-
-
Notifications
You must be signed in to change notification settings - Fork 5.5k
/
Copy pathmatmul.jl
634 lines (578 loc) · 22.9 KB
/
matmul.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
# This file is a part of Julia. License is MIT: https://julialang.org/license
module TestMatmul
using Base: rtoldefault
using Test, LinearAlgebra, Random
using LinearAlgebra: mul!
## Test Julia fallbacks to BLAS routines
@testset "matrices with zero dimensions" begin
for (dimsA, dimsB, dimsC) in (
((0,5), (5,3), (0,3)),
((3,5), (5,0), (3,0)),
((3,0), (0,4), (3,4)),
((0,5), (5,0), (0,0)),
((0,0), (0,4), (0,4)),
((3,0), (0,0), (3,0)),
((0,0), (0,0), (0,0)) )
@test Matrix{Float64}(undef, dimsA) * Matrix{Float64}(undef, dimsB) == zeros(dimsC)
end
@test Matrix{Float64}(undef, 5, 0) |> t -> t't == zeros(0,0)
@test Matrix{Float64}(undef, 5, 0) |> t -> t*t' == zeros(5,5)
@test Matrix{ComplexF64}(undef, 5, 0) |> t -> t't == zeros(0,0)
@test Matrix{ComplexF64}(undef, 5, 0) |> t -> t*t' == zeros(5,5)
end
@testset "2x2 matmul" begin
AA = [1 2; 3 4]
BB = [5 6; 7 8]
AAi = AA+(0.5*im).*BB
BBi = BB+(2.5*im).*AA[[2,1],[2,1]]
for A in (copy(AA), view(AA, 1:2, 1:2)), B in (copy(BB), view(BB, 1:2, 1:2))
@test A*B == [19 22; 43 50]
@test *(transpose(A), B) == [26 30; 38 44]
@test *(A, transpose(B)) == [17 23; 39 53]
@test *(transpose(A), transpose(B)) == [23 31; 34 46]
end
for Ai in (copy(AAi), view(AAi, 1:2, 1:2)), Bi in (copy(BBi), view(BBi, 1:2, 1:2))
@test Ai*Bi == [-21+53.5im -4.25+51.5im; -12+95.5im 13.75+85.5im]
@test *(adjoint(Ai), Bi) == [68.5-12im 57.5-28im; 88-3im 76.5-25im]
@test *(Ai, adjoint(Bi)) == [64.5+5.5im 43+31.5im; 104-18.5im 80.5+31.5im]
@test *(adjoint(Ai), adjoint(Bi)) == [-28.25-66im 9.75-58im; -26-89im 21-73im]
@test_throws DimensionMismatch [1 2; 0 0; 0 0] * [1 2]
end
@test_throws DimensionMismatch mul!(Matrix{Float64}(undef,3,3), AA, BB)
end
@testset "3x3 matmul" begin
AA = [1 2 3; 4 5 6; 7 8 9].-5
BB = [1 0 5; 6 -10 3; 2 -4 -1]
AAi = AA+(0.5*im).*BB
BBi = BB+(2.5*im).*AA[[2,1,3],[2,3,1]]
for A in (copy(AA), view(AA, 1:3, 1:3)), B in (copy(BB), view(BB, 1:3, 1:3))
@test A*B == [-26 38 -27; 1 -4 -6; 28 -46 15]
@test *(adjoint(A), B) == [-6 2 -25; 3 -12 -18; 12 -26 -11]
@test *(A, adjoint(B)) == [-14 0 6; 4 -3 -3; 22 -6 -12]
@test *(adjoint(A), adjoint(B)) == [6 -8 -6; 12 -9 -9; 18 -10 -12]
end
for Ai in (copy(AAi), view(AAi, 1:3, 1:3)), Bi in (copy(BBi), view(BBi, 1:3, 1:3))
@test Ai*Bi == [-44.75+13im 11.75-25im -38.25+30im; -47.75-16.5im -51.5+51.5im -56+6im; 16.75-4.5im -53.5+52im -15.5im]
