-
-
Notifications
You must be signed in to change notification settings - Fork 5.5k
/
iterators.jl
1400 lines (1144 loc) · 40 KB
/
iterators.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# This file is a part of Julia. License is MIT: https://julialang.org/license
"""
Methods for working with Iterators.
"""
module Iterators
# small dance to make this work from Base or Intrinsics
import ..@__MODULE__, ..parentmodule
const Base = parentmodule(@__MODULE__)
using .Base:
@inline, Pair, Pairs, AbstractDict, IndexLinear, IndexCartesian, IndexStyle, AbstractVector, Vector,
tail, SizeUnknown, HasLength, HasShape, IsInfinite, EltypeUnknown, HasEltype, OneTo,
@propagate_inbounds, @isdefined, @boundscheck, @inbounds, Generator, AbstractRange,
LinearIndices, (:), |, +, -, !==, !, <=, <, missing, any, _counttuple
import .Base:
first, last,
isempty, length, size, axes, ndims,
eltype, IteratorSize, IteratorEltype,
haskey, keys, values, pairs,
getindex, setindex!, get, iterate,
popfirst!, isdone, peek
export enumerate, zip, rest, countfrom, take, drop, takewhile, dropwhile, cycle, repeated, product, flatten, partition
"""
Iterators.map(f, iterators...)
Create a lazy mapping. This is another syntax for writing
`(f(args...) for args in zip(iterators...))`.
!!! compat "Julia 1.6"
This function requires at least Julia 1.6.
# Examples
```jldoctest
julia> collect(Iterators.map(x -> x^2, 1:3))
3-element Vector{Int64}:
1
4
9
```
"""
map(f, args...) = Base.Generator(f, args...)
tail_if_any(::Tuple{}) = ()
tail_if_any(x::Tuple) = tail(x)
_min_length(a, b, ::IsInfinite, ::IsInfinite) = min(length(a),length(b)) # inherit behaviour, error
_min_length(a, b, A, ::IsInfinite) = length(a)
_min_length(a, b, ::IsInfinite, B) = length(b)
_min_length(a, b, A, B) = min(length(a),length(b))
_diff_length(a, b, A, ::IsInfinite) = 0
_diff_length(a, b, ::IsInfinite, ::IsInfinite) = 0
_diff_length(a, b, ::IsInfinite, B) = length(a) # inherit behaviour, error
_diff_length(a, b, A, B) = max(length(a)-length(b), 0)
and_iteratorsize(isz::T, ::T) where {T} = isz
and_iteratorsize(::HasLength, ::HasShape) = HasLength()
and_iteratorsize(::HasShape, ::HasLength) = HasLength()
and_iteratorsize(a, b) = SizeUnknown()
and_iteratoreltype(iel::T, ::T) where {T} = iel
and_iteratoreltype(a, b) = EltypeUnknown()
## Reverse-order iteration for arrays and other collections. Collections
## should implement iterate etcetera if possible/practical.
"""
Iterators.reverse(itr)
Given an iterator `itr`, then `reverse(itr)` is an iterator over the
same collection but in the reverse order.
This iterator is "lazy" in that it does not make a copy of the collection in
order to reverse it; see [`Base.reverse`](@ref) for an eager implementation.
Not all iterator types `T` support reverse-order iteration. If `T`
doesn't, then iterating over `Iterators.reverse(itr::T)` will throw a [`MethodError`](@ref)
because of the missing [`iterate`](@ref) methods for `Iterators.Reverse{T}`.
(To implement these methods, the original iterator
`itr::T` can be obtained from `r = Iterators.reverse(itr)` by `r.itr`.)
# Examples
```jldoctest
julia> foreach(println, Iterators.reverse(1:5))
5
4
3
2
1
```
"""
reverse(itr) = Reverse(itr)
struct Reverse{T}
itr::T
end
eltype(::Type{Reverse{T}}) where {T} = eltype(T)
length(r::Reverse) = length(r.itr)
size(r::Reverse) = size(r.itr)
IteratorSize(::Type{Reverse{T}}) where {T} = IteratorSize(T)
IteratorEltype(::Type{Reverse{T}}) where {T} = IteratorEltype(T)
last(r::Reverse) = first(r.itr) # the first shall be last
first(r::Reverse) = last(r.itr) # and the last shall be first
# reverse-order array iterators: assumes more-specialized Reverse for eachindex
@propagate_inbounds function iterate(A::Reverse{<:AbstractArray}, state=(reverse(eachindex(A.itr)),))
y = iterate(state...)
