bool, A, 1, 12) == false
@test checkbounds(Bool, A, 5, 12) == false
@test checkbounds(Bool, A, 1, 13) == false
@test checkbounds(Bool, A, 6, 12) == false
end
@testset "single CartesianIndex" begin
@test checkbounds(Bool, A, CartesianIndex((1, 1, 1))) == true
@test checkbounds(Bool, A, CartesianIndex((5, 4, 3))) == true
@test checkbounds(Bool, A, CartesianIndex((0, 1, 1))) == false
@test checkbounds(Bool, A, CartesianIndex((1, 0, 1))) == false
@test checkbounds(Bool, A, CartesianIndex((1, 1, 0))) == false
@test checkbounds(Bool, A, CartesianIndex((6, 4, 3))) == false
@test checkbounds(Bool, A, CartesianIndex((5, 5, 3))) == false
@test checkbounds(Bool, A, CartesianIndex((5, 4, 4))) == false
@test checkbounds(Bool, A, CartesianIndex((1,))) == false
@test checkbounds(Bool, A, CartesianIndex((60,))) == false
@test checkbounds(Bool, A, CartesianIndex((61,))) == false
@test checkbounds(Bool, A, CartesianIndex((2, 2, 2, 1,))) == true
@test checkbounds(Bool, A, CartesianIndex((2, 2, 2, 2,))) == false
@test checkbounds(Bool, A, CartesianIndex((1, 1,))) == false
@test checkbounds(Bool, A, CartesianIndex((1, 12,))) == false
@test checkbounds(Bool, A, CartesianIndex((5, 12,))) == false
@test checkbounds(Bool, A, CartesianIndex((1, 13,))) == false
@test checkbounds(Bool, A, CartesianIndex((6, 12,))) == false
end
@testset "mix of CartesianIndex and Int" begin
@test checkbounds(Bool, A, CartesianIndex((1,)), 1, CartesianIndex((1,))) == true
@test checkbounds(Bool, A, CartesianIndex((5, 4)), 3) == true
@test checkbounds(Bool, A, CartesianIndex((0, 1)), 1) == false
@test checkbounds(Bool, A, 1, CartesianIndex((0, 1))) == false
@test checkbounds(Bool, A, 1, 1, CartesianIndex((0,))) == false
@test checkbounds(Bool, A, 6, CartesianIndex((4, 3))) == false
@test checkbounds(Bool, A, 5, CartesianIndex((5,)), 3) == false
@test checkbounds(Bool, A, CartesianIndex((5,)), CartesianIndex((4,)), CartesianIndex((4,))) == false
end
@testset "vector indices" begin
@test checkbounds(Bool, A, 1:5, 1:4, 1:3) == true
@test checkbounds(Bool, A, 0:5, 1:4, 1:3) == false
@test checkbounds(Bool, A, 1:5, 0:4, 1:3) == false
@test checkbounds(Bool, A, 1:5, 1:4, 0:3) == false
@test checkbounds(Bool, A, 1:6, 1:4, 1:3) == false
@test checkbounds(Bool, A, 1:5, 1:5, 1:3) == false
@test checkbounds(Bool, A, 1:5, 1:4, 1:4) == false
@test checkbounds(Bool, A, 1:60) == true
@test checkbounds(Bool, A, 1:61) == false
@test checkbounds(Bool, A, 2, 2, 2, 1:1) == true # extra indices
@test checkbounds(Bool, A, 2, 2, 2, 1:2) == false
@test checkbounds(Bool, A, 1:5, 1:4) == false
@test checkbounds(Bool, A, 1:5, 1:12) == false
@test checkbounds(Bool, A, 1:5, 1:13) == false
@test checkbounds(Bool, A, 1:6, 1:12) == false
end
@testset "logical" begin
@test checkbounds(Bool, A, trues(5), trues(4), trues(3)) == true
@test checkbounds(Bool, A, trues(6), trues(4), trues(3)) == false
@test checkbounds(Bool, A, trues(5), trues(5), trues(3)) == false
@test checkbounds(Bool, A, trues(5), trues(4), trues(4)) == false
@test checkbounds(Bool, A, trues(60)) == true
@test checkbounds(Bool, A, trues(61)) == false
@test checkbounds(Bool, A, 2, 2, 2, trues(1)) == true # extra indices
@test checkbounds(Bool, A, 2, 2, 2, trues(2)) == false
@test checkbounds(Bool, A, trues(5), trues(12)) == false
@test checkbounds(Bool, A, trues(5), trues(13)) == false
@test checkbounds(Bool, A, trues(6), trues(12)) == false
@test checkbounds(Bool, A, trues(5, 4, 3)) == true
@test checkbounds(Bool, A, trues(5, 4, 2)) == false
@test checkbounds(Bool, A, trues(5, 12)) == false
@test checkbounds(Bool, A, trues(1, 5), trues(1, 4, 1), trues(1, 1, 3)) == false
@test checkbounds(Bool, A, trues(1, 5), trues(1, 4, 1), trues(1, 1, 2)) == false
@test checkbounds(Bool, A, trues(1, 5), trues(1, 5, 1), trues(1, 1, 3)) == false
@test checkbounds(Bool, A, trues(1, 5), :, 2) == false
@test checkbounds(Bool, A, trues(5, 4), trues(3)) == true
