-
-
Notifications
You must be signed in to change notification settings - Fork 5.5k
/
sparse.jl
1099 lines (940 loc) · 33.6 KB
/
sparse.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# This file is a part of Julia. License is MIT: http://julialang.org/license
# check sparse matrix construction
@test isequal(full(sparse(complex(ones(5,5),ones(5,5)))), complex(ones(5,5),ones(5,5)))
# check matrix operations
se33 = speye(3)
do33 = ones(3)
@test isequal(se33 * se33, se33)
# check sparse binary op
@test all(full(se33 + convert(SparseMatrixCSC{Float32,Int32}, se33)) == 2*eye(3))
@test all(full(se33 * convert(SparseMatrixCSC{Float32,Int32}, se33)) == eye(3))
# check horiz concatenation
@test all([se33 se33] == sparse([1, 2, 3, 1, 2, 3], [1, 2, 3, 4, 5, 6], ones(6)))
# check vert concatenation
@test all([se33; se33] == sparse([1, 4, 2, 5, 3, 6], [1, 1, 2, 2, 3, 3], ones(6)))
se33_32bit = convert(SparseMatrixCSC{Float32,Int32}, se33)
@test all([se33; se33_32bit] == sparse([1, 4, 2, 5, 3, 6], [1, 1, 2, 2, 3, 3], ones(6)))
# check h+v concatenation
se44 = speye(4)
sz42 = spzeros(4, 2)
sz41 = spzeros(4, 1)
sz34 = spzeros(3, 4)
se77 = speye(7)
@test all([se44 sz42 sz41; sz34 se33] == se77)
# check blkdiag concatenation
@test all(blkdiag(se33, se33) == sparse([1, 2, 3, 4, 5, 6], [1, 2, 3, 4, 5, 6], ones(6)))
# check concatenation promotion
sz41_f32 = spzeros(Float32, 4, 1)
se33_i32 = speye(Int32, 3, 3)
@test all([se44 sz42 sz41_f32; sz34 se33_i32] == se77)
# check mixed sparse-dense concatenation
sz33 = spzeros(3, 3)
de33 = eye(3)
@test all([se33 de33; sz33 se33] == full([se33 se33; sz33 se33 ]))
# check splicing + concatenation on
# random instances, with nested vcat
# also side-checks sparse ref
for i = 1 : 10
a = sprand(5, 4, 0.5)
@test all([a[1:2,1:2] a[1:2,3:4]; a[3:5,1] [a[3:4,2:4]; a[5,2:4]]] == a)
end
# sparse ref
a116 = reshape(1:16, 4, 4)
s116 = sparse(a116)
p = [4, 1, 2, 3, 2]
@test full(s116[p,:]) == a116[p,:]
@test full(s116[:,p]) == a116[:,p]
@test full(s116[p,p]) == a116[p,p]
# sparse assign
p = [4, 1, 3]
a116[p, p] = -1
s116[p, p] = -1
@test a116 == s116
p = [2, 1, 4]
a116[p, p] = reshape(1:9, 3, 3)
s116[p, p] = reshape(1:9, 3, 3)
@test a116 == s116
# matrix-vector multiplication (non-square)
for i = 1:5
a = sprand(10, 5, 0.5)
b = rand(5)
@test maximum(abs(a*b - full(a)*b)) < 100*eps()
end
# sparse matrix * BitArray
A = sprand(5,5,0.2)
B = trues(5)
@test_approx_eq A*B full(A)*B
B = trues(5,5)
@test_approx_eq A*B full(A)*B
@test_approx_eq B*A B*full(A)
# complex matrix-vector multiplication and left-division
if Base.USE_GPL_LIBS
for i = 1:5
a = speye(5) + 0.1*sprandn(5, 5, 0.2)
b = randn(5,3) + im*randn(5,3)
c = randn(5) + im*randn(5)
d = randn(5) + im*randn(5)
α = rand(Complex128)
β = rand(Complex128)
@test (maximum(abs(a*b - full(a)*b)) < 100*eps())
@test (maximum(abs(A_mul_B!(similar(b), a, b) - full(a)*b)) < 100*eps()) # for compatibility with present matmul API. Should go away eventually.
@test (maximum(abs(A_mul_B!(similar(c), a, c) - full(a)*c)) < 100*eps()) # for compatibility with present matmul API. Should go away eventually.
