-
-
Notifications
You must be signed in to change notification settings - Fork 5.5k
/
floatfuncs.jl
365 lines (313 loc) · 13.9 KB
/
floatfuncs.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
# This file is a part of Julia. License is MIT: https://julialang.org/license
## floating-point functions ##
copysign(x::Float64, y::Float64) = copysign_float(x, y)
copysign(x::Float32, y::Float32) = copysign_float(x, y)
copysign(x::Float32, y::Real) = copysign(x, Float32(y))
copysign(x::Float64, y::Real) = copysign(x, Float64(y))
flipsign(x::Float64, y::Float64) = bitcast(Float64, xor_int(bitcast(UInt64, x), and_int(bitcast(UInt64, y), 0x8000000000000000)))
flipsign(x::Float32, y::Float32) = bitcast(Float32, xor_int(bitcast(UInt32, x), and_int(bitcast(UInt32, y), 0x80000000)))
flipsign(x::Float32, y::Real) = flipsign(x, Float32(y))
flipsign(x::Float64, y::Real) = flipsign(x, Float64(y))
signbit(x::Float64) = signbit(bitcast(Int64, x))
signbit(x::Float32) = signbit(bitcast(Int32, x))
signbit(x::Float16) = signbit(bitcast(Int16, x))
"""
maxintfloat(T=Float64)
The largest consecutive integer-valued floating-point number that is exactly represented in
the given floating-point type `T` (which defaults to `Float64`).
That is, `maxintfloat` returns the smallest positive integer-valued floating-point number
`n` such that `n+1` is *not* exactly representable in the type `T`.
When an `Integer`-type value is needed, use `Integer(maxintfloat(T))`.
"""
maxintfloat(::Type{Float64}) = 9007199254740992.
maxintfloat(::Type{Float32}) = Float32(16777216.)
maxintfloat(::Type{Float16}) = Float16(2048f0)
maxintfloat(x::T) where {T<:AbstractFloat} = maxintfloat(T)
"""
maxintfloat(T, S)
The largest consecutive integer representable in the given floating-point type `T` that
also does not exceed the maximum integer representable by the integer type `S`. Equivalently,
it is the minimum of `maxintfloat(T)` and [`typemax(S)`](@ref).
"""
maxintfloat(::Type{S}, ::Type{T}) where {S<:AbstractFloat, T<:Integer} = min(maxintfloat(S), S(typemax(T)))
maxintfloat() = maxintfloat(Float64)
isinteger(x::AbstractFloat) = iszero(x - trunc(x)) # note: x == trunc(x) would be incorrect for x=Inf
# See rounding.jl for docstring.
# NOTE: this relies on the current keyword dispatch behaviour (#9498).
function round(x::Real, r::RoundingMode=RoundNearest;
digits::Union{Nothing,Integer}=nothing, sigdigits::Union{Nothing,Integer}=nothing, base::Union{Nothing,Integer}=nothing)
if digits === nothing
if sigdigits === nothing
if base === nothing
# avoid recursive calls
throw(MethodError(round, (x,r)))
else
round(x,r)
# or throw(ArgumentError("`round` cannot use `base` argument without `digits` or `sigdigits` arguments."))
end
else
isfinite(x) || return float(x)
_round_sigdigits(x, r, sigdigits, base === nothing ? 10 : base)
end
else
if sigdigits === nothing
isfinite(x) || return float(x)
_round_digits(x, r, digits, base === nothing ? 10 : base)
else
throw(ArgumentError("`round` cannot use both `digits` and `sigdigits` arguments."))