@test checkbounds(Bool, A, trues(4, 4), trues(3)) == true
@test checkbounds(Bool, A, trues(5, 4), trues(2)) == false
@test checkbounds(Bool, A, trues(6, 4), trues(3)) == false
@test checkbounds(Bool, A, trues(5, 4), trues(4)) == false
end
@testset "array of CartesianIndex" begin
@test checkbounds(Bool, A, [CartesianIndex((1, 1, 1))]) == true
@test checkbounds(Bool, A, [CartesianIndex((5, 4, 3))]) == true
@test checkbounds(Bool, A, [CartesianIndex((0, 1, 1))]) == false
@test checkbounds(Bool, A, [CartesianIndex((1, 0, 1))]) == false
@test checkbounds(Bool, A, [CartesianIndex((1, 1, 0))]) == false
@test checkbounds(Bool, A, [CartesianIndex((6, 4, 3))]) == false
@test checkbounds(Bool, A, [CartesianIndex((5, 5, 3))]) == false
@test checkbounds(Bool, A, [CartesianIndex((5, 4, 4))]) == false
@test checkbounds(Bool, A, [CartesianIndex((1, 1))], 1) == true
@test checkbounds(Bool, A, [CartesianIndex((5, 4))], 3) == true
@test checkbounds(Bool, A, [CartesianIndex((0, 1))], 1) == false
@test checkbounds(Bool, A, [CartesianIndex((1, 0))], 1) == false
@test checkbounds(Bool, A, [CartesianIndex((1, 1))], 0) == false
@test checkbounds(Bool, A, [CartesianIndex((6, 4))], 3) == false
@test checkbounds(Bool, A, [CartesianIndex((5, 5))], 3) == false
@test checkbounds(Bool, A, [CartesianIndex((5, 4))], 4) == false
end
@testset "index conversion" begin
@testset "0-dimensional" begin
for i in ((), fill(0))
@test LinearIndices(i)[1] == 1
@test_throws BoundsError LinearIndices(i)[2]
@test_throws BoundsError LinearIndices(i)[1:2]
@test LinearIndices(i)[1,1] == 1
@test LinearIndices(i)[] == 1
@test size(LinearIndices(i)) == ()
@test CartesianIndices(i)[1] == CartesianIndex()
@test_throws BoundsError CartesianIndices(i)[2]
@test_throws BoundsError CartesianIndices(i)[1:2]
end
end
@testset "1-dimensional" begin
for i = 1:3
@test LinearIndices((3,))[i] == i
@test CartesianIndices((3,))[i] == CartesianIndex(i,)
end
@test LinearIndices((3,))[2,1] == 2
@test LinearIndices((3,))[[1]] == [1]
@test size(LinearIndices((3,))) == (3,)
@test LinearIndices((3,))[1:2] === 1:2
@test LinearIndices((3,))[1:2:3] === 1:2:3
@test_throws BoundsError LinearIndices((3,))[2:4]
@test_throws BoundsError CartesianIndices((3,))[2,2]
# ambiguity btw cartesian indexing and linear indexing in 1d when
# indices may be nontraditional
@test_throws ArgumentError Base._sub2ind((1:3,), 2)
@test_throws ArgumentError Base._ind2sub((1:3,), 2)
ci = CartesianIndices((2:4,))
@test first(ci) == ci[1] == CartesianIndex(2)
@test last(ci) == ci[end] == ci[3] == CartesianIndex(4)
li = LinearIndices(ci)
@test collect(li) == [1,2,3]
@test first(li) == li[1] == 1
@test last(li) == li[3] == 3
io = IOBuffer()
show(io, ci)
@test String(take!(io)) == "CartesianIndex{1}[CartesianIndex(2,), CartesianIndex(3,), CartesianIndex(4,)]"
end
@testset "2-dimensional" begin
k = 0
cartesian = CartesianIndices((4,3))
linear = LinearIndices(cartesian)
@test size(cartesian) == size(linear) == (4, 3)
for j = 1:3, i = 1:4
k += 1
@test linear[i,j] == linear[k] == k
@test cartesian[k] == CartesianIndex(i,j)
@test LinearIndices(map(Base.Slice, (0:3,3:5)))[i-1,j+2] == k
@test CartesianIndices(map(Base.Slice, (0:3,3:5)))[k] == CartesianIndex(i-1,j+2)
end
@test linear[linear] == linear
@test linear[vec(linear)] == vec(linear)
@test linear[cartesian] == linear
@test linear[vec(cartesian)] == vec(linear)
@test cartesian[linear] == cartesian
@test cartesian[vec(linear)] == vec(cartesian)
@test cartesian[cartesian] == cartesian
@test cartesian[vec(cartesian)] == vec(cartesian)
@test linear[2:3] === 2:3
@test linear[3:-1:1] === 3:-1:1
@test_throws BoundsError linear[4:13]
end
@testset "3-dimensional" begin
l = 0
for k = 1:2, j = 1:3, i = 1:4
l += 1
@test LinearIndices((4,3,2))[i,j,k] == l
@test LinearIndices((4,3,2))[l] == l
@test CartesianIndices((4,3,2))[i,j,k] == CartesianIndex(i,j,k)