@test (maximum(abs(a'b - full(a)'b)) < 100*eps())
@test (maximum(abs(a.'b - full(a).'b)) < 100*eps())
@test (maximum(abs(a\b - full(a)\b)) < 1000*eps())
@test (maximum(abs(a'\b - full(a')\b)) < 1000*eps())
@test (maximum(abs(a.'\b - full(a.')\b)) < 1000*eps())
@test (maximum(abs((a'*c + d) - (full(a)'*c + d))) < 1000*eps())
@test (maximum(abs((α*a.'*c + β*d) - (α*full(a).'*c + β*d))) < 1000*eps())
@test (maximum(abs((a.'*c + d) - (full(a).'*c + d))) < 1000*eps())
c = randn(6) + im*randn(6)
@test_throws DimensionMismatch α*a.'*c + β*c
@test_throws DimensionMismatch α*a.'*ones(5) + β*c
a = speye(5) + 0.1*sprandn(5, 5, 0.2) + 0.1*im*sprandn(5, 5, 0.2)
b = randn(5,3)
@test (maximum(abs(a*b - full(a)*b)) < 100*eps())
@test (maximum(abs(a'b - full(a)'b)) < 100*eps())
@test (maximum(abs(a.'b - full(a).'b)) < 100*eps())
@test (maximum(abs(a\b - full(a)\b)) < 1000*eps())
@test (maximum(abs(a'\b - full(a')\b)) < 1000*eps())
@test (maximum(abs(a.'\b - full(a.')\b)) < 1000*eps())
a = speye(5) + tril(0.1*sprandn(5, 5, 0.2))
b = randn(5,3) + im*randn(5,3)
@test (maximum(abs(a*b - full(a)*b)) < 100*eps())
@test (maximum(abs(a'b - full(a)'b)) < 100*eps())
@test (maximum(abs(a.'b - full(a).'b)) < 100*eps())
@test (maximum(abs(a\b - full(a)\b)) < 1000*eps())
@test (maximum(abs(a'\b - full(a')\b)) < 1000*eps())
@test (maximum(abs(a.'\b - full(a.')\b)) < 1000*eps())
@test (maximum(abs(A_ldiv_B!(a,copy(b)) - full(a)\b)) < 1000*eps())
a = speye(5) + tril(0.1*sprandn(5, 5, 0.2) + 0.1*im*sprandn(5, 5, 0.2))
b = randn(5,3)
@test (maximum(abs(a*b - full(a)*b)) < 100*eps())
@test (maximum(abs(a'b - full(a)'b)) < 100*eps())
@test (maximum(abs(a.'b - full(a).'b)) < 100*eps())
@test (maximum(abs(a\b - full(a)\b)) < 1000*eps())
@test (maximum(abs(a'\b - full(a')\b)) < 1000*eps())
@test (maximum(abs(a.'\b - full(a.')\b)) < 1000*eps())
a = speye(5) + triu(0.1*sprandn(5, 5, 0.2))
b = randn(5,3) + im*randn(5,3)
@test (maximum(abs(a*b - full(a)*b)) < 100*eps())
@test (maximum(abs(a'b - full(a)'b)) < 100*eps())
@test (maximum(abs(a.'b - full(a).'b)) < 100*eps())
@test (maximum(abs(a\b - full(a)\b)) < 1000*eps())
@test (maximum(abs(a'\b - full(a')\b)) < 1000*eps())
@test (maximum(abs(a.'\b - full(a.')\b)) < 1000*eps())
@test (maximum(abs(A_ldiv_B!(a,copy(b)) - full(a)\b)) < 1000*eps())
a = speye(5) + triu(0.1*sprandn(5, 5, 0.2) + 0.1*im*sprandn(5, 5, 0.2))
b = randn(5,3)
@test (maximum(abs(a*b - full(a)*b)) < 100*eps())
@test (maximum(abs(a'b - full(a)'b)) < 100*eps())
@test (maximum(abs(a.'b - full(a).'b)) < 100*eps())
@test (maximum(abs(a\b - full(a)\b)) < 1000*eps())
@test (maximum(abs(a'\b - full(a')\b)) < 1000*eps())
@test (maximum(abs(a.'\b - full(a.')\b)) < 1000*eps())
a = speye(5) + triu(0.1*sprandn(5, 5, 0.2))
b = randn(5,3) + im*randn(5,3)
@test (maximum(abs(a*b - full(a)*b)) < 100*eps())
@test (maximum(abs(a'b - full(a)'b)) < 100*eps())
@test (maximum(abs(a.'b - full(a).'b)) < 100*eps())
@test (maximum(abs(a\b - full(a)\b)) < 1000*eps())
@test (maximum(abs(a'\b - full(a')\b)) < 1000*eps())
@test (maximum(abs(a.'\b - full(a.')\b)) < 1000*eps())
@test (maximum(abs(A_ldiv_B!(a,copy(b)) - full(a)\b)) < 1000*eps())
a = spdiagm(randn(5)) + im*spdiagm(randn(5))
b = randn(5,3)
@test (maximum(abs(a*b - full(a)*b)) < 100*eps())
@test (maximum(abs(a'b - full(a)'b)) < 100*eps())
@test (maximum(abs(a.'b - full(a).'b)) < 100*eps())
@test (maximum(abs(a\b - full(a)\b)) < 1000*eps())
@test (maximum(abs(a'\b - full(a')\b)) < 1000*eps())
@test (maximum(abs(a.'\b - full(a.')\b)) < 1000*eps())
b = randn(5,3) + im*randn(5,3)
@test (maximum(abs(a*b - full(a)*b)) < 100*eps())
@test (maximum(abs(a'b - full(a)'b)) < 100*eps())
@test (maximum(abs(a.'b - full(a).'b)) < 100*eps())
@test (maximum(abs(a\b - full(a)\b)) < 1000*eps())
@test (maximum(abs(a'\b - full(a')\b)) < 1000*eps())
@test (maximum(abs(a.'\b - full(a.')\b)) < 1000*eps())
end
end
# matrix multiplication and kron
for i = 1:5
a = sprand(10, 5, 0.7)
b = sprand(5, 15, 0.3)
@test maximum(abs(a*b - full(a)*full(b))) < 100*eps()
@test maximum(abs(Base.SparseMatrix.spmatmul(a,b,sortindices=:sortcols) - full(a)*full(b))) < 100*eps()
@test maximum(abs(Base.SparseMatrix.spmatmul(a,b,sortindices=:doubletranspose) - full(a)*full(b))) < 100*eps()
@test full(kron(a,b)) == kron(full(a), full(b))
@test full(kron(full(a),b)) == kron(full(a), full(b))
@test full(kron(a,full(b))) == kron(full(a), full(b))
c = sparse(rand(Float32,5,5))
d = sparse(rand(Float64,5,5))
@test full(kron(c,d)) == kron(full(c),full(d))