end
end
end
# round x to multiples of 1/invstep
function _round_invstep(x, invstep, r::RoundingMode)
y = round(x * invstep, r) / invstep
if !isfinite(y)
return x
end
return y
end
# round x to multiples of 1/(invstepsqrt^2)
# Using square root of step prevents overflowing
function _round_invstepsqrt(x, invstepsqrt, r::RoundingMode)
y = round((x * invstepsqrt) * invstepsqrt, r) / invstepsqrt / invstepsqrt
if !isfinite(y)
return x
end
return y
end
# round x to multiples of step
function _round_step(x, step, r::RoundingMode)
# TODO: use div with rounding mode
y = round(x / step, r) * step
if !isfinite(y)
if x > 0
return (r == RoundUp ? oftype(x, Inf) : zero(x))
elseif x < 0
return (r == RoundDown ? -oftype(x, Inf) : -zero(x))
else
return x
end
end
return y
end
function _round_digits(x, r::RoundingMode, digits::Integer, base)
fx = float(x)
if digits >= 0
invstep = oftype(fx, base)^digits
if isfinite(invstep)
return _round_invstep(fx, invstep, r)
else
invstepsqrt = oftype(fx, base)^oftype(fx, digits/2)
return _round_invstepsqrt(fx, invstepsqrt, r)
end
else
step = oftype(fx, base)^-digits
return _round_step(fx, step, r)
end
end
hidigit(x::Integer, base) = ndigits0z(x, base)
function hidigit(x::AbstractFloat, base)
iszero(x) && return 0
if base == 10
return 1 + floor(Int, log10(abs(x)))
elseif base == 2
return 1 + exponent(x)
else
return 1 + floor(Int, log(base, abs(x)))
end
end
hidigit(x::Real, base) = hidigit(float(x), base)
function _round_sigdigits(x, r::RoundingMode, sigdigits::Integer, base)
h = hidigit(x, base)
_round_digits(x, r, sigdigits-h, base)
end
# C-style round
function round(x::AbstractFloat, ::RoundingMode{:NearestTiesAway})
y = trunc(x)
ifelse(x==y,y,trunc(2*x-y))
end
# Java-style round
function round(x::T, ::RoundingMode{:NearestTiesUp}) where {T <: AbstractFloat}
copysign(floor((x + (T(0.25) - eps(T(0.5)))) + (T(0.25) + eps(T(0.5)))), x)
end
function Base.round(x::AbstractFloat, ::typeof(RoundFromZero))
signbit(x) ? round(x, RoundDown) : round(x, RoundUp)
end
# isapprox: approximate equality of numbers
"""
isapprox(x, y; atol::Real=0, rtol::Real=atol>0 ? 0 : √eps, nans::Bool=false[, norm::Function])
Inexact equality comparison. Two numbers compare equal if their relative distance *or* their
absolute distance is within tolerance bounds: `isapprox` returns `true` if
`norm(x-y) <= max(atol, rtol*max(norm(x), norm(y)))`. The default `atol` (absolute tolerance) is zero and the
default `rtol` (relative tolerance) depends on the types of `x` and `y`. The keyword argument `nans` determines
whether or not NaN values are considered equal (defaults to false).
For real or complex floating-point values, if an `atol > 0` is not specified, `rtol` defaults to
the square root of [`eps`](@ref) of the type of `x` or `y`, whichever is bigger (least precise).
This corresponds to requiring equality of about half of the significant digits. Otherwise,
e.g. for integer arguments or if an `atol > 0` is supplied, `rtol` defaults to zero.
The `norm` keyword defaults to `abs` for numeric `(x,y)` and to `LinearAlgebra.norm` for
arrays (where an alternative `norm` choice is sometimes useful).
When `x` and `y` are arrays, if `norm(x-y)` is not finite (i.e. `±Inf`
or `NaN`), the comparison falls back to checking whether all elements of `x` and `y` are
approximately equal component-wise.
The binary operator `≈` is equivalent to `isapprox` with the default arguments, and `x ≉ y`
is equivalent to `!isapprox(x,y)`.
Note that `x ≈ 0` (i.e., comparing to zero with the default tolerances) is
equivalent to `x == 0` since the default `atol` is `0`. In such cases, you should either
supply an appropriate `atol` (or use `norm(x) ≤ atol`) or rearrange your code (e.g.
use `x ≈ y` rather than `x - y ≈ 0`). It is not possible to pick a nonzero `atol`
automatically because it depends on the overall scaling (the "units") of your problem:
for example, in `x - y ≈ 0`, `atol=1e-9` is an absurdly small tolerance if `x` is the
[radius of the Earth](https://en.wikipedia.org/wiki/Earth_radius) in meters,
but an absurdly large tolerance if `x` is the
[radius of a Hydrogen atom](https://en.wikipedia.org/wiki/Bohr_radius) in meters.