@test CartesianIndices((4,3,2))[l] == CartesianIndex(i,j,k)
@test LinearIndices((1:4,1:3,1:2))[i,j,k] == l
@test LinearIndices((1:4,1:3,1:2))[l] == l
@test CartesianIndices((1:4,1:3,1:2))[i,j,k] == CartesianIndex(i,j,k)
@test CartesianIndices((1:4,1:3,1:2))[l] == CartesianIndex(i,j,k)
end
l = 0
for k = -101:-100, j = 3:5, i = 0:3
l += 1
@test LinearIndices(map(Base.Slice, (0:3,3:5,-101:-100)))[i,j,k] == l
@test LinearIndices(map(Base.Slice, (0:3,3:5,-101:-100)))[l] == l
@test CartesianIndices(map(Base.Slice, (0:3,3:5,-101:-100)))[i,j,k] == CartesianIndex(i,j,k)
@test CartesianIndices(map(Base.Slice, (0:3,3:5,-101:-100)))[l] == CartesianIndex(i,j,k)
end
local A = reshape(Vector(1:9), (3,3))
@test CartesianIndices(size(A))[6] == CartesianIndex(3,2)
@test LinearIndices(size(A))[3, 2] == 6
@test CartesianIndices(A)[6] == CartesianIndex(3,2)
@test LinearIndices(A)[3, 2] == 6
for i in 1:length(A)
@test LinearIndices(A)[CartesianIndices(A)[i]] == i
end
@testset "PR #9256" begin
function pr9256()
m = [1 2 3; 4 5 6; 7 8 9]
Base._ind2sub(m, 6)
end
@test pr9256() == (3,2)
end
end
end
@testset "LinearIndices" begin
@testset "constructors" begin
for oinds in [
(2, 3),
(UInt8(2), 3),
(2, UInt8(3)),
(2, 1:3),
(Base.OneTo(2), 1:3)
]
R = LinearIndices(oinds)
@test size(R) == (2, 3)
@test axes(R) == (Base.OneTo(2), Base.OneTo(3))
@test R[begin] == 1
@test R[end] == 6
end
for oinds in [(2, ), (2, 3), (2, 3, 4)]
R = CartesianIndices(oinds)
@test size(R) == oinds
end
end
@testset "IdentityUnitRange" begin
function _collect(A)
rst = eltype(A)[]
for i in A
push!(rst, i)
end
rst
end
function _simd_collect(A)
rst = eltype(A)[]
@simd for i in A
push!(rst, i)
end
rst
end
for oinds in [
(Base.IdentityUnitRange(0:1),),
(Base.IdentityUnitRange(0:1), Base.IdentityUnitRange(0:2)),
(Base.IdentityUnitRange(0:1), Base.OneTo(3)),
]
R = LinearIndices(oinds)
@test axes(R) === oinds
@test _collect(R) == _simd_collect(R) == vec(collect(R))
end
R = LinearIndices((Base.IdentityUnitRange(0:1), 0:1))
@test axes(R) == (Base.IdentityUnitRange(0:1), Base.OneTo(2))
end
end
# token type on which to dispatch testing methods in order to avoid potential
# name conflicts elsewhere in the base test suite
mutable struct TestAbstractArray end
## Tests for the abstract array interfaces with minimally defined array types
if !isdefined(@__MODULE__, :T24Linear)
include("testhelpers/arrayindexingtypes.jl")
end
const can_inline = Base.JLOptions().can_inline != 0
function test_scalar_indexing(::Type{T}, shape, ::Type{TestAbstractArray}) where T
N = prod(shape)
A = reshape(Vector(1:N), shape)
B = T(A)
@test A == B
# Test indexing up to 5 dimensions
trailing5 = CartesianIndex(ntuple(x->1, max(ndims(B)-5, 0)))
trailing4 = CartesianIndex(ntuple(x->1, max(ndims(B)-4, 0)))
trailing3 = CartesianIndex(ntuple(x->1, max(ndims(B)-3, 0)))
trailing2 = CartesianIndex(ntuple(x->1, max(ndims(B)-2, 0)))
i=0
for i5 = 1:size(B, 5)
for i4 = 1:size(B, 4)
for i3 = 1:size(B, 3)
for i2 = 1:size(B, 2)
for i1 = 1:size(B, 1)
i += 1
@test A[i1,i2,i3,i4,i5,trailing5] == B[i1,i2,i3,i4,i5,trailing5] == i
@test A[i1,i2,i3,i4,i5,trailing5] ==
Base.unsafe_getindex(B, i1, i2, i3, i4, i5, trailing5) == i
end
end
end
end
end
# Test linear indexing and partial linear indexing
i=0
for i1 = 1:length(B)
i += 1
@test A[i1] == B[i1] == i
end
i=0
for i2 = 1:size(B, 2)
for i1 = 1:size(B, 1)
i += 1
@test A[i1,i2,trailing2] == B[i1,i2,trailing2] == i
end
end
@test A == B
i=0
for i3 = 1:size(B, 3)
for i2 = 1:size(B, 2)
for i1 = 1:size(B, 1)
i += 1
@test A[i1,i2,i3,trailing3] == B[i1,i2,i3,trailing3] == i
end
end
end
# Test zero-dimensional accesses
@test A[1] == B[1] == 1
# Test multidimensional scalar indexed assignment
C = T(Int, shape)
D1 = T(Int, shape)
D2 = T(Int, shape)
D3 = T(Int, shape)
i=0
for i5 = 1:size(B, 5)
for i4 = 1:size(B, 4)
for i3 = 1:size(B, 3)
for i2 = 1:size(B, 2)
for i1 = 1:size(B, 1)