@test *(adjoint(Ai), Bi) == [-21+2im -1.75+49im -51.25+19.5im; 25.5+56.5im -7-35.5im 22+35.5im; -3+12im -32.25+43im -34.75-2.5im]
@test *(Ai, adjoint(Bi)) == [-20.25+15.5im -28.75-54.5im 22.25+68.5im; -12.25+13im -15.5+75im -23+27im; 18.25+im 1.5+94.5im -27-54.5im]
@test *(adjoint(Ai), adjoint(Bi)) == [1+2im 20.75+9im -44.75+42im; 19.5+17.5im -54-36.5im 51-14.5im; 13+7.5im 11.25+31.5im -43.25-14.5im]
@test_throws DimensionMismatch [1 2 3; 0 0 0; 0 0 0] * [1 2 3]
end
@test_throws DimensionMismatch mul!(Matrix{Float64}(undef,4,4), AA, BB)
end
# Generic AbstractArrays
module MyArray15367
using Test, Random
struct MyArray{T,N} <: AbstractArray{T,N}
data::Array{T,N}
end
Base.size(A::MyArray) = size(A.data)
Base.getindex(A::MyArray, indices...) = A.data[indices...]
A = MyArray(rand(4,5))
b = rand(5)
@test A*b ≈ A.data*b
end
@testset "Generic integer matrix multiplication" begin
AA = [1 2 3; 4 5 6] .- 3
BB = [2 -2; 3 -5; -4 7]
for A in (copy(AA), view(AA, 1:2, 1:3)), B in (copy(BB), view(BB, 1:3, 1:2))
@test A*B == [-7 9; -4 9]
@test *(transpose(A), transpose(B)) == [-6 -11 15; -6 -13 18; -6 -15 21]
end
AA = fill(1, 2, 100)
BB = fill(1, 100, 3)
for A in (copy(AA), view(AA, 1:2, 1:100)), B in (copy(BB), view(BB, 1:100, 1:3))
@test A*B == [100 100 100; 100 100 100]
end
AA = rand(1:20, 5, 5) .- 10
BB = rand(1:20, 5, 5) .- 10
CC = Matrix{Int}(undef, size(AA, 1), size(BB, 2))
for A in (copy(AA), view(AA, 1:5, 1:5)), B in (copy(BB), view(BB, 1:5, 1:5)), C in (copy(CC), view(CC, 1:5, 1:5))
@test *(transpose(A), B) == A'*B
@test *(A, transpose(B)) == A*B'
# Preallocated
@test mul!(C, A, B) == A*B
@test mul!(C, transpose(A), B) == A'*B
@test mul!(C, A, transpose(B)) == A*B'
@test mul!(C, transpose(A), transpose(B)) == A'*B'
@test LinearAlgebra.mul!(C, adjoint(A), transpose(B)) == A'*transpose(B)
# Inplace multiply-add
α = rand(-10:10)
β = rand(-10:10)
rand!(C, -10:10)
βC = β * C
_C0 = copy(C)
C0() = (C .= _C0; C) # reset C but don't change the container type
@test mul!(C0(), A, B, α, β) == α*A*B .+ βC
@test mul!(C0(), transpose(A), B, α, β) == α*A'*B .+ βC
@test mul!(C0(), A, transpose(B), α, β) == α*A*B' .+ βC
@test mul!(C0(), transpose(A), transpose(B), α, β) == α*A'*B' .+ βC
@test mul!(C0(), adjoint(A), transpose(B), α, β) == α*A'*transpose(B) .+ βC
#test DimensionMismatch for generic_matmatmul
@test_throws DimensionMismatch LinearAlgebra.mul!(C, adjoint(A), transpose(fill(1,4,4)))
@test_throws DimensionMismatch LinearAlgebra.mul!(C, adjoint(fill(1,4,4)), transpose(B))
end
vv = [1,2]
CC = Matrix{Int}(undef, 2, 2)
for v in (copy(vv), view(vv, 1:2)), C in (copy(CC), view(CC, 1:2, 1:2))