end
# scale and scale!
sA = sprandn(3, 7, 0.5)
sC = similar(sA)
dA = full(sA)
b = randn(7)
@test scale(dA, b) == scale(sA, b)
@test scale(dA, b) == scale!(sC, sA, b)
@test scale(dA, b) == scale!(copy(sA), b)
b = randn(3)
@test scale(b, dA) == scale(b, sA)
@test scale(b, dA) == scale!(sC, b, sA)
@test scale(b, dA) == scale!(b, copy(sA))
@test scale(dA, 0.5) == scale(sA, 0.5)
@test scale(dA, 0.5) == scale!(sC, sA, 0.5)
@test scale(dA, 0.5) == scale!(copy(sA), 0.5)
@test scale(0.5, dA) == scale(0.5, sA)
@test scale(0.5, dA) == scale!(sC, sA, 0.5)
@test scale(0.5, dA) == scale!(0.5, copy(sA))
@test scale!(sC, 0.5, sA) == scale!(sC, sA, 0.5)
# reductions
pA = sparse(rand(3, 7))
for arr in (se33, sA, pA)
for f in (sum, prod, minimum, maximum, var)
farr = full(arr)
@test_approx_eq f(arr) f(farr)
@test_approx_eq f(arr, 1) f(farr, 1)
@test_approx_eq f(arr, 2) f(farr, 2)
@test_approx_eq f(arr, (1, 2)) [f(farr)]
@test isequal(f(arr, 3), f(farr, 3))
end
end
for f in (sum, prod, minimum, maximum)
# Test with a map function that maps to non-zero
for arr in (se33, sA, pA)
@test_approx_eq f(x->x+1, arr) f(arr+1)
end
# case where f(0) would throw
@test_approx_eq f(x->sqrt(x-1), pA+1) f(sqrt(pA))
# these actually throw due to #10533
# @test_approx_eq f(x->sqrt(x-1), pA+1, 1) f(sqrt(pA), 1)
# @test_approx_eq f(x->sqrt(x-1), pA+1, 2) f(sqrt(pA), 2)
# @test_approx_eq f(x->sqrt(x-1), pA+1, 3) f(pA)
end
# empty cases
@test sum(sparse(Int[])) === 0
@test prod(sparse(Int[])) === 1
@test_throws ArgumentError minimum(sparse(Int[]))
@test_throws ArgumentError maximum(sparse(Int[]))
@test var(sparse(Int[])) === NaN
for f in (sum, prod, minimum, maximum, var)
@test isequal(f(spzeros(0, 1), 1), f(Array(Int, 0, 1), 1))
@test isequal(f(spzeros(0, 1), 2), f(Array(Int, 0, 1), 2))
@test isequal(f(spzeros(0, 1), (1, 2)), f(Array(Int, 0, 1), (1, 2)))
@test isequal(f(spzeros(0, 1), 3), f(Array(Int, 0, 1), 3))
end
# spdiagm
@test full(spdiagm((ones(2), ones(2)), (0, -1), 3, 3)) ==
[1.0 0.0 0.0; 1.0 1.0 0.0; 0.0 1.0 0.0]
# elimination tree
## upper triangle of the pattern test matrix from Figure 4.2 of
## "Direct Methods for Sparse Linear Systems" by Tim Davis, SIAM, 2006
rowval = Int32[1,2,2,3,4,5,1,4,6,1,7,2,5,8,6,9,3,4,6,8,10,3,5,7,8,10,11]
colval = Int32[1,2,3,3,4,5,6,6,6,7,7,8,8,8,9,9,10,10,10,10,10,11,11,11,11,11,11]
A = sparse(rowval, colval, ones(length(rowval)))
p = etree(A)
P,post = etree(A, true)
@test P == p
@test P == Int32[6,3,8,6,8,7,9,10,10,11,0]
@test post == Int32[2,3,5,8,1,4,6,7,9,10,11]
@test isperm(post)
# issue #4986, reinterpret
sfe22 = speye(Float64, 2)
mfe22 = eye(Float64, 2)
@test reinterpret(Int64, sfe22) == reinterpret(Int64, mfe22)
# issue #5190
@test_throws ArgumentError sparsevec([3,5,7],[0.1,0.0,3.2],4)
# issue #5169
@test nnz(sparse([1,1],[1,2],[0.0,-0.0])) == 0
# issue #5386
K,J,V = findnz(SparseMatrixCSC(2,1,[1,3],[1,2],[1.0,0.0]))
@test length(K) == length(J) == length(V) == 1
# https://groups.google.com/d/msg/julia-users/Yq4dh8NOWBQ/GU57L90FZ3EJ
A = speye(Bool, 5)
@test find(A) == find(x -> x == true, A) == find(full(A))
# issue #5437
@test nnz(sparse([1,2,3],[1,2,3],[0.0,1.0,2.0])) == 2
# issue #5824
@test sprand(4,5,0.5).^0 == sparse(ones(4,5))
# issue #5985
@test sprandbool(4, 5, 0.0) == sparse(zeros(Bool, 4, 5))
@test sprandbool(4, 5, 1.00) == sparse(ones(Bool, 4, 5))
sprb45nnzs = zeros(5)
for i=1:5
sprb45 = sprandbool(4, 5, 0.5)
@test length(sprb45) == 20
sprb45nnzs[i] = sum(sprb45)[1]
end
@test 4 <= mean(sprb45nnzs) <= 16