i += 1
C[i1,i2,i3,i4,i5,trailing5] = i
# test general unsafe_setindex!
Base.unsafe_setindex!(D1, i, i1,i2,i3,i4,i5,trailing5)
# test for dropping trailing dims
Base.unsafe_setindex!(D2, i, i1,i2,i3,i4,i5,trailing5, 1, 1, 1)
# test for expanding index argument to appropriate dims
Base.unsafe_setindex!(D3, i, i1,i2,i3,i4,trailing4)
end
end
end
end
end
@test D1 == D2 == C == B == A
@test D3[:, :, :, :, 1, trailing5] == D2[:, :, :, :, 1, trailing5]
# Test linear indexing and partial linear indexing
C = T(Int, shape)
fill!(C, 0)
@test C != B && C != A
i=0
for i1 = 1:length(C)
i += 1
C[i1] = i
end
@test C == B == A
C = T(Int, shape)
i=0
C2 = reshape(C, Val(2))
for i2 = 1:size(C2, 2)
for i1 = 1:size(C2, 1)
i += 1
C2[i1,i2,trailing2] = i
end
end
@test C == B == A
C = T(Int, shape)
i=0
C3 = reshape(C, Val(3))
for i3 = 1:size(C3, 3)
for i2 = 1:size(C3, 2)
for i1 = 1:size(C3, 1)
i += 1
C3[i1,i2,i3,trailing3] = i
end
end
end
@test C == B == A
# Test zero-dimensional setindex
if length(A) == 1
A[] = 0; B[] = 0
@test A[] == B[] == 0
@test A == B
else
@test_throws BoundsError A[] = 0
@test_throws BoundsError B[] = 0
@test_throws BoundsError A[]
@test_throws BoundsError B[]
end
end
function test_vector_indexing(::Type{T}, shape, ::Type{TestAbstractArray}) where T
@testset "test_vector_indexing{$(T)}" begin
N = prod(shape)
A = reshape(Vector(1:N), shape)
B = T(A)
trailing5 = CartesianIndex(ntuple(x->1, max(ndims(B)-5, 0)))
trailing4 = CartesianIndex(ntuple(x->1, max(ndims(B)-4, 0)))
trailing3 = CartesianIndex(ntuple(x->1, max(ndims(B)-3, 0)))
trailing2 = CartesianIndex(ntuple(x->1, max(ndims(B)-2, 0)))
idxs = rand(1:N, 3, 3, 3)
@test B[idxs] == A[idxs] == idxs
@test B[vec(idxs)] == A[vec(idxs)] == vec(idxs)
@test B[:] == A[:] == 1:N
@test B[1:end] == A[1:end] == 1:N
@test B[:,:,trailing2] == A[:,:,trailing2] == B[:,:,1,trailing3] == A[:,:,1,trailing3]
B[1:end,1:end,trailing2] == A[1:end,1:end,trailing2] == B[1:end,1:end,1,trailing3] == A[1:end,1:end,1,trailing3]
@testset "Test with containers that aren't Int[]" begin
@test B[[]] == A[[]] == []
@test B[convert(Array{Any}, idxs)] == A[convert(Array{Any}, idxs)] == idxs
end
idx1 = rand(1:size(A, 1), 3)
idx2 = rand(1:size(A, 2), 4, 5)
@testset "Test adding dimensions with matrices" begin
@test B[idx1, idx2, trailing2] == A[idx1, idx2, trailing2] == reshape(A[idx1, vec(idx2), trailing2], 3, 4, 5) == reshape(B[idx1, vec(idx2), trailing2], 3, 4, 5)
@test B[1, idx2, trailing2] == A[1, idx2, trailing2] == reshape(A[1, vec(idx2), trailing2], 4, 5) == reshape(B[1, vec(idx2), trailing2], 4, 5)
end
# test removing dimensions with 0-d arrays
@testset "test removing dimensions with 0-d arrays" begin
idx0 = reshape([rand(1:size(A, 1))])
@test B[idx0, idx2, trailing2] == A[idx0, idx2, trailing2] == reshape(A[idx0[], vec(idx2), trailing2], 4, 5) == reshape(B[idx0[], vec(idx2), trailing2], 4, 5)
@test B[reshape([end]), reshape([end]), trailing2] == A[reshape([end]), reshape([end]), trailing2] == reshape([A[end,end,trailing2]]) == reshape([B[end,end,trailing2]])
end
mask = bitrand(shape)
@testset "test logical indexing" begin
@test B[mask] == A[mask] == B[findall(mask)] == A[findall(mask)] == LinearIndices(mask)[findall(mask)]
@test B[vec(mask)] == A[vec(mask)] == LinearIndices(mask)[findall(mask)]
mask1 = bitrand(size(A, 1))
mask2 = bitrand(size(A, 2))
@test B[mask1, mask2, trailing2] == A[mask1, mask2, trailing2] ==
B[LinearIndices(mask1)[findall(mask1)], LinearIndices(mask2)[findall(mask2)], trailing2]
@test B[mask1, 1, trailing2] == A[mask1, 1, trailing2] == LinearIndices(mask)[findall(mask1)]
if ndims(B) > 1
maskfront = bitrand(shape[1:end-1])
Bslice = B[ntuple(i->(:), ndims(B)-1)..., 1]
@test B[maskfront,1] == Bslice[maskfront]
@test size(B[maskfront, 1:1]) == (sum(maskfront), 1)
end
end
end
end
function test_primitives(::Type{T}, shape, ::Type{TestAbstractArray}) where T
N = prod(shape)
A = reshape(Vector(1:N), shape)
B = T(A)
# last(a)
@test last(B) == B[lastindex(B)] == B[end] == A[end]
@test lastindex(B) == lastindex(A) == last(LinearIndices(B))
@test lastindex(B, 1) == lastindex(A, 1) == last(axes(B, 1))
@test lastindex(B, 2) == lastindex(A, 2) == last(axes(B, 2))
# first(a)
@test first(B) == B[firstindex(B)] == B[begin] == B[1] == A[1] == A[begin]
@test firstindex(B) == firstindex(A) == first(LinearIndices(B))
@test firstindex(B, 1) == firstindex(A, 1) == first(axes(B, 1))
@test firstindex(B, 2) == firstindex(A, 2) == first(axes(B, 2))