!!! compat "Julia 1.6"
Passing the `norm` keyword argument when comparing numeric (non-array) arguments
requires Julia 1.6 or later.
# Examples
```jldoctest
julia> isapprox(0.1, 0.15; atol=0.05)
true
julia> isapprox(0.1, 0.15; rtol=0.34)
true
julia> isapprox(0.1, 0.15; rtol=0.33)
false
julia> 0.1 + 1e-10 ≈ 0.1
true
julia> 1e-10 ≈ 0
false
julia> isapprox(1e-10, 0, atol=1e-8)
true
julia> isapprox([10.0^9, 1.0], [10.0^9, 2.0]) # using `norm`
true
```
"""
function isapprox(x::Number, y::Number;
atol::Real=0, rtol::Real=rtoldefault(x,y,atol),
nans::Bool=false, norm::Function=abs)
x′, y′ = promote(x, y) # to avoid integer overflow
x == y ||
(isfinite(x) && isfinite(y) && norm(x-y) <= max(atol, rtol*max(norm(x′), norm(y′)))) ||
(nans && isnan(x) && isnan(y))
end
function isapprox(x::Integer, y::Integer;
atol::Real=0, rtol::Real=rtoldefault(x,y,atol),
nans::Bool=false, norm::Function=abs)
if norm === abs && atol < 1 && rtol == 0
return x == y
else
return norm(x - y) <= max(atol, rtol*max(norm(x), norm(y)))
end
end
"""
isapprox(x; kwargs...) / ≈(x; kwargs...)
Create a function that compares its argument to `x` using `≈`, i.e. a function equivalent to `y -> y ≈ x`.
The keyword arguments supported here are the same as those in the 2-argument `isapprox`.
!!! compat "Julia 1.5"
This method requires Julia 1.5 or later.
"""
isapprox(y; kwargs...) = x -> isapprox(x, y; kwargs...)
const ≈ = isapprox
"""
x ≉ y
This is equivalent to `!isapprox(x,y)` (see [`isapprox`](@ref)).
"""
≉(args...; kws...) = !≈(args...; kws...)
# default tolerance arguments
rtoldefault(::Type{T}) where {T<:AbstractFloat} = sqrt(eps(T))
rtoldefault(::Type{<:Real}) = 0
function rtoldefault(x::Union{T,Type{T}}, y::Union{S,Type{S}}, atol::Real) where {T<:Number,S<:Number}
rtol = max(rtoldefault(real(T)),rtoldefault(real(S)))
return atol > 0 ? zero(rtol) : rtol
end
# fused multiply-add
"""
fma(x, y, z)
Computes `x*y+z` without rounding the intermediate result `x*y`. On some systems this is
significantly more expensive than `x*y+z`. `fma` is used to improve accuracy in certain
algorithms. See [`muladd`](@ref).