y === nothing && return y
idx, itrs = y
(A.itr[idx], (state[1], itrs))
end
reverse(R::AbstractRange) = Base.reverse(R) # copying ranges is cheap
reverse(G::Generator) = Generator(G.f, reverse(G.iter))
reverse(r::Reverse) = r.itr
reverse(x::Union{Number,AbstractChar}) = x
reverse(p::Pair) = Base.reverse(p) # copying pairs is cheap
iterate(r::Reverse{<:Tuple}, i::Int = length(r.itr)) = i < 1 ? nothing : (r.itr[i], i-1)
# enumerate
struct Enumerate{I}
itr::I
end
"""
enumerate(iter)
An iterator that yields `(i, x)` where `i` is a counter starting at 1,
and `x` is the `i`th value from the given iterator. It's useful when
you need not only the values `x` over which you are iterating, but
also the number of iterations so far. Note that `i` may not be valid
for indexing `iter`; it's also possible that `x != iter[i]`, if `iter`
has indices that do not start at 1. See the `pairs(IndexLinear(),
iter)` method if you want to ensure that `i` is an index.
# Examples
```jldoctest
julia> a = ["a", "b", "c"];
julia> for (index, value) in enumerate(a)
println("\$index \$value")
end
1 a
2 b
3 c
```
"""
enumerate(iter) = Enumerate(iter)
length(e::Enumerate) = length(e.itr)
size(e::Enumerate) = size(e.itr)
@propagate_inbounds function iterate(e::Enumerate, state=(1,))
i, rest = state[1], tail(state)
n = iterate(e.itr, rest...)
n === nothing && return n
(i, n[1]), (i+1, n[2])
end
eltype(::Type{Enumerate{I}}) where {I} = Tuple{Int, eltype(I)}
IteratorSize(::Type{Enumerate{I}}) where {I} = IteratorSize(I)
IteratorEltype(::Type{Enumerate{I}}) where {I} = IteratorEltype(I)
@inline function iterate(r::Reverse{<:Enumerate})
ri = reverse(r.itr.itr)
iterate(r, (length(ri), ri))
end
@inline function iterate(r::Reverse{<:Enumerate}, state)
i, ri, rest = state[1], state[2], tail(tail(state))
n = iterate(ri, rest...)
n === nothing && return n
(i, n[1]), (i-1, ri, n[2])
end
"""
pairs(IndexLinear(), A)
pairs(IndexCartesian(), A)
pairs(IndexStyle(A), A)
An iterator that accesses each element of the array `A`, returning
`i => x`, where `i` is the index for the element and `x = A[i]`.
Identical to `pairs(A)`, except that the style of index can be selected.
Also similar to `enumerate(A)`, except `i` will be a valid index
for `A`, while `enumerate` always counts from 1 regardless of the indices
of `A`.
Specifying [`IndexLinear()`](@ref) ensures that `i` will be an integer;
specifying [`IndexCartesian()`](@ref) ensures that `i` will be a
[`CartesianIndex`](@ref); specifying `IndexStyle(A)` chooses whichever has
been defined as the native indexing style for array `A`.
Mutation of the bounds of the underlying array will invalidate this iterator.
# Examples
```jldoctest
julia> A = ["a" "d"; "b" "e"; "c" "f"];
julia> for (index, value) in pairs(IndexStyle(A), A)
println("\$index \$value")
end
1 a
2 b
3 c
4 d
5 e
6 f
julia> S = view(A, 1:2, :);
julia> for (index, value) in pairs(IndexStyle(S), S)
println("\$index \$value")
end
CartesianIndex(1, 1) a
CartesianIndex(2, 1) b
CartesianIndex(1, 2) d
CartesianIndex(2, 2) e
```
See also [`IndexStyle`](@ref), [`axes`](@ref).