# isassigned(a::AbstractArray, i::Int...)
j = rand(1:length(B))
@test isassigned(B, j) == true
if T == T24Linear
@test isassigned(B, length(B) + 1) == false
end
# reshape(a::AbstractArray, dims::Dims)
@test_throws DimensionMismatch reshape(B, (0, 1))
# copyto!(dest::AbstractArray, src::AbstractArray)
@test_throws BoundsError copyto!(Vector{Int}(undef, 10), [1:11...])
# convert{T, N}(::Type{Array}, A::AbstractArray{T, N})
X = [1:10...]
Y = [1 2; 3 4]
@test convert(Array, X) == X
@test convert(Array, Y) == Y
# convert{T}(::Type{Vector}, A::AbstractVector{T})
@test convert(Vector, X) == X
@test convert(Vector, view(X, 2:4)) == [2,3,4]
@test_throws MethodError convert(Vector, Y)
# convert{T}(::Type{Matrix}, A::AbstractMatrix{T})
@test convert(Matrix, Y) == Y
@test convert(Matrix, view(Y, 1:2, 1:2)) == Y
@test_throws MethodError convert(Matrix, X)
end
mutable struct TestThrowNoGetindex{T} <: AbstractVector{T} end
@testset "ErrorException if getindex is not defined" begin
Base.length(::TestThrowNoGetindex) = 2
Base.size(::TestThrowNoGetindex) = (2,)
@test_throws ErrorException isassigned(TestThrowNoGetindex{Float64}(), 1)
end
function test_in_bounds(::Type{TestAbstractArray})
n = rand(2:5)
sz = rand(2:5, n)
len = prod(sz)
A = zeros(sz...)
for i in 1:len
@test checkbounds(Bool, A, i) == true
end
@test checkbounds(Bool, A, len + 1) == false
end
mutable struct UnimplementedFastArray{T, N} <: AbstractArray{T, N} end
Base.IndexStyle(::UnimplementedFastArray) = Base.IndexLinear()
mutable struct UnimplementedSlowArray{T, N} <: AbstractArray{T, N} end
Base.IndexStyle(::UnimplementedSlowArray) = Base.IndexCartesian()
mutable struct UnimplementedArray{T, N} <: AbstractArray{T, N} end
function test_getindex_internals(::Type{T}, shape, ::Type{TestAbstractArray}) where T
N = prod(shape)
A = reshape(Vector(1:N), shape)
B = T(A)
@test getindex(A, 1) == 1
@test getindex(B, 1) == 1
@test Base.unsafe_getindex(A, 1) == 1
@test Base.unsafe_getindex(B, 1) == 1
end
function test_getindex_internals(::Type{TestAbstractArray})
U = UnimplementedFastArray{Int, 2}()
V = UnimplementedSlowArray{Int, 2}()
@test_throws ErrorException getindex(U, 1)
@test_throws ErrorException Base.unsafe_getindex(U, 1)
@test_throws ErrorException getindex(V, 1, 1)
@test_throws ErrorException Base.unsafe_getindex(V, 1, 1)
end
function test_setindex!_internals(::Type{T}, shape, ::Type{TestAbstractArray}) where T
N = prod(shape)
A = reshape(Vector(1:N), shape)
B = T(A)
Base.unsafe_setindex!(B, 2, 1)
@test B[1] == 2
end
function test_setindex!_internals(::Type{TestAbstractArray})
U = UnimplementedFastArray{Int, 2}()
V = UnimplementedSlowArray{Int, 2}()
@test_throws ErrorException setindex!(U, 0, 1)
@test_throws ErrorException Base.unsafe_setindex!(U, 0, 1)
@test_throws ErrorException setindex!(V, 0, 1, 1)
@test_throws ErrorException Base.unsafe_setindex!(V, 0, 1, 1)
end
function test_get(::Type{TestAbstractArray})
A = T24Linear(reshape([1:24...], 4, 3, 2))
B = TSlow(reshape([1:24...], 4, 3, 2))
@test get(A, (), 0) == 0
@test get(B, (), 0) == 0
@test get(A, (1,), 0) == get(A, 1, 0) == A[1] == 1
@test get(B, (1,), 0) == get(B, 1, 0) == B[1] == 1
@test get(A, (25,), 0) == get(A, 25, 0) == 0
@test get(B, (25,), 0) == get(B, 25, 0) == 0
@test get(A, (1,1,1), 0) == A[1,1,1] == 1
@test get(B, (1,1,1), 0) == B[1,1,1] == 1
@test get(A, (1,1,3), 0) == 0
@test get(B, (1,1,3), 0) == 0
@test get(TSlow([]), (), 0) == 0
@test get(TSlow([1]), (), 0) == 1
@test get(TSlow(fill(1)), (), 0) == 1
end
function test_cat(::Type{TestAbstractArray})
A = T24Linear([1:24...])