"""
function fma end
function fma_emulated(a::Float32, b::Float32, c::Float32)::Float32
ab = Float64(a) * b
res = ab+c
reinterpret(UInt64, res)&0x1fff_ffff!=0x1000_0000 && return res
# yes error compensation is necessary. It sucks
reslo = abs(c)>abs(ab) ? ab-(res - c) : c-(res - ab)
res = iszero(reslo) ? res : (signbit(reslo) ? prevfloat(res) : nextfloat(res))
return res
end
""" Splits a Float64 into a hi bit and a low bit where the high bit has 27 trailing 0s and the low bit has 26 trailing 0s"""
@inline function splitbits(x::Float64)
hi = reinterpret(Float64, reinterpret(UInt64, x) & 0xffff_ffff_f800_0000)
return hi, x-hi
end
function twomul(a::Float64, b::Float64)
ahi, alo = splitbits(a)
bhi, blo = splitbits(b)
abhi = a*b
blohi, blolo = splitbits(blo)
ablo = alo*blohi - (((abhi - ahi*bhi) - alo*bhi) - ahi*blo) + blolo*alo
return abhi, ablo
end
function fma_emulated(a::Float64, b::Float64,c::Float64)
abhi, ablo = @inline twomul(a,b)
if !isfinite(abhi+c) || isless(abs(abhi), nextfloat(0x1p-969)) || issubnormal(a) || issubnormal(b)
aandbfinite = isfinite(a) && isfinite(b)
if !(isfinite(c) && aandbfinite)
return aandbfinite ? c : abhi+c
end
(iszero(a) || iszero(b)) && return abhi+c
# The checks above satisfy exponent's nothrow precondition
bias = Math._exponent_finite_nonzero(a) + Math._exponent_finite_nonzero(b)
c_denorm = ldexp(c, -bias)
if isfinite(c_denorm)
# rescale a and b to [1,2), equivalent to ldexp(a, -exponent(a))
issubnormal(a) && (a *= 0x1p52)
issubnormal(b) && (b *= 0x1p52)
a = reinterpret(Float64, (reinterpret(UInt64, a) & ~Base.exponent_mask(Float64)) | Base.exponent_one(Float64))
b = reinterpret(Float64, (reinterpret(UInt64, b) & ~Base.exponent_mask(Float64)) | Base.exponent_one(Float64))
c = c_denorm
abhi, ablo = twomul(a,b)
# abhi <= 4 -> isfinite(r) (α)
r = abhi+c
# s ≈ 0 (β)
s = (abs(abhi) > abs(c)) ? (abhi-r+c+ablo) : (c-r+abhi+ablo)
# α ⩓ β -> isfinite(sumhi) (γ)
sumhi = r+s
# If result is subnormal, ldexp will cause double rounding because subnormals have fewer mantisa bits.
# As such, we need to check whether round to even would lead to double rounding and manually round sumhi to avoid it.
if issubnormal(ldexp(sumhi, bias))
sumlo = r-sumhi+s
# finite: See γ
# non-zero: If sumhi == ±0., then ldexp(sumhi, bias) == ±0,
# so we don't take this branch.
bits_lost = -bias-Math._exponent_finite_nonzero(sumhi)-1022
sumhiInt = reinterpret(UInt64, sumhi)
if (bits_lost != 1) ⊻ (sumhiInt&1 == 1)
sumhi = nextfloat(sumhi, cmp(sumlo,0))
end
end
return ldexp(sumhi, bias)
end
isinf(abhi) && signbit(c) == signbit(a*b) && return abhi
# fall through
end
r = abhi+c
s = (abs(abhi) > abs(c)) ? (abhi-r+c+ablo) : (c-r+abhi+ablo)
return r+s
end
fma_llvm(x::Float32, y::Float32, z::Float32) = fma_float(x, y, z)
fma_llvm(x::Float64, y::Float64, z::Float64) = fma_float(x, y, z)
# Disable LLVM's fma if it is incorrect, e.g. because LLVM falls back
# onto a broken system libm; if so, use a software emulated fma
@assume_effects :consistent fma(x::Float32, y::Float32, z::Float32) = Core.Intrinsics.have_fma(Float32) ? fma_llvm(x,y,z) : fma_emulated(x,y,z)
@assume_effects :consistent fma(x::Float64, y::Float64, z::Float64) = Core.Intrinsics.have_fma(Float64) ? fma_llvm(x,y,z) : fma_emulated(x,y,z)
function fma(a::Float16, b::Float16, c::Float16)
Float16(muladd(Float32(a), Float32(b), Float32(c))) #don't use fma if the hardware doesn't have it.
end
# This is necessary at least on 32-bit Intel Linux, since fma_llvm may
# have called glibc, and some broken glibc fma implementations don't
# properly restore the rounding mode
Rounding.setrounding_raw(Float32, Rounding.JL_FE_TONEAREST)
Rounding.setrounding_raw(Float64, Rounding.JL_FE_TONEAREST)