@test @inferred(mul!(C, v, adjoint(v))) == [1 2; 2 4]
C .= [1 0; 0 1]
@test @inferred(mul!(C, v, adjoint(v), 2, 3)) == [5 4; 4 11]
end
end
@testset "generic_matvecmul" begin
AA = rand(5,5)
BB = rand(5)
for A in (copy(AA), view(AA, 1:5, 1:5)), B in (copy(BB), view(BB, 1:5))
@test_throws DimensionMismatch LinearAlgebra.generic_matvecmul!(zeros(6),'N',A,B)
@test_throws DimensionMismatch LinearAlgebra.generic_matvecmul!(B,'N',A,zeros(6))
end
vv = [1,2,3]
CC = Matrix{Int}(undef, 3, 3)
for v in (copy(vv), view(vv, 1:3)), C in (copy(CC), view(CC, 1:3, 1:3))
@test mul!(C, v, transpose(v)) == v*v'
C .= C0 = rand(-10:10, size(C))
@test mul!(C, v, transpose(v), 2, 3) == 2v*v' .+ 3C0
end
vvf = map(Float64,vv)
CC = Matrix{Float64}(undef, 3, 3)
for vf in (copy(vvf), view(vvf, 1:3)), C in (copy(CC), view(CC, 1:3, 1:3))
@test mul!(C, vf, transpose(vf)) == vf*vf'
C .= C0 = rand(eltype(C), size(C))
@test mul!(C, vf, transpose(vf), 2, 3) == 2vf*vf' .+ 3C0
end
end
@testset "fallbacks & such for BlasFloats" begin
AA = rand(Float64,6,6)
BB = rand(Float64,6,6)
CC = zeros(Float64,6,6)
for A in (copy(AA), view(AA, 1:6, 1:6)), B in (copy(BB), view(BB, 1:6, 1:6)), C in (copy(CC), view(CC, 1:6, 1:6))
@test LinearAlgebra.mul!(C, transpose(A), transpose(B)) == transpose(A)*transpose(B)
@test LinearAlgebra.mul!(C, A, adjoint(B)) == A*transpose(B)
@test LinearAlgebra.mul!(C, adjoint(A), B) == transpose(A)*B
# Inplace multiply-add
α = rand(Float64)
β = rand(Float64)
rand!(C)
βC = β * C
_C0 = copy(C)
C0() = (C .= _C0; C) # reset C but don't change the container type
@test mul!(C0(), transpose(A), transpose(B), α, β) ≈ α*transpose(A)*transpose(B) .+ βC
@test mul!(C0(), A, adjoint(B), α, β) ≈ α*A*transpose(B) .+ βC
@test mul!(C0(), adjoint(A), B, α, β) ≈ α*transpose(A)*B .+ βC
end
end
@testset "mixed Blas-non-Blas matmul" begin
AA = rand(-10:10,6,6)
BB = rand(Float64,6,6)
CC = zeros(Float64,6,6)
for A in (copy(AA), view(AA, 1:6, 1:6)), B in (copy(BB), view(BB, 1:6, 1:6)), C in (copy(CC), view(CC, 1:6, 1:6))
@test LinearAlgebra.mul!(C, A, B) == A*B
@test LinearAlgebra.mul!(C, transpose(A), transpose(B)) == transpose(A)*transpose(B)
@test LinearAlgebra.mul!(C, A, adjoint(B)) == A*transpose(B)
@test LinearAlgebra.mul!(C, adjoint(A), B) == transpose(A)*B
end
end
@testset "matrix algebra with subarrays of floats (stride != 1)" begin
A = reshape(map(Float64,1:20),5,4)
Aref = A[1:2:end,1:2:end]
Asub = view(A, 1:2:5, 1:2:4)
b = [1.2,-2.5]
@test (Aref*b) == (Asub*b)
@test *(transpose(Asub), Asub) == *(transpose(Aref), Aref)
@test *(Asub, transpose(Asub)) == *(Aref, transpose(Aref))
Ai = A .+ im
Aref = Ai[1:2:end,1:2:end]