b_int = reshape([1:27...], 3, 3, 3)
b_float = reshape(Float64[1:27...], 3, 3, 3)
b2hcat = Array{Float64}(undef, 3, 6, 3)
b2vcat = Array{Float64}(undef, 6, 3, 3)
b1 = reshape([1:9...], 3, 3)
b2 = reshape([10:18...], 3, 3)
b3 = reshape([19:27...], 3, 3)
b2hcat[:, :, 1] = hcat(b1, b1)
b2hcat[:, :, 2] = hcat(b2, b2)
b2hcat[:, :, 3] = hcat(b3, b3)
b2vcat[:, :, 1] = vcat(b1, b1)
b2vcat[:, :, 2] = vcat(b2, b2)
b2vcat[:, :, 3] = vcat(b3, b3)
b3hcat = Array{Float64}(undef, 3, 9, 3)
b3hcat[:, :, 1] = hcat(b1, b1, b1)
b3hcat[:, :, 2] = hcat(b2, b2, b2)
b3hcat[:, :, 3] = hcat(b3, b3, b3)
b3vcat = Array{Float64}(undef, 9, 3, 3)
b3vcat[:, :, 1] = vcat(b1, b1, b1)
b3vcat[:, :, 2] = vcat(b2, b2, b2)
b3vcat[:, :, 3] = vcat(b3, b3, b3)
B = TSlow(b_int)
B1 = TSlow([1:24...])
B2 = TSlow([1:25...])
C1 = TSlow([1 2; 3 4])
C2 = TSlow([1 2 3; 4 5 6])
C3 = TSlow([1 2; 3 4; 5 6])
D = [1:24...]
i = rand(1:10)
@test cat(;dims=i) == Any[]
@test Base.typed_hcat(Float64) == Vector{Float64}()
@test Base.typed_vcat(Float64) == Vector{Float64}()
@test vcat() == Any[]
@test hcat() == Any[]
@test vcat(1, 1.0, 3, 3.0) == [1.0, 1.0, 3.0, 3.0]
@test hcat(1, 1.0, 3, 3.0) == [1.0 1.0 3.0 3.0]
@test_throws ArgumentError hcat(B1, B2)
@test_throws ArgumentError vcat(C1, C2)
@test vcat(B) == B
@test hcat(B) == B
@test Base.typed_vcat(Float64, B) == TSlow(b_float)
@test Base.typed_vcat(Float64, B, B) == TSlow(b2vcat)
@test Base.typed_vcat(Float64, B, B, B) == TSlow(b3vcat)
@test Base.typed_hcat(Float64, B) == TSlow(b_float)
@test Base.typed_hcat(Float64, B, B) == TSlow(b2hcat)
@test Base.typed_hcat(Float64, B, B, B) == TSlow(b3hcat)
@test vcat(B1, B2) == TSlow(vcat([1:24...], [1:25...]))
@test hcat(C1, C2) == TSlow([1 2 1 2 3; 3 4 4 5 6])
@test hcat(C1, C2, C1) == TSlow([1 2 1 2 3 1 2; 3 4 4 5 6 3 4])
# hvcat
for nbc in (1, 2, 3, 4, 5, 6)
@test hvcat(nbc, 1:120...) == reshape([1:120...], nbc, round(Int, 120 / nbc))'
end
@test_throws ArgumentError hvcat(7, 1:20...)
@test_throws ArgumentError hvcat((2), C1, C3)
@test_throws ArgumentError hvcat((1), C1, C2)
@test_throws ArgumentError hvcat((1), C2, C3)
tup = tuple(rand(1:10, i)...)
@test hvcat(tup) == []
# check for shape mismatch
@test_throws ArgumentError hvcat((2, 2), 1, 2, 3, 4, 5)
@test_throws ArgumentError Base.typed_hvcat(Int, (2, 2), 1, 2, 3, 4, 5)
# check for # of columns mismatch b/w rows
@test_throws ArgumentError hvcat((3, 2), 1, 2, 3, 4, 5, 6)
@test_throws ArgumentError Base.typed_hvcat(Int, (3, 2), 1, 2, 3, 4, 5, 6)
# 18395
@test isa(Any["a" 5; 2//3 1.0][2,1], Rational{Int})
# 13665, 19038
@test @inferred(hcat([1.0 2.0], 3))::Array{Float64,2} == [1.0 2.0 3.0]
@test @inferred(vcat([1.0, 2.0], 3))::Array{Float64,1} == [1.0, 2.0, 3.0]
@test @inferred(vcat(["a"], "b"))::Vector{String} == ["a", "b"]
@test @inferred(vcat((1,), (2.0,)))::Vector{Tuple{Real}} == [(1,), (2.0,)]
# 29172
@test_throws ArgumentError cat([1], [2], dims=0)
@test_throws ArgumentError cat([1], [2], dims=[5, -3])
# 36041
@test_throws MethodError cat(["a"], ["b"], dims=[1, 2])
@test cat([1], [1], dims=[1, 2]) == I(2)
# inferrability
As = [zeros(2, 2) for _ = 1:2]
@test @inferred(cat(As...; dims=Val(3))) == zeros(2, 2, 2)
cat3v(As) = cat(As...; dims=Val(3))
@test @inferred(cat3v(As)) == zeros(2, 2, 2)
end
function test_ind2sub(::Type{TestAbstractArray})
n = rand(2:5)
dims = tuple(rand(1:5, n)...)
len = prod(dims)
A = reshape(Vector(1:len), dims...)
