-
-
Notifications
You must be signed in to change notification settings - Fork 5.5k
/
Copy pathblas.jl
325 lines (307 loc) · 16 KB
/
blas.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
# This file is a part of Julia. License is MIT: https://julialang.org/license
import Base.LinAlg, Base.LinAlg.BlasReal, Base.LinAlg.BlasComplex
srand(100)
## BLAS tests - testing the interface code to BLAS routines
@testset for elty in [Float32, Float64, Complex64, Complex128]
@testset "syr2k!" begin
U = randn(5,2)
V = randn(5,2)
if elty == Complex64 || elty == Complex128
U = complex.(U, U)
V = complex.(V, V)
end
U = convert(Array{elty, 2}, U)
V = convert(Array{elty, 2}, V)
@test tril(LinAlg.BLAS.syr2k('L','N',U,V)) ≈ tril(U*V.' + V*U.')
@test triu(LinAlg.BLAS.syr2k('U','N',U,V)) ≈ triu(U*V.' + V*U.')
@test tril(LinAlg.BLAS.syr2k('L','T',U,V)) ≈ tril(U.'*V + V.'*U)
@test triu(LinAlg.BLAS.syr2k('U','T',U,V)) ≈ triu(U.'*V + V.'*U)
end
if elty in (Complex64, Complex128)
@testset "her2k!" begin
U = randn(5,2)
V = randn(5,2)
U = complex.(U, U)
V = complex.(V, V)
U = convert(Array{elty, 2}, U)
V = convert(Array{elty, 2}, V)
@test tril(LinAlg.BLAS.her2k('L','N',U,V)) ≈ tril(U*V' + V*U')
@test triu(LinAlg.BLAS.her2k('U','N',U,V)) ≈ triu(U*V' + V*U')
@test tril(LinAlg.BLAS.her2k('L','C',U,V)) ≈ tril(U'*V + V'*U)
@test triu(LinAlg.BLAS.her2k('U','C',U,V)) ≈ triu(U'*V + V'*U)
end
end
o4 = ones(elty, 4)
z4 = zeros(elty, 4)
I4 = eye(elty, 4)
I43 = eye(elty, 4, 3)
L4 = tril(ones(elty, (4,4)))
U4 = triu(ones(elty, (4,4)))
Z4 = zeros(elty, (4,4))
elm1 = convert(elty, -1)
el2 = convert(elty, 2)
v14 = convert(Vector{elty}, [1:4;])
v41 = convert(Vector{elty}, [4:-1:1;])
let n = 10
@testset "dot products" begin
if elty <: Real
x1 = convert(Vector{elty}, randn(n))
x2 = convert(Vector{elty}, randn(n))
@test BLAS.dot(x1,x2) ≈ sum(x1.*x2)
@test_throws DimensionMismatch BLAS.dot(x1,rand(elty, n + 1))
else
z1 = convert(Vector{elty}, complex.(randn(n),randn(n)))
z2 = convert(Vector{elty}, complex.(randn(n),randn(n)))
@test BLAS.dotc(z1,z2) ≈ sum(conj(z1).*z2)
@test BLAS.dotu(z1,z2) ≈ sum(z1.*z2)
@test_throws DimensionMismatch BLAS.dotc(z1,rand(elty, n + 1))
@test_throws DimensionMismatch BLAS.dotu(z1,rand(elty, n + 1))
end
end
@testset "iamax" begin
if elty <: Real
x = convert(Vector{elty}, randn(n))
@test BLAS.iamax(x) == indmax(abs.(x))
else
z = convert(Vector{elty}, complex.(randn(n),randn(n)))
@test BLAS.iamax(z) == indmax(map(x -> abs(real(x)) + abs(imag(x)), z))
end
end
@testset "axpy" begin
if elty <: Real
x1 = convert(Vector{elty}, randn(n))
x2 = convert(Vector{elty}, randn(n))
α = rand(elty)
@test BLAS.axpy!(α,copy(x1),copy(x2)) ≈ x2 + α*x1
@test_throws DimensionMismatch BLAS.axpy!(α, copy(x1), rand(elty, n + 1))
@test_throws DimensionMismatch BLAS.axpy!(α, copy(x1), 1:div(n,2), copy(x2), 1:n)