Asub = view(Ai, 1:2:5, 1:2:4)
@test *(adjoint(Asub), Asub) == *(adjoint(Aref), Aref)
@test *(Asub, adjoint(Asub)) == *(Aref, adjoint(Aref))
end
@testset "Complex matrix x real MatOrVec etc (issue #29224)" for T1 in (Float32,Float64)
for T2 in (Float32,Float64)
for arg1_real in (true,false)
@testset "Combination $T1 $T2 $arg1_real $arg2_real" for arg2_real in (true,false)
A0 = reshape(Vector{T1}(1:25),5,5) .+
(arg1_real ? 0 : 1im*reshape(Vector{T1}(-3:21),5,5))
A = view(A0,1:2,1:2)
B = Matrix{T2}([1.0 3.0; -1.0 2.0]).+
(arg2_real ? 0 : 1im*Matrix{T2}([3.0 4; -1 10]))
AB_correct = copy(A)*B
AB = A*B; # view times matrix
@test AB ≈ AB_correct
A1 = view(A0,:,1:2) # rectangular view times matrix
@test A1*B ≈ copy(A1)*B
B1 = view(B,1:2,1:2);
AB1 = A*B1; # view times view
@test AB1 ≈ AB_correct
x = Vector{T2}([1.0;10.0]) .+ (arg2_real ? 0 : 1im*Vector{T2}([3;-1]))
Ax_exact = copy(A)*x
Ax = A*x # view times vector
@test Ax ≈ Ax_exact
x1 = view(x,1:2)
Ax1 = A*x1 # view times viewed vector
@test Ax1 ≈ Ax_exact
@test copy(A)*x1 ≈ Ax_exact # matrix times viewed vector
# View times transposed matrix
Bt = transpose(B);
@test A*Bt ≈ A*copy(Bt)
end
end
end
end
@testset "issue #15286" begin
A = reshape(map(Float64, 1:20), 5, 4)
C = zeros(8, 8)
sC = view(C, 1:2:8, 1:2:8)
B = reshape(map(Float64,-9:10),5,4)
@test mul!(sC, transpose(A), A) == A'*A
@test mul!(sC, transpose(A), B) == A'*B
Aim = A .- im
C = zeros(ComplexF64,8,8)
sC = view(C, 1:2:8, 1:2:8)
B = reshape(map(Float64,-9:10),5,4) .+ im
@test mul!(sC, adjoint(Aim), Aim) == Aim'*Aim
@test mul!(sC, adjoint(Aim), B) == Aim'*B
end
@testset "syrk & herk" begin
AA = reshape(1:1503, 501, 3).-750.0
res = Float64[135228751 9979252 -115270247; 9979252 10481254 10983256; -115270247 10983256 137236759]
for A in (copy(AA), view(AA, 1:501, 1:3))
@test *(transpose(A), A) == res
@test *(adjoint(A), transpose(copy(A'))) == res
end
cutoff = 501
A = reshape(1:6*cutoff,2*cutoff,3).-(6*cutoff)/2
Asub = view(A, 1:2:2*cutoff, 1:3)
Aref = A[1:2:2*cutoff, 1:3]
@test *(transpose(Asub), Asub) == *(transpose(Aref), Aref)
Ai = A .- im
Asub = view(Ai, 1:2:2*cutoff, 1:3)
Aref = Ai[1:2:2*cutoff, 1:3]
@test *(adjoint(Asub), Asub) == *(adjoint(Aref), Aref)
A5x5, A6x5 = Matrix{Float64}.(undef, ((5, 5), (6, 5)))
@test_throws DimensionMismatch LinearAlgebra.syrk_wrapper!(A5x5,'N',A6x5)
@test_throws DimensionMismatch LinearAlgebra.herk_wrapper!(A5x5,'N',A6x5)
end
@testset "matmul for types w/o sizeof (issue #1282)" begin
AA = fill(complex(1,1), 10, 10)
for A in (copy(AA), view(AA, 1:10, 1:10))
A2 = A^2
@test A2[1,1] == 20im
end
end