# issue #5853, sparse diff
for i=1:2, a=Any[[1 2 3], [1 2 3]', eye(3)]
@test all(diff(sparse(a),i) == diff(a,i))
end
# test for "access to undefined error" types that initially allocate elements as #undef
@test all(sparse(1:2, 1:2, Number[1,2])^2 == sparse(1:2, 1:2, [1,4]))
sd1 = diff(sparse([1,1,1], [1,2,3], Number[1,2,3]), 1)
# issue #6036
P = spzeros(Float64, 3, 3)
for i = 1:3
P[i,i] = i
end
@test minimum(P) === 0.0
@test maximum(P) === 3.0
@test minimum(-P) === -3.0
@test maximum(-P) === 0.0
@test maximum(P, (1,)) == [1.0 2.0 3.0]
@test maximum(P, (2,)) == reshape([1.0,2.0,3.0],3,1)
@test maximum(P, (1,2)) == reshape([3.0],1,1)
@test maximum(sparse(-ones(3,3))) == -1
@test minimum(sparse(ones(3,3))) == 1
# Unary functions
a = sprand(5,15, 0.5)
afull = full(a)
for op in (:sin, :cos, :tan, :ceil, :floor, :abs, :abs2)
@eval begin
@test ($op)(afull) == full($(op)(a))
end
end
for op in (:ceil, :floor)
@eval begin
@test ($op)(Int,afull) == full($(op)(Int,a))
end
end
# getindex tests
ni = 23
nj = 32
a116 = reshape(1:(ni*nj), ni, nj)
s116 = sparse(a116)
ad116 = diagm(diag(a116))
sd116 = sparse(ad116)
for (aa116, ss116) in [(a116, s116), (ad116, sd116)]
ij=11; i=3; j=2
@test ss116[ij] == aa116[ij]
@test ss116[(i,j)] == aa116[i,j]
@test ss116[i,j] == aa116[i,j]
@test ss116[i-1,j] == aa116[i-1,j]
ss116[i,j] = 0
@test ss116[i,j] == 0
ss116 = sparse(aa116)
# range indexing
@test full(ss116[i,:]) == aa116[i,:]
@test full(ss116[:,j]) == aa116[:,j]'' # sparse matrices/vectors always have ndims==2:
@test full(ss116[i,1:2:end]) == aa116[i,1:2:end]
@test full(ss116[1:2:end,j]) == aa116[1:2:end,j]''
@test full(ss116[i,end:-2:1]) == aa116[i,end:-2:1]
@test full(ss116[end:-2:1,j]) == aa116[end:-2:1,j]''
# float-range indexing is not supported
# sorted vector indexing
@test full(ss116[i,[3:2:end-3;]]) == aa116[i,[3:2:end-3;]]
@test full(ss116[[3:2:end-3;],j]) == aa116[[3:2:end-3;],j]''
@test full(ss116[i,[end-3:-2:1;]]) == aa116[i,[end-3:-2:1;]]
@test full(ss116[[end-3:-2:1;],j]) == aa116[[end-3:-2:1;],j]''
# unsorted vector indexing with repetition
p = [4, 1, 2, 3, 2, 6]
@test full(ss116[p,:]) == aa116[p,:]
@test full(ss116[:,p]) == aa116[:,p]
@test full(ss116[p,p]) == aa116[p,p]
# bool indexing
li = bitrand(size(aa116,1))
lj = bitrand(size(aa116,2))
@test full(ss116[li,j]) == aa116[li,j]''
@test full(ss116[li,:]) == aa116[li,:]
@test full(ss116[i,lj]) == aa116[i,lj]
@test full(ss116[:,lj]) == aa116[:,lj]
@test full(ss116[li,lj]) == aa116[li,lj]
# empty indices
for empty in (1:0, Int[])
@test full(ss116[empty,:]) == aa116[empty,:]
@test full(ss116[:,empty]) == aa116[:,empty]''
@test full(ss116[empty,lj]) == aa116[empty,lj]
@test full(ss116[li,empty]) == aa116[li,empty]
@test full(ss116[empty,empty]) == aa116[empty,empty]
end
# out of bounds indexing
@test_throws BoundsError ss116[0, 1]
@test_throws BoundsError ss116[end+1, 1]
@test_throws BoundsError ss116[1, 0]
@test_throws BoundsError ss116[1, end+1]
for j in (1, 1:size(s116,2), 1:1, Int[1], trues(size(s116, 2)), 1:0, Int[])
@test_throws BoundsError ss116[0:1, j]
@test_throws BoundsError ss116[[0, 1], j]
@test_throws BoundsError ss116[end:end+1, j]
@test_throws BoundsError ss116[[end, end+1], j]
end
for i in (1, 1:size(s116,1), 1:1, Int[1], trues(size(s116, 1)), 1:0, Int[])
@test_throws BoundsError ss116[i, 0:1]
@test_throws BoundsError ss116[i, [0, 1]]
@test_throws BoundsError ss116[i, end:end+1]
@test_throws BoundsError ss116[i, [end, end+1]]
end
end