@test_throws ArgumentError BLAS.axpy!(α, copy(x1), 0:div(n,2), copy(x2), 1:(div(n, 2) + 1))
@test_throws ArgumentError BLAS.axpy!(α, copy(x1), 1:div(n,2), copy(x2), 0:(div(n, 2) - 1))
@test BLAS.axpy!(α,copy(x1),1:n,copy(x2),1:n) ≈ x2 + α*x1
else
z1 = convert(Vector{elty}, complex.(randn(n), randn(n)))
z2 = convert(Vector{elty}, complex.(randn(n), randn(n)))
α = rand(elty)
@test BLAS.axpy!(α, copy(z1), copy(z2)) ≈ z2 + α * z1
@test_throws DimensionMismatch BLAS.axpy!(α, copy(z1), rand(elty, n + 1))
@test_throws DimensionMismatch BLAS.axpy!(α, copy(z1), 1:div(n, 2), copy(z2), 1:(div(n, 2) + 1))
@test_throws ArgumentError BLAS.axpy!(α, copy(z1), 0:div(n,2), copy(z2), 1:(div(n, 2) + 1))
@test_throws ArgumentError BLAS.axpy!(α, copy(z1), 1:div(n,2), copy(z2), 0:(div(n, 2) - 1))
@test BLAS.axpy!(α,copy(z1),1:n,copy(z2),1:n) ≈ z2 + α*z1
end
end
@testset "nrm2, iamax, and asum for StridedVectors" begin
a = rand(elty,n)
b = view(a,2:2:n,1)
@test BLAS.nrm2(b) ≈ norm(b)
if elty <: Real
@test BLAS.asum(b) ≈ sum(abs.(b))
@test BLAS.iamax(b) ≈ indmax(abs.(b))
else
@test BLAS.asum(b) ≈ sum(abs.(real(b))) + sum(abs.(imag(b)))
@test BLAS.iamax(b) == indmax(map(x -> abs(real(x)) + abs(imag(x)), b))
end
end
# scal
α = rand(elty)
a = rand(elty,n)
@test BLAS.scal(n,α,a,1) ≈ α * a
@testset "trsv" begin
A = triu(rand(elty,n,n))
@testset "Vector and SubVector" for x in (rand(elty, n), view(rand(elty,2n),1:2:2n))
@test A\x ≈ BLAS.trsv('U','N','N',A,x)
@test_throws DimensionMismatch BLAS.trsv('U','N','N',A,ones(elty,n+1))
end
end
@testset "ger, her, syr" for x in (rand(elty, n), view(rand(elty,2n), 1:2:2n)),
y in (rand(elty,n), view(rand(elty,3n), 1:3:3n))
A = rand(elty,n,n)
α = rand(elty)
@test BLAS.ger!(α,x,y,copy(A)) ≈ A + α*x*y'
@test_throws DimensionMismatch BLAS.ger!(α,ones(elty,n+1),y,copy(A))
A = rand(elty,n,n)
A = A + A.'
@test issymmetric(A)
@test triu(BLAS.syr!('U',α,x,copy(A))) ≈ triu(A + α*x*x.')
@test_throws DimensionMismatch BLAS.syr!('U',α,ones(elty,n+1),copy(A))
if elty <: Complex
A = rand(elty,n,n)
A = A + A'
α = real(α)
@test triu(BLAS.her!('U',α,x,copy(A))) ≈ triu(A + α*x*x')
@test_throws DimensionMismatch BLAS.her!('U',α,ones(elty,n+1),copy(A))
end
end
@testset "copy" begin
x1 = convert(Vector{elty}, randn(n))
x2 = convert(Vector{elty}, randn(n))
BLAS.copy!(x2, 1:n, x1, 1:n)
@test x2 == x1
@test_throws DimensionMismatch BLAS.copy!(x2, 1:n, x1, 1:(n - 1))
@test_throws ArgumentError BLAS.copy!(x1, 0:div(n, 2), x2, 1:(div(n, 2) + 1))
@test_throws ArgumentError BLAS.copy!(x1, 1:(div(n, 2) + 1), x2, 0:div(n, 2))
end
# trmv
A = triu(rand(elty,n,n))
x = rand(elty,n)
@test BLAS.trmv('U','N','N',A,x) ≈ A*x
@testset "symmetric/Hermitian multiplication" begin
x = rand(elty,n)
A = rand(elty,n,n)
Aherm = A + A'
Asymm = A + A.'