@testset "mul! (scaling)" begin
A5x5, b5, C5x6 = Array{Float64}.(undef,((5,5), 5, (5,6)))
for A in (A5x5, view(A5x5, :, :)), b in (b5, view(b5, :)), C in (C5x6, view(C5x6, :, :))
@test_throws DimensionMismatch mul!(A, Diagonal(b), C)
end
end
# issue #6450
@test dot(Any[1.0,2.0], Any[3.5,4.5]) === 12.5
@testset "dot" for elty in (Float32, Float64, ComplexF32, ComplexF64)
x = convert(Vector{elty},[1.0, 2.0, 3.0])
y = convert(Vector{elty},[3.5, 4.5, 5.5])
@test_throws DimensionMismatch dot(x, 1:2, y, 1:3)
@test_throws BoundsError dot(x, 1:4, y, 1:4)
@test_throws BoundsError dot(x, 1:3, y, 2:4)
@test dot(x, 1:2, y, 1:2) == convert(elty, 12.5)
@test transpose(x)*y == convert(elty, 29.0)
X = convert(Matrix{elty},[1.0 2.0; 3.0 4.0])
Y = convert(Matrix{elty},[1.5 2.5; 3.5 4.5])
@test dot(X, Y) == convert(elty, 35.0)
Z = convert(Vector{Matrix{elty}},[reshape(1:4, 2, 2), fill(1, 2, 2)])
@test dot(Z, Z) == convert(elty, 34.0)
end
dot1(x,y) = invoke(dot, Tuple{Any,Any}, x,y)
dot2(x,y) = invoke(dot, Tuple{AbstractArray,AbstractArray}, x,y)
@testset "generic dot" begin
AA = [1+2im 3+4im; 5+6im 7+8im]
BB = [2+7im 4+1im; 3+8im 6+5im]
for A in (copy(AA), view(AA, 1:2, 1:2)), B in (copy(BB), view(BB, 1:2, 1:2))
@test dot(A,B) == dot(vec(A),vec(B)) == dot1(A,B) == dot2(A,B) == dot(float.(A),float.(B))
@test dot(Int[], Int[]) == 0 == dot1(Int[], Int[]) == dot2(Int[], Int[])
@test_throws MethodError dot(Any[], Any[])
@test_throws MethodError dot1(Any[], Any[])
@test_throws MethodError dot2(Any[], Any[])
for n1 = 0:2, n2 = 0:2, d in (dot, dot1, dot2)
if n1 != n2
@test_throws DimensionMismatch d(1:n1, 1:n2)
else
@test d(1:n1, 1:n2) ≈ norm(1:n1)^2
end
end
end
end
@testset "Issue 11978" begin
A = Matrix{Matrix{Float64}}(undef, 2, 2)
A[1,1] = Matrix(1.0I, 3, 3)
A[2,2] = Matrix(1.0I, 2, 2)
A[1,2] = Matrix(1.0I, 3, 2)
A[2,1] = Matrix(1.0I, 2, 3)
b = Vector{Vector{Float64}}(undef, 2)
b[1] = fill(1., 3)
b[2] = fill(1., 2)
@test A*b == Vector{Float64}[[2,2,1], [2,2]]
end
@test_throws ArgumentError LinearAlgebra.copytri!(Matrix{Float64}(undef,10,10),'Z')
@testset "Issue 30055" begin
B = [1+im 2+im 3+im; 4+im 5+im 6+im; 7+im 9+im im]
A = UpperTriangular(B)
@test copy(transpose(A)) == transpose(A)
@test copy(A') == A'
A = LowerTriangular(B)
@test copy(transpose(A)) == transpose(A)
@test copy(A') == A'
B = Matrix{Matrix{Complex{Int}}}(undef, 2, 2)
B[1,1] = [1+im 2+im; 3+im 4+im]
B[2,1] = [1+2im 1+3im;1+3im 1+4im]
B[1,2] = [7+im 8+2im; 9+3im 4im]
B[2,2] = [9+im 8+im; 7+im 6+im]
A = UpperTriangular(B)
@test copy(transpose(A)) == transpose(A)
@test copy(A') == A'
A = LowerTriangular(B)