# workaround issue #7197: comment out let-block
#let S = SparseMatrixCSC(3, 3, UInt8[1,1,1,1], UInt8[], Int64[])
S1290 = SparseMatrixCSC(3, 3, UInt8[1,1,1,1], UInt8[], Int64[])
S1290[1,1] = 1
S1290[5] = 2
S1290[end] = 3
@test S1290[end] == (S1290[1] + S1290[2,2])
@test 6 == sum(diag(S1290))
@test (full(S1290)[[3,1],1])'' == full(S1290[[3,1],1])
# end
# setindex tests
let a = spzeros(Int, 10, 10)
@test countnz(a) == 0
a[1,:] = 1
@test countnz(a) == 10
@test a[1,:] == sparse(ones(Int,1,10))
a[:,2] = 2
@test countnz(a) == 19
@test a[:,2] == 2*sparse(ones(Int,10,1))
a[1,:] = 1:10
@test a[1,:] == sparse([1:10;]')
a[:,2] = 1:10
@test a[:,2] == sparse([1:10;])
end
let A = spzeros(Int, 10, 20)
A[1:5,1:10] = 10
A[1:5,1:10] = 10
@test countnz(A) == 50
@test A[1:5,1:10] == 10 * ones(Int, 5, 10)
A[6:10,11:20] = 0
@test countnz(A) == 50
A[6:10,11:20] = 20
@test countnz(A) == 100
@test A[6:10,11:20] == 20 * ones(Int, 5, 10)
A[4:8,8:16] = 15
@test countnz(A) == 121
@test A[4:8,8:16] == 15 * ones(Int, 5, 9)
end
let ASZ = 1000, TSZ = 800
A = sprand(ASZ, 2*ASZ, 0.0001)
B = copy(A)
nA = countnz(A)
x = A[1:TSZ, 1:(2*TSZ)]
nx = countnz(x)
A[1:TSZ, 1:(2*TSZ)] = 0
nB = countnz(A)
@test nB == (nA - nx)
A[1:TSZ, 1:(2*TSZ)] = x
@test countnz(A) == nA
@test A == B
A[1:TSZ, 1:(2*TSZ)] = 10
@test countnz(A) == nB + 2*TSZ*TSZ
A[1:TSZ, 1:(2*TSZ)] = x
@test countnz(A) == nA
@test A == B
end
let A = speye(Int, 5), I=1:10, X=reshape([trues(10); falses(15)],5,5)
@test A[I] == A[X] == reshape([1,0,0,0,0,0,1,0,0,0], 10, 1)
A[I] = [1:10;]
@test A[I] == A[X] == reshape(1:10, 10, 1)
end
let S = sprand(50, 30, 0.5, x->round(Int,rand(x)*100)), I = sprandbool(50, 30, 0.2)
FS = full(S)
FI = full(I)
@test sparse(FS[FI]) == S[I] == S[FI]
@test sum(S[FI]) + sum(S[!FI]) == sum(S)
sumS1 = sum(S)
sumFI = sum(S[FI])
S[FI] = 0
@test sum(S[FI]) == 0
sumS2 = sum(S)
@test (sum(S) + sumFI) == sumS1
S[FI] = 10
@test sum(S) == sumS2 + 10*sum(FI)
S[FI] = 0
@test sum(S) == sumS2
S[FI] = [1:sum(FI);]
@test sum(S) == sumS2 + sum(1:sum(FI))
end
let S = sprand(50, 30, 0.5, x->round(Int,rand(x)*100))
N = length(S) >> 2
I = randperm(N) .* 4
J = randperm(N)
sumS1 = sum(S)
sumS2 = sum(S[I])
S[I] = 0
@test sum(S) == (sumS1 - sumS2)
S[I] = J
@test sum(S) == (sumS1 - sumS2 + sum(J))
end
#Issue 7507
@test (i7507=sparsevec(Dict{Int64, Float64}(), 10))==spzeros(10,1)
#Issue 7650
let S = spzeros(3, 3)
@test size(reshape(S, 9, 1)) == (9,1)
end
let X = eye(5), M = rand(5,4), C = spzeros(3,3)
SX = sparse(X); SM = sparse(M)
VX = vec(X); VSX = vec(SX)
VM = vec(M); VSM1 = vec(SM); VSM2 = sparsevec(M)
VC = vec(C)
@test reshape(VX, (25,1)) == VSX
@test reshape(VM, (20,1)) == VSM1 == VSM2
@test size(VC) == (9,1)
@test nnz(VC) == 0
@test nnz(VSX) == 5
end
#Issue 7677
let A = sprand(5,5,0.5,(n)->rand(Float64,n)), ACPY = copy(A)
B = reshape(A,25,1)
@test A == ACPY
C = reinterpret(Int64, A, (25, 1))
@test A == ACPY
D = reinterpret(Int64, B)
@test C == D
end
# indmax, indmin, findmax, findmin
let S = sprand(100,80, 0.5), A = full(S)
@test indmax(S) == indmax(A)
@test indmin(S) == indmin(A)
@test findmin(S) == findmin(A)
@test findmax(S) == findmax(A)
for region in [(1,), (2,), (1,2)], m in [findmax, findmin]
@test m(S, region) == m(A, region)
end
end
let S = spzeros(10,8), A = full(S)
@test indmax(S) == indmax(A) == 1
@test indmin(S) == indmin(A) == 1
end
let A = Array(Int,0,0), S = sparse(A)
iA = try indmax(A) end
iS = try indmax(S) end
@test iA === iS === nothing
iA = try indmin(A) end
iS = try indmin(S) end
@test iA === iS === nothing
end