@testset "symv and hemv" begin
@test BLAS.symv('U',Asymm,x) ≈ Asymm*x
@test_throws DimensionMismatch BLAS.symv!('U',one(elty),Asymm,x,one(elty),ones(elty,n+1))
@test_throws DimensionMismatch BLAS.symv('U',ones(elty,n,n+1),x)
if elty <: BlasComplex
@test BLAS.hemv('U',Aherm,x) ≈ Aherm*x
@test_throws DimensionMismatch BLAS.hemv('U',ones(elty,n,n+1),x)
@test_throws DimensionMismatch BLAS.hemv!('U',one(elty),Aherm,x,one(elty),ones(elty,n+1))
end
end
@testset "symm error throwing" begin
@test_throws DimensionMismatch BLAS.symm('L','U',ones(elty,n,n-1),rand(elty,n,n))
@test_throws DimensionMismatch BLAS.symm('R','U',ones(elty,n-1,n),rand(elty,n,n))
@test_throws DimensionMismatch BLAS.symm!('L','U',one(elty),Asymm,ones(elty,n,n),one(elty),rand(elty,n-1,n))
@test_throws DimensionMismatch BLAS.symm!('L','U',one(elty),Asymm,ones(elty,n,n),one(elty),rand(elty,n,n-1))
if elty <: BlasComplex
@test_throws DimensionMismatch BLAS.hemm('L','U',ones(elty,n,n-1),rand(elty,n,n))
@test_throws DimensionMismatch BLAS.hemm('R','U',ones(elty,n-1,n),rand(elty,n,n))
@test_throws DimensionMismatch BLAS.hemm!('L','U',one(elty),Aherm,ones(elty,n,n),one(elty),rand(elty,n-1,n))
@test_throws DimensionMismatch BLAS.hemm!('L','U',one(elty),Aherm,ones(elty,n,n),one(elty),rand(elty,n,n-1))
end
end
end
@testset "trmm error throwing" begin
@test_throws DimensionMismatch BLAS.trmm('L','U','N','N',one(elty),triu(rand(elty,n,n)),ones(elty,n+1,n))
@test_throws DimensionMismatch BLAS.trmm('R','U','N','N',one(elty),triu(rand(elty,n,n)),ones(elty,n,n+1))
end
#trsm
A = triu(rand(elty,n,n))
B = rand(elty,(n,n))
@test BLAS.trsm('L','U','N','N',one(elty),A,B) ≈ A\B
#will work for SymTridiagonal,Tridiagonal,Bidiagonal!
@testset "banded matrix mv" begin
@testset "gbmv" begin
TD = Tridiagonal(rand(elty,n-1),rand(elty,n),rand(elty,n-1))
x = rand(elty,n)
#put TD into the BLAS format!
fTD = zeros(elty,3,n)
fTD[1,2:n] = TD.du
fTD[2,:] = TD.d
fTD[3,1:n-1] = TD.dl
@test BLAS.gbmv('N',n,1,1,fTD,x) ≈ TD*x
end
#will work for SymTridiagonal only!
@testset "sbmv" begin
if elty <: BlasReal
ST = SymTridiagonal(rand(elty,n),rand(elty,n-1))
x = rand(elty,n)
#put TD into the BLAS format!
fST = zeros(elty,2,n)
fST[1,2:n] = ST.ev
fST[2,:] = ST.dv
@test BLAS.sbmv('U',1,fST,x) ≈ ST*x
else
dv = real(rand(elty,n))
ev = rand(elty,n-1)
bH = zeros(elty,2,n)
bH[1,2:n] = ev
bH[2,:] = dv
fullH = diagm(dv) + diagm(conj(ev),-1) + diagm(ev,1)
@test BLAS.hbmv('U',1,bH,x) ≈ fullH*x
end
end
end
end
@testset "gemv" begin
@test all(BLAS.gemv('N', I4, o4) .== o4)
@test all(BLAS.gemv('T', I4, o4) .== o4)
@test all(BLAS.gemv('N', el2, I4, o4) .== el2 * o4)
@test all(BLAS.gemv('T', el2, I4, o4) .== el2 * o4)
@test_throws DimensionMismatch BLAS.gemv('N',I43,o4)
o4cp = copy(o4)
@test_throws DimensionMismatch BLAS.gemv!('T',one(elty),I43,o4,one(elty),o4cp)
@test_throws DimensionMismatch BLAS.gemv!('C',one(elty),I43,o4,one(elty),o4cp)
@test all(BLAS.gemv!('N', one(elty), I4, o4, elm1, o4cp) .== z4)