I = CartesianIndices(dims)
for i in 1:len
@test A[I[i]] == A[i]
end
end
# A custom linear slow array that insists upon Cartesian indexing
mutable struct TSlowNIndexes{T,N} <: AbstractArray{T,N}
data::Array{T,N}
end
Base.IndexStyle(::Type{A}) where {A<:TSlowNIndexes} = Base.IndexCartesian()
Base.size(A::TSlowNIndexes) = size(A.data)
Base.getindex(A::TSlowNIndexes, index::Int...) = error("Must use $(ndims(A)) indices")
Base.getindex(A::TSlowNIndexes{T,2}, i::Int, j::Int) where {T} = A.data[i,j]
@testset "issue #15689, mapping an abstract type" begin
@test isa(map(Set, Array[[1,2],[3,4]]), Vector{Set{Int}})
end
@testset "mapping over scalars and empty arguments:" begin
@test map(sin, 1) === sin(1)
@test map(()->1234) === 1234
end
function test_UInt_indexing(::Type{TestAbstractArray})
A = [1:100...]
_A = Expr(:quote, A)
for i in 1:100
_i8 = convert(UInt8, i)
_i16 = convert(UInt16, i)
_i32 = convert(UInt32, i)
for _i in (_i8, _i16, _i32)
@eval begin
@test $_A[$_i] == $i
end
end
end
end
# Issue 13315
function test_13315(::Type{TestAbstractArray})
U = UInt(1):UInt(2)
@test [U;[U;]] == [UInt(1), UInt(2), UInt(1), UInt(2)]
end
# checksquare
function test_checksquare()
@test LinearAlgebra.checksquare(zeros(2,2)) == 2
@test LinearAlgebra.checksquare(zeros(2,2),zeros(3,3)) == [2,3]
@test_throws DimensionMismatch LinearAlgebra.checksquare(zeros(2,3))
end
#----- run tests -------------------------------------------------------------#
@testset for T in (T24Linear, TSlow), shape in ((24,), (2, 12), (2,3,4), (1,2,3,4), (4,3,2,1))
test_scalar_indexing(T, shape, TestAbstractArray)
test_vector_indexing(T, shape, TestAbstractArray)
test_primitives(T, shape, TestAbstractArray)
test_getindex_internals(T, shape, TestAbstractArray)
test_setindex!_internals(T, shape, TestAbstractArray)
end
test_in_bounds(TestAbstractArray)
test_getindex_internals(TestAbstractArray)
test_setindex!_internals(TestAbstractArray)
test_get(TestAbstractArray)
test_cat(TestAbstractArray)
test_ind2sub(TestAbstractArray)
include("generic_map_tests.jl")
generic_map_tests(map, map!)
@test_throws ArgumentError map!(-, [1])
test_UInt_indexing(TestAbstractArray)
test_13315(TestAbstractArray)
test_checksquare()
A = TSlowNIndexes(rand(2,2))
@test_throws ErrorException A[1]
@test A[1,1] == A.data[1]
@test first(A) == A.data[1]
@testset "#16381" begin
@inferred size(rand(3,2,1))
@inferred size(rand(3,2,1), 2)
@test @inferred(axes(rand(3,2))) == (1:3,1:2)
@test @inferred(axes(rand(3,2,1))) == (1:3,1:2,1:1)
@test @inferred(axes(rand(3,2), 1)) == 1:3
@test @inferred(axes(rand(3,2), 2)) == 1:2
@test @inferred(axes(rand(3,2), 3)) == 1:1
end
@testset "#17088" begin
n = 10
M = rand(n, n)
@testset "vector of vectors" begin
v = [[M]; [M]] # using vcat
@test size(v) == (2,)
@test !issparse(v)
end
@testset "matrix of vectors" begin
m1 = [[M] [M]] # using hcat
m2 = [[M] [M];] # using hvcat
@test m1 == m2
@test size(m1) == (1,2)
@test !issparse(m1)
@test !issparse(m2)
end
end
@testset "isinteger and isreal" begin
@test all(isinteger, Diagonal(rand(1:5,5)))
@test isreal(Diagonal(rand(5)))
end
@testset "unary ops" begin
let A = Diagonal(rand(1:5,5))
@test +(A) == A
@test *(A) == A
end
end
@testset "reverse dim on empty" begin
@test reverse(Diagonal([]),dims=1) == Diagonal([])
end
@testset "ndims and friends" begin
@test ndims(Diagonal(rand(1:5,5))) == 2
@test ndims(Diagonal{Float64}) == 2
end
@testset "Issue #17811" begin
A17811 = Integer[]
I = [abs(x) for x in A17811]
@test isa(I, Array{Any,1})
push!(I, 1)
@test I == Any[1]
@test isa(map(abs, A17811), Array{Any,1})
end
@testset "copymutable for itrs" begin
@test Base.copymutable((1,2,3)) == [1,2,3]
end
@testset "_sub2ind for empty tuple" begin
@test Base._sub2ind(()) == 1
end
@testset "to_shape" begin
@test Base.to_shape(()) === ()
@test Base.to_shape(1) === 1