# issue #8225
@test_throws ArgumentError sparse([0],[-1],[1.0],2,2)
# issue #8363
@test_throws ArgumentError sparsevec(Dict(-1=>1,1=>2))
# issue #8976
@test conj(sparse([1im])) == sparse(conj([1im]))
@test conj!(sparse([1im])) == sparse(conj!([1im]))
# issue #9525
@test_throws ArgumentError sparse([3], [5], 1.0, 3, 3)
#findn
b = findn( speye(4) )
@test (length(b[1]) == 4)
@test (length(b[2]) == 4)
#rotations
a = sparse( [1,1,2,3], [1,3,4,1], [1,2,3,4] )
@test rot180(a,2) == a
@test rot180(a,1) == sparse( [3,3,2,1], [4,2,1,4], [1,2,3,4] )
@test rotr90(a,1) == sparse( [1,3,4,1], [3,3,2,1], [1,2,3,4] )
@test rotl90(a,1) == sparse( [4,2,1,4], [1,1,2,3], [1,2,3,4] )
@test rotl90(a,2) == rot180(a)
@test rotr90(a,2) == rot180(a)
@test rotl90(a,3) == rotr90(a)
@test rotr90(a,3) == rotl90(a)
#ensure we have preserved the correct dimensions!
a = speye(3,5)
@test size(rot180(a)) == (3,5)
@test size(rotr90(a)) == (5,3)
@test size(rotl90(a)) == (5,3)
function test_getindex_algs{Tv,Ti}(A::SparseMatrixCSC{Tv,Ti}, I::AbstractVector, J::AbstractVector, alg::Int)
# Sorted vectors for indexing rows.
# Similar to getindex_general but without the transpose trick.
(m, n) = size(A)
!isempty(I) && ((I[1] < 1) || (I[end] > m)) && BoundsError()
if !isempty(J)
minj, maxj = extrema(J)
((minj < 1) || (maxj > n)) && BoundsError()
end
(alg == 0) ? Base.SparseMatrix.getindex_I_sorted_bsearch_A(A, I, J) :
(alg == 1) ? Base.SparseMatrix.getindex_I_sorted_bsearch_I(A, I, J) :
Base.SparseMatrix.getindex_I_sorted_linear(A, I, J)
end
let M=2^14, N=2^4
Irand = randperm(M);
Jrand = randperm(N);
SA = [sprand(M, N, d) for d in [1., 0.1, 0.01, 0.001, 0.0001, 0.]];
IA = [sort(Irand[1:round(Int,n)]) for n in [M, M*0.1, M*0.01, M*0.001, M*0.0001, 0.]];
debug = false
if debug
println("row sizes: $([round(Int,nnz(S)/S.n) for S in SA])");
println("I sizes: $([length(I) for I in IA])");
@printf(" S | I | binary S | binary I | linear | best\n")
end
J = Jrand;
for I in IA
for S in SA
res = Any[1,2,3]
times = Float64[0,0,0]
best = [typemax(Float64), 0]
for searchtype in [0, 1, 2]
gc()
tres = @timed test_getindex_algs(S, I, J, searchtype)
res[searchtype+1] = tres[1]
times[searchtype+1] = tres[2]
if best[1] > tres[2]
best[1] = tres[2]
best[2] = searchtype
end
end
if debug
@printf(" %7d | %7d | %4.2e | %4.2e | %4.2e | %s\n", round(Int,nnz(S)/S.n), length(I), times[1], times[2], times[3],
(0 == best[2]) ? "binary S" : (1 == best[2]) ? "binary I" : "linear")
end
if res[1] != res[2]
println("1 and 2")
elseif res[2] != res[3]
println("2, 3")
end
@test res[1] == res[2] == res[3]
end
end
end
let M = 2^8, N=2^3
Irand = randperm(M)
Jrand = randperm(N)
I = sort([Irand; Irand; Irand])
J = [Jrand; Jrand]
SA = [sprand(M, N, d) for d in [1., 0.1, 0.01, 0.001, 0.0001, 0.]];
for S in SA
res = Any[1,2,3]
for searchtype in [0, 1, 2]
res[searchtype+1] = test_getindex_algs(S, I, J, searchtype)
end
@test res[1] == res[2] == res[3]
end
end
let M = 2^14, N=2^4
I = randperm(M)
J = randperm(N)
Jsorted = sort(J)
SA = [sprand(M, N, d) for d in [1., 0.1, 0.01, 0.001, 0.0001, 0.]];
IA = [I[1:round(Int,n)] for n in [M, M*0.1, M*0.01, M*0.001, M*0.0001, 0.]];
debug = false
if debug
@printf(" | | | times | memory |\n")
@printf(" S | I | J | sorted | unsorted | sorted | unsorted |\n")
end
for I in IA
Isorted = sort(I)
for S in SA
gc()
ru = @timed S[I, J]
gc()
rs = @timed S[Isorted, Jsorted]
if debug
@printf(" %7d | %7d | %7d | %4.2e | %4.2e | %4.2e | %4.2e |\n", round(Int,nnz(S)/S.n), length(I), length(J), rs[2], ru[2], rs[3], ru[3])
end
end
end
end