@test copy(transpose(A)) == transpose(A)
@test copy(A') == A'
end
@testset "gemv! and gemm_wrapper for $elty" for elty in [Float32,Float64,ComplexF64,ComplexF32]
A10x10, x10, x11 = Array{elty}.(undef, ((10,10), 10, 11))
@test_throws DimensionMismatch LinearAlgebra.gemv!(x10,'N',A10x10,x11)
@test_throws DimensionMismatch LinearAlgebra.gemv!(x11,'N',A10x10,x10)
@test LinearAlgebra.gemv!(elty[], 'N', Matrix{elty}(undef,0,0), elty[]) == elty[]
@test LinearAlgebra.gemv!(x10, 'N', Matrix{elty}(undef,10,0), elty[]) == zeros(elty,10)
I0x0 = Matrix{elty}(I, 0, 0)
I10x10 = Matrix{elty}(I, 10, 10)
I10x11 = Matrix{elty}(I, 10, 11)
@test LinearAlgebra.gemm_wrapper('N','N', I10x10, I10x10) == I10x10
@test_throws DimensionMismatch LinearAlgebra.gemm_wrapper!(I10x10,'N','N', I10x11, I10x10)
@test_throws DimensionMismatch LinearAlgebra.gemm_wrapper!(I10x10,'N','N', I0x0, I0x0)
A = rand(elty,3,3)
@test LinearAlgebra.matmul3x3('T','N',A, Matrix{elty}(I, 3, 3)) == transpose(A)
end
@testset "#13593, #13488" begin
aa = rand(3,3)
bb = rand(3,3)
for a in (copy(aa), view(aa, 1:3, 1:3)), b in (copy(bb), view(bb, 1:3, 1:3))
@test_throws ArgumentError mul!(a, a, b)
@test_throws ArgumentError mul!(a, b, a)
@test_throws ArgumentError mul!(a, a, a)
end
end
@testset "#35163" begin
# typemax(Int32) * Int32(1) + Int32(1) * Int32(1) should wrap around
# not promote to Int64, convert to Int32 and throw inexacterror
val = mul!(Int32[1], fill(typemax(Int32), 1, 1), Int32[1], Int32(1), Int32(1))
@test val[1] == typemin(Int32)
end
# Number types that lack conversion to the destination type
struct RootInt
i::Int
end
import Base: *, adjoint, transpose
import LinearAlgebra: Adjoint, Transpose
(*)(x::RootInt, y::RootInt) = x.i*y.i
adjoint(x::RootInt) = x
transpose(x::RootInt) = x
Adjoint(x::RootInt) = x
Transpose(x::RootInt) = x
# TODO once Adjoint/Transpose constructors call adjoint/transpose recursively
# rather than Adjoint/Transpose, the additional definitions should become unnecessary
@test Base.promote_op(*, RootInt, RootInt) === Int
@testset "#14293" begin
a = [RootInt(3)]
C = [0]
mul!(C, a, transpose(a))
@test C[1] == 9
C = [1]
mul!(C, a, transpose(a), 2, 3)
@test C[1] == 21
a = [RootInt(2),RootInt(10)]
@test a*adjoint(a) == [4 20; 20 100]
A = [RootInt(3) RootInt(5)]
@test A*a == [56]
end
function test_mul(C, A, B)
mul!(C, A, B)
@test Array(A) * Array(B) ≈ C
@test A*B ≈ C
# This is similar to how `isapprox` choose `rtol` (when `atol=0`)
# but consider all number types involved:
rtol = max(rtoldefault.(real.(eltype.((C, A, B))))...)
rand!(C)
T = promote_type(eltype.((A, B))...)