"""
pairs(::IndexLinear, A::AbstractArray) = Pairs(A, LinearIndices(A))
pairs(::IndexCartesian, A::AbstractArray) = Pairs(A, CartesianIndices(axes(A)))
# preserve indexing capabilities for known indexable types
# faster than zip(keys(a), values(a)) for arrays
pairs(tuple::Tuple) = Pairs{Int}(tuple, keys(tuple))
pairs(nt::NamedTuple) = Pairs{Symbol}(nt, keys(nt))
pairs(v::Core.SimpleVector) = Pairs(v, LinearIndices(v))
pairs(A::AbstractArray) = pairs(IndexCartesian(), A)
pairs(A::AbstractVector) = pairs(IndexLinear(), A)
# pairs(v::Pairs) = v # listed for reference, but already defined from being an AbstractDict
length(v::Pairs) = length(getfield(v, :itr))
axes(v::Pairs) = axes(getfield(v, :itr))
size(v::Pairs) = size(getfield(v, :itr))
@propagate_inbounds function iterate(v::Pairs{K, V}, state...) where {K, V}
x = iterate(getfield(v, :itr), state...)
x === nothing && return x
indx, n = x
item = getfield(v, :data)[indx]
return (Pair{K, V}(indx, item), n)
end
@inline isdone(v::Pairs, state...) = isdone(getfield(v, :itr), state...)
IteratorSize(::Type{<:Pairs{<:Any, <:Any, I}}) where {I} = IteratorSize(I)
IteratorSize(::Type{<:Pairs{<:Any, <:Any, <:Base.AbstractUnitRange, <:Tuple}}) = HasLength()
reverse(v::Pairs) = Pairs(getfield(v, :data), reverse(getfield(v, :itr)))
haskey(v::Pairs, key) = (key in getfield(v, :itr))
keys(v::Pairs) = getfield(v, :itr)
values(v::Pairs) = getfield(v, :data) # TODO: this should be a view of data subset by itr
getindex(v::Pairs, key) = getfield(v, :data)[key]
setindex!(v::Pairs, value, key) = (getfield(v, :data)[key] = value; v)
get(v::Pairs, key, default) = get(getfield(v, :data), key, default)
get(f::Base.Callable, v::Pairs, key) = get(f, getfield(v, :data), key)
# zip
struct Zip{Is<:Tuple}
is::Is
end
"""
zip(iters...)
Run multiple iterators at the same time, until any of them is exhausted. The value type of
the `zip` iterator is a tuple of values of its subiterators.
!!! note
`zip` orders the calls to its subiterators in such a way that stateful iterators will
not advance when another iterator finishes in the current iteration.
See also: [`enumerate`](@ref), [`splat`](@ref Base.splat).
# Examples
```jldoctest
julia> a = 1:5
1:5
julia> b = ["e","d","b","c","a"]
5-element Vector{String}:
"e"
"d"
"b"
"c"
"a"
julia> c = zip(a,b)
zip(1:5, ["e", "d", "b", "c", "a"])
julia> length(c)
5
julia> first(c)
(1, "e")
```
"""
zip(a...) = Zip(a)
function length(z::Zip)
n = _zip_min_length(z.is)
n === nothing && throw(ArgumentError("iterator is of undefined length"))
return n
end
function _zip_min_length(is)
i = is[1]
n = _zip_min_length(tail(is))
if IteratorSize(i) isa IsInfinite
return n
else
return n === nothing ? length(i) : min(n, length(i))
end
end
_zip_min_length(is::Tuple{}) = nothing
size(z::Zip) = _promote_tuple_shape(Base.map(size, z.is)...)
axes(z::Zip) = _promote_tuple_shape(Base.map(axes, z.is)...)
_promote_tuple_shape((a,)::Tuple{OneTo}, (b,)::Tuple{OneTo}) = (intersect(a, b),)
_promote_tuple_shape((m,)::Tuple{Integer}, (n,)::Tuple{Integer}) = (min(m, n),)
_promote_tuple_shape(a, b) = promote_shape(a, b)
_promote_tuple_shape(a, b...) = _promote_tuple_shape(a, _promote_tuple_shape(b...))
_promote_tuple_shape(a) = a
eltype(::Type{Zip{Is}}) where {Is<:Tuple} = Tuple{ntuple(n -> eltype(fieldtype(Is, n)), _counttuple(Is)::Int)...}
#eltype(::Type{Zip{Tuple{}}}) = Tuple{}
#eltype(::Type{Zip{Tuple{A}}}) where {A} = Tuple{eltype(A)}
#eltype(::Type{Zip{Tuple{A, B}}}) where {A, B} = Tuple{eltype(A), eltype(B)}
@inline isdone(z::Zip) = _zip_any_isdone(z.is, Base.map(_ -> (), z.is))
@inline isdone(z::Zip, ss) = _zip_any_isdone(z.is, Base.map(tuple, ss))
@inline function _zip_any_isdone(is, ss)
d1 = isdone(is[1], ss[1]...)