end
@testset "issue #19267" begin
@test ndims((1:3)[:]) == 1
@test ndims((1:3)[:,:]) == 2
@test ndims((1:3)[:,[1],:]) == 3
@test ndims((1:3)[:,[1],:,[1]]) == 4
@test ndims((1:3)[:,[1],1:1,:]) == 4
@test ndims((1:3)[:,:,1:1,:]) == 4
@test ndims((1:3)[:,:,1:1]) == 3
@test ndims((1:3)[:,:,1:1,:,:,[1]]) == 6
end
@testset "issue #38192" begin
img = cat([1 2; 3 4], [1 5; 6 7]; dims=3)
mask = img[:,:,1] .== img[:,:,2]
img[mask,2] .= 0
@test img == cat([1 2; 3 4], [0 5; 6 7]; dims=3)
end
@testset "dispatch loop introduced in #19305" begin
Z22, O33 = fill(0, 2, 2), fill(1, 3, 3)
@test [(1:2) Z22; O33] == [[1,2] Z22; O33] == [[1 2]' Z22; O33]
end
@testset "checkbounds_indices method ambiguities #20989" begin
@test Base.checkbounds_indices(Bool, (1:1,), ([CartesianIndex(1)],))
end
# keys, values, pairs
for A in (rand(2), rand(2,3))
local A
for (i, v) in pairs(A)
@test A[i] == v
end
@test Array(values(A)) == A
@test keytype(A) == keytype(typeof(A)) == eltype(keys(A))
@test valtype(A) == valtype(typeof(A)) == eltype(values(A))
end
# nextind and prevind
@test nextind(zeros(4), 2) == 3
@test nextind(zeros(2,3), CartesianIndex(2,1)) == CartesianIndex(1, 2)
@test prevind(zeros(4), 2) == 1
@test prevind(zeros(2,3), CartesianIndex(2,1)) == CartesianIndex(1, 1)
@testset "ImageCore #40" begin
Base.convert(::Type{Array{T,n}}, a::Array{T,n}) where {T<:Number,n} = a
Base.convert(::Type{Array{T,n}}, a::Array) where {T<:Number,n} =
copyto!(Array{T,n}(undef, size(a)), a)
@test isa(empty(Dict(:a=>1, :b=>2.0), Union{}, Union{}), Dict{Union{}, Union{}})
end
@testset "zero-dimensional copy" begin
Z = Array{Int,0}(undef); Z[] = 17
@test Z == Array(Z) == copy(Z)
end
@testset "empty" begin
@test isempty([])
v = [1, 2, 3]
v2 = empty(v)
v3 = empty(v, Float64)
@test !isempty(v)
empty!(v)
@test isempty(v)
@test isempty(v2::Vector{Int})
@test isempty(v3::Vector{Float64})
end
@testset "CartesianIndices" begin
xrng = 2:4
yrng = 1:5
CR = CartesianIndices(map(Base.Slice, (xrng,yrng)))
for i in xrng, j in yrng
@test CR[i,j] == CartesianIndex(i,j)
end
for i_lin in LinearIndices(CR)
i = (i_lin-1) % length(xrng) + 1
j = (i_lin-i) ÷ length(xrng) + 1
@test CR[i_lin] == CartesianIndex(xrng[i],yrng[j])
end
@test CartesianIndices(fill(1., 2, 3)) == CartesianIndices((2,3))
@test LinearIndices((2,3)) == [1 3 5; 2 4 6]
for IType in (CartesianIndices, LinearIndices)
I1 = IType((Base.OneTo(3),))
I2 = IType((1:3,))
@test !(I1 === I2)
J1, J2 = @inferred(promote(I1, I2))
@test J1 === J2
end
i = CartesianIndex(17,-2)
@test CR .+ i === i .+ CR === CartesianIndices((19:21, -1:3))
@test CR .- i === CartesianIndices((-15:-13, 3:7))
@test collect(i .- CR) == Ref(i) .- collect(CR)
end
@testset "issue #25770" begin
@test vcat(1:3, fill(1, (2,1))) == vcat([1:3;], fill(1, (2,1))) == reshape([1,2,3,1,1], 5,1)
@test hcat(1:2, fill(1, (2,1))) == hcat([1:2;], fill(1, (2,1))) == reshape([1,2,1,1],2,2)
@test [(1:3) (4:6); fill(1, (3,2))] == reshape([1,2,3,1,1,1,4,5,6,1,1,1], 6,2)
end
@testset "copy!" begin
@testset "AbstractVector" begin
s = Vector([1, 2])
for a = ([1], UInt[1], [3, 4, 5], UInt[3, 4, 5])
@test s === copy!(s, Vector(a)) == Vector(a)
@test s === copy!(s, SparseVector(a)) == Vector(a)
end
# issue #35649
s = [1, 2, 3, 4]
s2 = reshape(s, 2, 2) # shared data
@test s === copy!(s, 11:14) == 11:14
end
@testset "AbstractArray" begin
@test_throws ArgumentError copy!(zeros(2, 3), zeros(3, 2))
s = zeros(2, 2)
@test s === copy!(s, fill(1, 2, 2)) == fill(1, 2, 2)
@test s === copy!(s, fill(1.0, 2, 2)) == fill(1.0, 2, 2)
end
end
@testset "map on Dicts/Sets is forbidden" begin
@test_throws ErrorException map(identity, Set([1,2,3]))
@test_throws ErrorException map(identity, Dict("a"=>"b"))
end
@testset "Issue 30145" begin
X = [1,2,3]
@test isempty(X[Union{}[]])
end
@testset "Issue 30259" begin
A = randn(1,2,3)