α = rand(T)
β = rand(T)
βArrayC = β * Array(C)
βC = β * C
mul!(C, A, B, α, β)
@test α * Array(A) * Array(B) .+ βArrayC ≈ C rtol=rtol
@test α * A * B .+ βC ≈ C rtol=rtol
end
@testset "mul! vs * for special types" begin
eltypes = [Float32, Float64, Int64]
for k in [3, 4, 10]
T = rand(eltypes)
bi1 = Bidiagonal(rand(T, k), rand(T, k-1), rand([:U, :L]))
bi2 = Bidiagonal(rand(T, k), rand(T, k-1), rand([:U, :L]))
tri1 = Tridiagonal(rand(T,k-1), rand(T, k), rand(T, k-1))
tri2 = Tridiagonal(rand(T,k-1), rand(T, k), rand(T, k-1))
stri1 = SymTridiagonal(rand(T, k), rand(T, k-1))
stri2 = SymTridiagonal(rand(T, k), rand(T, k-1))
C = rand(T, k, k)
specialmatrices = (bi1, bi2, tri1, tri2, stri1, stri2)
for A in specialmatrices
B = specialmatrices[rand(1:length(specialmatrices))]
test_mul(C, A, B)
end
for S in specialmatrices
l = rand(1:6)
B = randn(k, l)
C = randn(k, l)
test_mul(C, S, B)
A = randn(l, k)
C = randn(l, k)
test_mul(C, A, S)
end
end
for T in eltypes
A = Bidiagonal(rand(T, 2), rand(T, 1), rand([:U, :L]))
B = Bidiagonal(rand(T, 2), rand(T, 1), rand([:U, :L]))
C = randn(2,2)
test_mul(C, A, B)
B = randn(2, 9)
C = randn(2, 9)
test_mul(C, A, B)
end
let
tri44 = Tridiagonal(randn(3), randn(4), randn(3))
tri33 = Tridiagonal(randn(2), randn(3), randn(2))
full43 = randn(4, 3)
full24 = randn(2, 4)
full33 = randn(3, 3)
full44 = randn(4, 4)
@test_throws DimensionMismatch mul!(full43, tri44, tri33)
@test_throws DimensionMismatch mul!(full44, tri44, tri33)
@test_throws DimensionMismatch mul!(full44, tri44, full43)
@test_throws DimensionMismatch mul!(full43, tri33, full43)
@test_throws DimensionMismatch mul!(full43, full43, tri44)
end
end
# #18218
module TestPR18218
using Test
import Base.*, Base.+, Base.zero
struct TypeA
x::Int
end
Base.convert(::Type{TypeA}, x::Int) = TypeA(x)
struct TypeB
x::Int
end
struct TypeC
x::Int
end
Base.convert(::Type{TypeC}, x::Int) = TypeC(x)
zero(c::TypeC) = TypeC(0)
zero(::Type{TypeC}) = TypeC(0)
(*)(x::Int, a::TypeA) = TypeB(x*a.x)
(*)(a::TypeA, x::Int) = TypeB(a.x*x)
(+)(a::Union{TypeB,TypeC}, b::Union{TypeB,TypeC}) = TypeC(a.x+b.x)
A = TypeA[1 2; 3 4]
b = [1, 2]
d = A * b
@test typeof(d) == Vector{TypeC}
@test d == TypeC[5, 11]
end
@testset "VecOrMat of Vectors" begin
X = rand(ComplexF64, 3, 3)
Xv1 = [X[:,j] for i in 1:1, j in 1:3]
Xv2 = [transpose(X[i,:]) for i in 1:3]
Xv3 = [transpose(X[i,:]) for i in 1:3, j in 1:1]
XX = X*X
XtX = transpose(X)*X
XcX = X'*X
XXt = X*transpose(X)
XtXt = transpose(XX)
XcXt = X'*transpose(X)
XXc = X*X'