d1 === true && return true
return d1 | _zip_any_isdone(tail(is), tail(ss))
end
@inline _zip_any_isdone(::Tuple{}, ::Tuple{}) = false
@propagate_inbounds iterate(z::Zip) = _zip_iterate_all(z.is, Base.map(_ -> (), z.is))
@propagate_inbounds iterate(z::Zip, ss) = _zip_iterate_all(z.is, Base.map(tuple, ss))
# This first queries isdone from every iterator. If any gives true, it immediately returns
# nothing. It then iterates all those where isdone returned missing, afterwards all those
# it returned false, again terminating immediately if any iterator is exhausted. Finally,
# the results are interleaved appropriately.
@propagate_inbounds function _zip_iterate_all(is, ss)
d, ds = _zip_isdone(is, ss)
d && return nothing
xs1 = _zip_iterate_some(is, ss, ds, missing)
xs1 === nothing && return nothing
xs2 = _zip_iterate_some(is, ss, ds, false)
xs2 === nothing && return nothing
return _zip_iterate_interleave(xs1, xs2, ds)
end
@propagate_inbounds function _zip_iterate_some(is, ss, ds::Tuple{T,Vararg{Any}}, f::T) where T
x = iterate(is[1], ss[1]...)
x === nothing && return nothing
y = _zip_iterate_some(tail(is), tail(ss), tail(ds), f)
y === nothing && return nothing
return (x, y...)
end
@propagate_inbounds _zip_iterate_some(is, ss, ds::Tuple{Any,Vararg{Any}}, f) =
_zip_iterate_some(tail(is), tail(ss), tail(ds), f)
_zip_iterate_some(::Tuple{}, ::Tuple{}, ::Tuple{}, ::Any) = ()
function _zip_iterate_interleave(xs1, xs2, ds)
t = _zip_iterate_interleave(tail(xs1), xs2, tail(ds))
((xs1[1][1], t[1]...), (xs1[1][2], t[2]...))
end
function _zip_iterate_interleave(xs1, xs2, ds::Tuple{Bool,Vararg{Any}})
t = _zip_iterate_interleave(xs1, tail(xs2), tail(ds))
((xs2[1][1], t[1]...), (xs2[1][2], t[2]...))
end
_zip_iterate_interleave(::Tuple{}, ::Tuple{}, ::Tuple{}) = ((), ())
function _zip_isdone(is, ss)
d = isdone(is[1], ss[1]...)
d´, ds = _zip_isdone(tail(is), tail(ss))
return (d === true || d´, (d, ds...))
end
_zip_isdone(::Tuple{}, ::Tuple{}) = (false, ())
IteratorSize(::Type{Zip{Is}}) where {Is<:Tuple} = zip_iteratorsize(ntuple(n -> IteratorSize(fieldtype(Is, n)), _counttuple(Is)::Int)...)
IteratorEltype(::Type{Zip{Is}}) where {Is<:Tuple} = zip_iteratoreltype(ntuple(n -> IteratorEltype(fieldtype(Is, n)), _counttuple(Is)::Int)...)
zip_iteratorsize() = IsInfinite()
zip_iteratorsize(I) = I
zip_iteratorsize(a, b) = and_iteratorsize(a,b) # as `and_iteratorsize` but inherit `Union{HasLength,IsInfinite}` of the shorter iterator
zip_iteratorsize(::HasLength, ::IsInfinite) = HasLength()
zip_iteratorsize(::HasShape, ::IsInfinite) = HasLength()
zip_iteratorsize(a::IsInfinite, b) = zip_iteratorsize(b,a)
zip_iteratorsize(a::IsInfinite, b::IsInfinite) = IsInfinite()
zip_iteratorsize(a, b, tail...) = zip_iteratorsize(a, zip_iteratorsize(b, tail...))
zip_iteratoreltype() = HasEltype()
zip_iteratoreltype(a) = a
zip_iteratoreltype(a, tail...) = and_iteratoreltype(a, zip_iteratoreltype(tail...))
reverse(z::Zip) = Zip(Base.map(reverse, z.is))
# filter
struct Filter{F,I}
flt::F
itr::I
end
"""
Iterators.filter(flt, itr)
Given a predicate function `flt` and an iterable object `itr`, return an
iterable object which upon iteration yields the elements `x` of `itr` that
satisfy `flt(x)`. The order of the original iterator is preserved.