let S = sprand(10, 10, 0.1)
@test_throws BoundsError S[[0,1,2], [1,2]]
@test_throws BoundsError S[[1,2], [0,1,2]]
@test_throws BoundsError S[[0,2,1], [1,2]]
@test_throws BoundsError S[[2,1], [0,1,2]]
end
# Test that sparse / sparsevec constructors work for AbstractMatrix subtypes
let D = Diagonal(ones(10,10)),
sm = sparse(D),
sv = sparsevec(D)
@test countnz(sm) == 10
@test countnz(sv) == 10
@test countnz(sparse(Diagonal(Int[]))) == 0
@test countnz(sparsevec(Diagonal(Int[]))) == 0
end
# explicit zeros
if Base.USE_GPL_LIBS
a = SparseMatrixCSC(2, 2, [1, 3, 5], [1, 2, 1, 2], [1.0, 0.0, 0.0, 1.0])
@test_approx_eq lufact(a)\[2.0, 3.0] [2.0, 3.0]
@test_approx_eq cholfact(a)\[2.0, 3.0] [2.0, 3.0]
end
# issue #9917
@test sparse([]') == reshape(sparse([]), 1, 0)
@test full(sparse([])) == zeros(0, 1)
@test_throws BoundsError sparse([])[1]
@test_throws BoundsError sparse([])[1] = 1
x = speye(100)
@test_throws BoundsError x[-10:10]
for T in (Int, Float16, Float32, Float64, BigInt, BigFloat)
let R=rand(T[1:100;],2,2), I=rand(T[1:100;],2,2)
D = R + I*im
S = sparse(D)
@test R == real(S)
@test I == imag(S)
@test real(sparse(R)) == R
@test nnz(imag(sparse(R))) == 0
@test abs(S) == abs(D)
@test abs2(S) == abs2(D)
end
end
# issue #10407
@test maximum(spzeros(5, 5)) == 0.0
@test minimum(spzeros(5, 5)) == 0.0
# issue #10411
for (m,n) in ((2,-2),(-2,2),(-2,-2))
@test_throws ArgumentError spzeros(m,n)
@test_throws ArgumentError speye(m,n)
@test_throws ArgumentError sprand(m,n,0.2)
end
# issue #10837
# test sparse constructors from special matrices
T = Tridiagonal(randn(4),randn(5),randn(4))
S = sparse(T)
@test norm(full(T) - full(S)) == 0.0
T = SymTridiagonal(randn(5),rand(4))
S = sparse(T)
@test norm(full(T) - full(S)) == 0.0
B = Bidiagonal(randn(5),randn(4),true)
S = sparse(B)
@test norm(full(B) - full(S)) == 0.0
B = Bidiagonal(randn(5),randn(4),false)
S = sparse(B)
@test norm(full(B) - full(S)) == 0.0
# promotion in spdiagm
@test spdiagm(([1,2],[3.5],[4+5im]), (0,1,-1), 2,2) == [1 3.5; 4+5im 2]
#Test broadcasting of sparse matrixes
let A = sprand(10,10,0.3), B = sprand(10,10,0.3), CF = rand(10,10), AF = full(A), BF = full(B), C = sparse(CF)
@test A .* B == AF .* BF
@test A[1,:] .* B == AF[1,:] .* BF
@test A[:,1] .* B == AF[:,1] .* BF
@test A .* B[1,:] == AF .* BF[1,:]
@test A .* B[:,1] == AF .* BF[:,1]
@test A .* B == AF .* BF
@test A[1,:] .* BF == AF[1,:] .* BF
@test A[:,1] .* BF == AF[:,1] .* BF
@test A .* BF[1,:] == AF .* BF[1,:]
@test A .* BF[:,1] == AF .* BF[:,1]
@test A .* B == AF .* BF
@test AF[1,:] .* B == AF[1,:] .* BF
@test AF[:,1] .* B == AF[:,1] .* BF
@test AF .* B[1,:] == AF .* BF[1,:]
@test AF .* B[:,1] == AF .* BF[:,1]
@test A .* B == AF .* BF
@test A[1,:] .* B == AF[1,:] .* BF
@test A[:,1] .* B == AF[:,1] .* BF
@test A .* B[1,:] == AF .* BF[1,:]
@test A .* B[:,1] == AF .* BF[:,1]
@test A .* 3 == AF .* 3
@test 3 .* A == 3 .* AF
#@test A[1,:] .* 3 == AF[1,:] .* 3
@test all(A[1,:] .* 3 .== AF[1,:] .* 3)
#@test A[:,1] .* 3 == AF[:,1] .* 3
@test all(A[:,1] .* 3 .== AF[:,1] .* 3)
#TODO: simple comparation with == returns false because the left side is a (two-dimensional) SparseMatrixCSC
# while the right side is a Vector
@test A .- 3 == AF .- 3
@test 3 .- A == 3 .- AF
@test A .- B == AF .- BF
@test A[1,:] .- B == AF[1,:] .- BF
@test A[:,1] .- B == AF[:,1] .- BF
@test A .- B[1,:] == AF .- BF[1,:]
@test A .- B[:,1] == AF .- BF[:,1]
@test A .+ 3 == AF .+ 3
@test 3 .+ A == 3 .+ AF
@test A .+ B == AF .+ BF
@test (A .< B) == (AF .< BF)