XtXc = transpose(X)*X'
XcXc = X'*X'
@test (Xv1*Xv2)[1] ≈ XX
@test (Xv1*Xv3)[1] ≈ XX
@test transpose(Xv1)*Xv1 ≈ XtX
@test transpose(Xv2)*Xv2 ≈ XtX
@test (transpose(Xv3)*Xv3)[1] ≈ XtX
@test Xv1'*Xv1 ≈ XcX
@test Xv2'*Xv2 ≈ norm(Xv2)^2
@test (Xv3'*Xv3)[1] ≈ XcX
@test (Xv1*transpose(Xv1))[1] ≈ XXt
@test Xv2*transpose(Xv2) ≈ XXt
@test Xv3*transpose(Xv3) ≈ XXt
@test transpose(Xv1)*transpose(Xv2) ≈ XtXt
@test transpose(Xv1)*transpose(Xv3) ≈ XtXt
@test Xv1'*transpose(Xv2) ≈ XcXt
@test Xv1'*transpose(Xv3) ≈ XcXt
@test (Xv1*Xv1')[1] ≈ XXc
@test Xv2*Xv2' ≈ XXc
@test Xv3*Xv3' ≈ XXc
@test transpose(Xv1)*Xv2' ≈ XtXc
@test transpose(Xv1)*Xv3' ≈ XtXc
@test Xv1'*Xv2' ≈ XcXc
@test Xv1'*Xv3' ≈ XcXc
end
@testset "method ambiguity" begin
# Ambiguity test is run inside a clean process.
# https://github.com/JuliaLang/julia/issues/28804
script = joinpath(@__DIR__, "ambiguous_exec.jl")
cmd = `$(Base.julia_cmd()) --startup-file=no $script`
@test success(pipeline(cmd; stdout=stdout, stderr=stderr))
end
struct A32092
x::Float64
end
Base.:+(x::Float64, a::A32092) = x + a.x
Base.:*(x::Float64, a::A32092) = x * a.x
@testset "Issue #32092" begin
@test ones(2, 2) * [A32092(1.0), A32092(2.0)] == fill(3.0, (2,))
end
@testset "strong zero" begin
@testset for α in Any[false, 0.0, 0], n in 1:4
C = ones(n, n)
A = fill!(zeros(n, n), NaN)
B = ones(n, n)
@test mul!(copy(C), A, B, α, 1.0) == C
end
end
@testset "CartesianIndex handling in _modify!" begin
C = rand(10, 10)
A = rand(10, 10)
@test mul!(view(C, 1:10, 1:10), A, 0.5) == A * 0.5
end
@testset "Issue #33214: tiled generic mul!" begin
n = 100
A = rand(n, n)
B = rand(n, n)
C = zeros(n, n)
mul!(C, A, B, -1 + 0im, 0)
D = -A * B
@test D ≈ C
# Just in case dispatching on the surface API `mul!` is changed in the future,
# let's test the function where the tiled multiplication is defined.
fill!(C, 0)
LinearAlgebra._generic_matmatmul!(C, 'N', 'N', A, B, LinearAlgebra.MulAddMul(-1, 0))
@test D ≈ C
end
@testset "multiplication of empty matrices without calling zero" begin
r, c = rand(0:9, 2)
A = collect(Number, rand(r, c))
B = rand(c, 0)
C = A * B
@test size(C) == (r, 0)
@test_throws MethodError zero(eltype(C))
end
@testset "Issue #33873: genmatmul! with empty operands" begin
@test Matrix{Any}(undef, 0, 2) * Matrix{Any}(undef, 2, 3) == Matrix{Any}(undef, 0, 3)
@test_throws MethodError Matrix{Any}(undef, 2, 0) * Matrix{Any}(undef, 0, 3)
@test Matrix{Int}(undef, 2, 0) * Matrix{Int}(undef, 0, 3) == zeros(Int, 2, 3)
end
end # module TestMatmul