This function is *lazy*; that is, it is guaranteed to return in ``Θ(1)`` time
and use ``Θ(1)`` additional space, and `flt` will not be called by an
invocation of `filter`. Calls to `flt` will be made when iterating over the
returned iterable object. These calls are not cached and repeated calls will be
made when reiterating.
See [`Base.filter`](@ref) for an eager implementation of filtering for arrays.
# Examples
```jldoctest
julia> f = Iterators.filter(isodd, [1, 2, 3, 4, 5])
Base.Iterators.Filter{typeof(isodd), Vector{Int64}}(isodd, [1, 2, 3, 4, 5])
julia> foreach(println, f)
1
3
5
julia> [x for x in [1, 2, 3, 4, 5] if isodd(x)] # collects a generator over Iterators.filter
3-element Vector{Int64}:
1
3
5
```
"""
filter(flt, itr) = Filter(flt, itr)
function iterate(f::Filter, state...)
y = iterate(f.itr, state...)
while y !== nothing
if f.flt(y[1])
return y
end
y = iterate(f.itr, y[2])
end
nothing
end
eltype(::Type{Filter{F,I}}) where {F,I} = eltype(I)
IteratorEltype(::Type{Filter{F,I}}) where {F,I} = IteratorEltype(I)
IteratorSize(::Type{<:Filter}) = SizeUnknown()
reverse(f::Filter) = Filter(f.flt, reverse(f.itr))
# Accumulate -- partial reductions of a function over an iterator
struct Accumulate{F,I,T}
f::F
itr::I
init::T
end
"""
Iterators.accumulate(f, itr; [init])
Given a 2-argument function `f` and an iterator `itr`, return a new
iterator that successively applies `f` to the previous value and the
next element of `itr`.
This is effectively a lazy version of [`Base.accumulate`](@ref).
!!! compat "Julia 1.5"
Keyword argument `init` is added in Julia 1.5.
# Examples
```jldoctest
julia> a = Iterators.accumulate(+, [1,2,3,4]);
julia> foreach(println, a)
1
3
6
10
julia> b = Iterators.accumulate(/, (2, 5, 2, 5); init = 100);
julia> collect(b)
4-element Vector{Float64}:
50.0
10.0
5.0
1.0
```
"""
accumulate(f, itr; init = Base._InitialValue()) = Accumulate(f, itr, init)
function iterate(itr::Accumulate)
state = iterate(itr.itr)
if state === nothing
return nothing
end
val = Base.BottomRF(itr.f)(itr.init, state[1])
return (val, (val, state[2]))
end
function iterate(itr::Accumulate, state)
nxt = iterate(itr.itr, state[2])
if nxt === nothing
return nothing
end
val = itr.f(state[1], nxt[1])
return (val, (val, nxt[2]))
end
length(itr::Accumulate) = length(itr.itr)
size(itr::Accumulate) = size(itr.itr)
IteratorSize(::Type{<:Accumulate{<:Any,I}}) where {I} = IteratorSize(I)
IteratorEltype(::Type{<:Accumulate}) = EltypeUnknown()
# Rest -- iterate starting at the given state
struct Rest{I,S}
itr::I
st::S
end
"""
rest(iter, state)
An iterator that yields the same elements as `iter`, but starting at the given `state`.
See also: [`Iterators.drop`](@ref), [`Iterators.peel`](@ref), [`Base.rest`](@ref).
# Examples
```jldoctest
julia> collect(Iterators.rest([1,2,3,4], 2))
3-element Vector{Int64}:
2
3
4
```
"""
rest(itr,state) = Rest(itr,state)
rest(itr::Rest,state) = Rest(itr.itr,state)
rest(itr) = itr
"""
peel(iter)
Returns the first element and an iterator over the remaining elements.
If the iterator is empty return `nothing` (like `iterate`).
!!! compat "Julia 1.7"
Prior versions throw a BoundsError if the iterator is empty.
See also: [`Iterators.drop`](@ref), [`Iterators.take`](@ref).