@test (A .!= B) == (AF .!= BF)
@test A ./ 3 == AF ./ 3
@test A .\ 3 == AF .\ 3
@test 3 ./ A == 3 ./ AF
@test 3 .\ A == 3 .\ AF
@test A .\ C == AF .\ CF
@test A ./ C == AF ./ CF
@test A ./ CF[:,1] == AF ./ CF[:,1]
@test A .\ CF[:,1] == AF .\ CF[:,1]
@test BF ./ C == BF ./ CF
@test BF .\ C == BF .\ CF
@test A .^ 3 == AF .^ 3
@test A .^ BF[:,1] == AF .^ BF[:,1]
@test BF[:,1] .^ A == BF[:,1] .^ AF
end
# test throws
A = sprandbool(5,5,0.2)
@test_throws ArgumentError reinterpret(Complex128,A,(5,5))
@test_throws DimensionMismatch reinterpret(Int8,A,(20,))
@test_throws DimensionMismatch reshape(A,(20,2))
# test similar with type conversion
A = speye(5)
@test size(similar(A,Complex128,Int)) == (5,5)
@test typeof(similar(A,Complex128,Int)) == SparseMatrixCSC{Complex128,Int}
@test size(similar(A,Complex128,Int8)) == (5,5)
@test typeof(similar(A,Complex128,Int8)) == SparseMatrixCSC{Complex128,Int8}
@test similar(A,Complex128,(6,6)) == spzeros(Complex128,6,6)
@test convert(Matrix,A) == full(A)
# test float
A = sprandbool(5,5,0.0)
@test eltype(float(A)) == Float64 # issue #11658
A = sprandbool(5,5,0.2)
@test float(A) == float(full(A))
# test sparsevec
A = sparse(ones(5,5))
@test all(full(sparsevec(A)) .== ones(25))
#test sparse
@test sparse(A) == A
@test sparse([1:5;],[1:5;],1) == speye(5)
#test speye and one
@test speye(A) == speye(5)
@test eye(A) == speye(5)
@test one(A) == speye(5)
@test_throws DimensionMismatch one(sprand(5,6,0.2))
#istriu/istril
A = sparse(triu(rand(5,5)))
@test istriu(A)
@test !istriu(sparse(ones(5,5)))
A = sparse(tril(rand(5,5)))
@test istril(A)
@test !istril(sparse(ones(5,5)))
# symperm
srand(1234321)
A = triu(sprand(10,10,0.2)) # symperm operates on upper triangle
perm = randperm(10)
@test symperm(A,perm).colptr == [1,2,3,3,3,4,5,5,7,9,10]
# droptol
@test Base.droptol!(A,0.01).colptr == [1,1,1,2,2,3,4,6,6,7,9]
#trace
@test_throws DimensionMismatch trace(sparse(ones(5,6)))
@test trace(speye(5)) == 5
#diagm on a matrix
@test_throws DimensionMismatch diagm(sparse(ones(5,2)))
@test_throws DimensionMismatch diagm(sparse(ones(2,5)))
@test diagm(sparse(ones(1,5))) == speye(5)
# triu/tril
A = sprand(5,5,0.2)
AF = full(A)
@test full(triu(A,1)) == triu(AF,1)
@test full(tril(A,1)) == tril(AF,1)
@test full(triu!(copy(A), 2)) == triu(AF,2)
@test full(tril!(copy(A), 2)) == tril(AF,2)
@test_throws BoundsError tril(A,6)
@test_throws BoundsError tril(A,-6)
@test_throws BoundsError triu(A,6)
@test_throws BoundsError triu(A,-6)
# test norm
A = sparse(Int[],Int[],Float64[],0,0)
@test norm(A) == zero(eltype(A))
A = sparse([1.0])
@test norm(A) == 1.0
@test_throws ArgumentError norm(sprand(5,5,0.2),3)
@test_throws ArgumentError norm(sprand(5,5,0.2),2)
# test ishermitian and issym real matrices
A = speye(5,5)
@test ishermitian(A) == true
@test issym(A) == true
A[1,3] = 1.0
@test ishermitian(A) == false
@test issym(A) == false
A[3,1] = 1.0
@test ishermitian(A) == true
@test issym(A) == true
# test ishermitian and issym complex matrices
A = speye(5,5) + im*speye(5,5)
@test ishermitian(A) == false
@test issym(A) == true
A[1,4] = 1.0 + im
@test ishermitian(A) == false
@test issym(A) == false
A = speye(Complex128, 5,5)
A[3,2] = 1.0 + im
@test ishermitian(A) == false
@test issym(A) == false
A[2,3] = 1.0 - im
@test ishermitian(A) == true
@test issym(A) == false
A = sparse(zeros(5,5))
@test ishermitian(A) == true
@test issym(A) == true
# Test with explicit zeros
A = speye(Complex128, 5,5)
A[3,1] = 2
A.nzval[2] = 0.0
@test ishermitian(A) == true
@test issym(A) == true