# Examples
```jldoctest
julia> (a, rest) = Iterators.peel("abc");
julia> a
'a': ASCII/Unicode U+0061 (category Ll: Letter, lowercase)
julia> collect(rest)
2-element Vector{Char}:
'b': ASCII/Unicode U+0062 (category Ll: Letter, lowercase)
'c': ASCII/Unicode U+0063 (category Ll: Letter, lowercase)
```
"""
function peel(itr)
y = iterate(itr)
y === nothing && return y
val, s = y
val, rest(itr, s)
end
@propagate_inbounds iterate(i::Rest, st=i.st) = iterate(i.itr, st)
isdone(i::Rest, st...) = isdone(i.itr, st...)
eltype(::Type{<:Rest{I}}) where {I} = eltype(I)
IteratorEltype(::Type{<:Rest{I}}) where {I} = IteratorEltype(I)
rest_iteratorsize(a) = SizeUnknown()
rest_iteratorsize(::IsInfinite) = IsInfinite()
IteratorSize(::Type{<:Rest{I}}) where {I} = rest_iteratorsize(IteratorSize(I))
# Count -- infinite counting
struct Count{T,S}
start::T
step::S
end
"""
countfrom(start=1, step=1)
An iterator that counts forever, starting at `start` and incrementing by `step`.
# Examples
```jldoctest
julia> for v in Iterators.countfrom(5, 2)
v > 10 && break
println(v)
end
5
7
9
```
"""
countfrom(start::T, step::S) where {T,S} = Count{typeof(start+step),S}(start, step)
countfrom(start::Number, step::Number) = Count(promote(start, step)...)
countfrom(start) = Count(start, oneunit(start))
countfrom() = Count(1, 1)
eltype(::Type{<:Count{T}}) where {T} = T
iterate(it::Count, state=it.start) = (state, state + it.step)
IteratorSize(::Type{<:Count}) = IsInfinite()
# Take -- iterate through the first n elements
struct Take{I}
xs::I
n::Int
function Take(xs::I, n::Integer) where {I}
n < 0 && throw(ArgumentError("Take length must be nonnegative"))
return new{I}(xs, n)
end
end
"""
take(iter, n)
An iterator that generates at most the first `n` elements of `iter`.
See also: [`drop`](@ref Iterators.drop), [`peel`](@ref Iterators.peel), [`first`](@ref), [`take!`](@ref).
# Examples
```jldoctest
julia> a = 1:2:11
1:2:11
julia> collect(a)
6-element Vector{Int64}:
1
3
5
7
9
11
julia> collect(Iterators.take(a,3))
3-element Vector{Int64}:
1
3
5
```
"""
take(xs, n::Integer) = Take(xs, Int(n))
take(xs::Take, n::Integer) = Take(xs.xs, min(Int(n), xs.n))
eltype(::Type{Take{I}}) where {I} = eltype(I)
IteratorEltype(::Type{Take{I}}) where {I} = IteratorEltype(I)
take_iteratorsize(a) = HasLength()
take_iteratorsize(::SizeUnknown) = SizeUnknown()
IteratorSize(::Type{Take{I}}) where {I} = take_iteratorsize(IteratorSize(I))
length(t::Take) = _min_length(t.xs, 1:t.n, IteratorSize(t.xs), HasLength())
isdone(t::Take) = isdone(t.xs)
isdone(t::Take, state) = (state[1] <= 0) | isdone(t.xs, tail(state))
@propagate_inbounds function iterate(it::Take, state=(it.n,))
n, rest = state[1], tail(state)
n <= 0 && return nothing
y = iterate(it.xs, rest...)
y === nothing && return nothing
return y[1], (n - 1, y[2])
end
# Drop -- iterator through all but the first n elements
struct Drop{I}
xs::I
n::Int
function Drop(xs::I, n::Integer) where {I}
n < 0 && throw(ArgumentError("Drop length must be nonnegative"))
return new{I}(xs, n)
end
end
"""
drop(iter, n)
An iterator that generates all but the first `n` elements of `iter`.
# Examples
```jldoctest
julia> a = 1:2:11
1:2:11
julia> collect(a)
6-element Vector{Int64}:
1
3
5
7
9
11
julia> collect(Iterators.drop(a,4))
2-element Vector{Int64}:
9
11
```
"""
drop(xs, n::Integer) = Drop(xs, Int(n))
drop(xs::Take, n::Integer) = Take(drop(xs.xs, Int(n)), max(0, xs.n - Int(n)))
drop(xs::Drop, n::Integer) = Drop(xs.xs, Int(n) + xs.n)
eltype(::Type{Drop{I}}) where {I} = eltype(I)
IteratorEltype(::Type{Drop{I}}) where {I} = IteratorEltype(I)
drop_iteratorsize(::SizeUnknown) = SizeUnknown()
drop_iteratorsize(::Union{HasShape, HasLength}) = HasLength()
drop_iteratorsize(::IsInfinite) = IsInfinite()
IteratorSize(::Type{Drop{I}}) where {I} = drop_iteratorsize(IteratorSize(I))
length(d::Drop) = _diff_length(d.xs, 1:d.n, IteratorSize(d.xs), HasLength())
function iterate(it::Drop)
y = iterate(it.xs)
for i in 1:it.n
y === nothing && return y
y = iterate(it.xs, y[2])
end
y
end
iterate(it::Drop, state) = iterate(it.xs, state)
isdone(it::Drop, state) = isdone(it.xs, state)
# takewhile
struct TakeWhile{I,P<:Function}
pred::P
xs::I
end
"""
takewhile(pred, iter)
An iterator that generates element from `iter` as long as predicate `pred` is true,
afterwards, drops every element.
!!! compat "Julia 1.4"
This function requires at least Julia 1.4.
# Examples
```jldoctest
julia> s = collect(1:5)
5-element Vector{Int64}:
1
2
3
4
5
julia> collect(Iterators.takewhile(<(3),s))
2-element Vector{Int64}:
1
2
```
"""
takewhile(pred,xs) = TakeWhile(pred,xs)
function iterate(ibl::TakeWhile, itr...)
y = iterate(ibl.xs,itr...)
y === nothing && return nothing
ibl.pred(y[1]) || return nothing
y
end
IteratorSize(::Type{<:TakeWhile}) = SizeUnknown()
eltype(::Type{TakeWhile{I,P}} where P) where {I} = eltype(I)
IteratorEltype(::Type{TakeWhile{I}} where P) where {I} = IteratorEltype(I)
# dropwhile
struct DropWhile{I,P<:Function}
pred::P
xs::I
end
"""
dropwhile(pred, iter)
An iterator that drops element from `iter` as long as predicate `pred` is true,
afterwards, returns every element.
!!! compat "Julia 1.4"
This function requires at least Julia 1.4.
# Examples
```jldoctest
julia> s = collect(1:5)
5-element Vector{Int64}:
1
2
3
4
5
julia> collect(Iterators.dropwhile(<(3),s))
3-element Vector{Int64}:
3
4
5
```
"""
dropwhile(pred,itr) = DropWhile(pred,itr)
iterate(ibl::DropWhile,itr) = iterate(ibl.xs, itr)
function iterate(ibl::DropWhile)
y = iterate(ibl.xs)
while y !== nothing
ibl.pred(y[1]) || break
y = iterate(ibl.xs,y[2])
end
y
end
IteratorSize(::Type{<:DropWhile}) = SizeUnknown()
eltype(::Type{DropWhile{I,P}}) where {I,P} = eltype(I)
IteratorEltype(::Type{DropWhile{I,P}}) where {I,P} = IteratorEltype(I)
# Cycle an iterator forever
struct Cycle{I}
xs::I
end
"""
cycle(iter)
An iterator that cycles through `iter` forever.
If `iter` is empty, so is `cycle(iter)`.
See also: [`Iterators.repeated`](@ref), [`repeat`](@ref).
# Examples
```jldoctest
julia> for (i, v) in enumerate(Iterators.cycle("hello"))
print(v)
i > 10 && break
end
hellohelloh
```
"""
cycle(xs) = Cycle(xs)
eltype(::Type{Cycle{I}}) where {I} = eltype(I)
IteratorEltype(::Type{Cycle{I}}) where {I} = IteratorEltype(I)
IteratorSize(::Type{Cycle{I}}) where {I} = IsInfinite()
iterate(it::Cycle) = iterate(it.xs)
isdone(it::Cycle) = isdone(it.xs)
isdone(it::Cycle, state) = false
function iterate(it::Cycle, state)
y = iterate(it.xs, state)
y === nothing && return iterate(it)
y
end
reverse(it::Cycle) = Cycle(reverse(it.xs))
# Repeated - repeat an object infinitely many times
struct Repeated{O}
x::O
end
repeated(x) = Repeated(x)
"""
repeated(x[, n::Int])
An iterator that generates the value `x` forever. If `n` is specified, generates `x` that
many times (equivalent to `take(repeated(x), n)`).
See also: [`Iterators.cycle`](@ref), [`repeat`](@ref).
# Examples
```jldoctest
julia> a = Iterators.repeated([1 2], 4);
julia> collect(a)
4-element Vector{Matrix{Int64}}:
[1 2]
[1 2]
[1 2]
[1 2]
```
"""
repeated(x, n::Integer) = take(repeated(x), Int(n))
eltype(::Type{Repeated{O}}) where {O} = O
iterate(it::Repeated, state...) = (it.x, nothing)
IteratorSize(::Type{<:Repeated}) = IsInfinite()
IteratorEltype(::Type{<:Repeated}) = HasEltype()
reverse(it::Union{Repeated,Take{<:Repeated}}) = it
# Product -- cartesian product of iterators
struct ProductIterator{T<:Tuple}
iterators::T
end
"""
product(iters...)
Return an iterator over the product of several iterators. Each generated element is
a tuple whose `i`th element comes from the `i`th argument iterator. The first iterator
changes the fastest.
See also: [`zip`](@ref), [`Iterators.flatten`](@ref).
# Examples
```jldoctest
julia> collect(Iterators.product(1:2, 3:5))
2×3 Matrix{Tuple{Int64, Int64}}:
(1, 3) (1, 4) (1, 5)
(2, 3) (2, 4) (2, 5)
julia> ans == [(x,y) for x in 1:2, y in 3:5] # collects a generator involving Iterators.product
true
```
"""
product(iters...) = ProductIterator(iters)
IteratorSize(::Type{ProductIterator{Tuple{}}}) = HasShape{0}()
IteratorSize(::Type{ProductIterator{T}}) where {T<:Tuple} =
prod_iteratorsize(ntuple(n -> IteratorSize(fieldtype(T, n)), _counttuple(T)::Int)..., HasShape{0}())
prod_iteratorsize() = HasShape{0}()
prod_iteratorsize(I) = I
prod_iteratorsize(::HasLength, ::HasLength) = HasShape{2}()
prod_iteratorsize(::HasLength, ::HasShape{N}) where {N} = HasShape{N+1}()
prod_iteratorsize(::HasShape{N}, ::HasLength) where {N} = HasShape{N+1}()
prod_iteratorsize(::HasShape{M}, ::HasShape{N}) where {M,N} = HasShape{M+N}()
# products can have an infinite iterator
prod_iteratorsize(::IsInfinite, ::IsInfinite) = IsInfinite()
prod_iteratorsize(a, ::IsInfinite) = IsInfinite()
prod_iteratorsize(::IsInfinite, b) = IsInfinite()
prod_iteratorsize(a, b) = SizeUnknown()
prod_iteratorsize(a, b, tail...) = prod_iteratorsize(a, prod_iteratorsize(b, tail...))
size(P::ProductIterator) = _prod_size(P.iterators)
_prod_size(::Tuple{}) = ()
_prod_size(t::Tuple) = (_prod_size1(t[1], IteratorSize(t[1]))..., _prod_size(tail(t))...)
_prod_size1(a, ::HasShape) = size(a)
_prod_size1(a, ::HasLength) = (length(a),)
_prod_size1(a, A) =
throw(ArgumentError("Cannot compute size for object of type $(typeof(a))"))
axes(P::ProductIterator) = _prod_indices(P.iterators)
_prod_indices(::Tuple{}) = ()
_prod_indices(t::Tuple) = (_prod_axes1(t[1], IteratorSize(t[1]))..., _prod_indices(tail(t))...)
_prod_axes1(a, ::HasShape) = axes(a)
_prod_axes1(a, ::HasLength) = (OneTo(length(a)),)
_prod_axes1(a, A) =
throw(ArgumentError("Cannot compute indices for object of type $(typeof(a))"))
ndims(p::ProductIterator) = length(axes(p))
length(P::ProductIterator) = prod(size(P))
IteratorEltype(::Type{ProductIterator{Tuple{}}}) = HasEltype()
IteratorEltype(::Type{ProductIterator{Tuple{I}}}) where {I} = IteratorEltype(I)
function IteratorEltype(::Type{ProductIterator{T}}) where {T<:Tuple}
E = ntuple(n -> IteratorEltype(fieldtype(T, n)), _counttuple(T)::Int)
any(I -> I == EltypeUnknown(), E) && return EltypeUnknown()
return E[end]
end
eltype(::Type{ProductIterator{I}}) where {I} = _prod_eltype(I)
_prod_eltype(::Type{Tuple{}}) = Tuple{}