@test all(o4cp .== z4)
o4cp[:] = o4
@test all(BLAS.gemv!('T', one(elty), I4, o4, elm1, o4cp) .== z4)
@test all(o4cp .== z4)
@test all(BLAS.gemv('N', U4, o4) .== v41)
@test all(BLAS.gemv('N', U4, o4) .== v41)
end
@testset "gemm" begin
@test all(BLAS.gemm('N', 'N', I4, I4) .== I4)
@test all(BLAS.gemm('N', 'T', I4, I4) .== I4)
@test all(BLAS.gemm('T', 'N', I4, I4) .== I4)
@test all(BLAS.gemm('T', 'T', I4, I4) .== I4)
@test all(BLAS.gemm('N', 'N', el2, I4, I4) .== el2 * I4)
@test all(BLAS.gemm('N', 'T', el2, I4, I4) .== el2 * I4)
@test all(BLAS.gemm('T', 'N', el2, I4, I4) .== el2 * I4)
@test all(LinAlg.BLAS.gemm('T', 'T', el2, I4, I4) .== el2 * I4)
I4cp = copy(I4)
@test all(BLAS.gemm!('N', 'N', one(elty), I4, I4, elm1, I4cp) .== Z4)
@test all(I4cp .== Z4)
I4cp[:] = I4
@test all(BLAS.gemm!('N', 'T', one(elty), I4, I4, elm1, I4cp) .== Z4)
@test all(I4cp .== Z4)
I4cp[:] = I4
@test all(BLAS.gemm!('T', 'N', one(elty), I4, I4, elm1, I4cp) .== Z4)
@test all(I4cp .== Z4)
I4cp[:] = I4
@test all(BLAS.gemm!('T', 'T', one(elty), I4, I4, elm1, I4cp) .== Z4)
@test all(I4cp .== Z4)
@test all(BLAS.gemm('N', 'N', I4, U4) .== U4)
@test all(BLAS.gemm('N', 'T', I4, U4) .== L4)
@test_throws DimensionMismatch BLAS.gemm!('N','N', one(elty), I4, I4, elm1, eye(elty,5))
@test_throws DimensionMismatch BLAS.gemm!('N','N', one(elty), I43, I4, elm1, I4)
@test_throws DimensionMismatch BLAS.gemm!('T','N', one(elty), I43, I4, elm1, I43)
@test_throws DimensionMismatch BLAS.gemm!('N','T', one(elty), I43, I43, elm1, I43)
@test_throws DimensionMismatch BLAS.gemm!('T','T', one(elty), I43, I43, elm1, I43')
end
@testset "gemm compared to (sy)(he)rk" begin
if eltype(elm1) <: Complex
@test all(triu(BLAS.herk('U', 'N', U4)) .== triu(BLAS.gemm('N', 'T', U4, U4)))
@test all(tril(BLAS.herk('L', 'N', U4)) .== tril(BLAS.gemm('N', 'T', U4, U4)))
@test all(triu(BLAS.herk('U', 'N', L4)) .== triu(BLAS.gemm('N', 'T', L4, L4)))
@test all(tril(BLAS.herk('L', 'N', L4)) .== tril(BLAS.gemm('N', 'T', L4, L4)))
@test all(triu(BLAS.herk('U', 'C', U4)) .== triu(BLAS.gemm('T', 'N', U4, U4)))
@test all(tril(BLAS.herk('L', 'C', U4)) .== tril(BLAS.gemm('T', 'N', U4, U4)))
@test all(triu(BLAS.herk('U', 'C', L4)) .== triu(BLAS.gemm('T', 'N', L4, L4)))
@test all(tril(BLAS.herk('L', 'C', L4)) .== tril(BLAS.gemm('T', 'N', L4, L4)))
ans = similar(L4)
@test all(tril(BLAS.herk('L','C', L4)) .== tril(BLAS.herk!('L', 'C', real(one(elty)), L4, real(zero(elty)), ans)))
@test all(Base.LinAlg.copytri!(ans, 'L') .== LinAlg.BLAS.gemm('T', 'N', L4, L4))
@test_throws DimensionMismatch BLAS.herk!('L','N',real(one(elty)),eye(elty,5),real(one(elty)),eye(elty,6))
else
@test all(triu(BLAS.syrk('U', 'N', U4)) .== triu(BLAS.gemm('N', 'T', U4, U4)))
@test all(tril(BLAS.syrk('L', 'N', U4)) .== tril(BLAS.gemm('N', 'T', U4, U4)))
@test all(triu(BLAS.syrk('U', 'N', L4)) .== triu(BLAS.gemm('N', 'T', L4, L4)))
@test all(tril(BLAS.syrk('L', 'N', L4)) .== tril(BLAS.gemm('N', 'T', L4, L4)))
@test all(triu(BLAS.syrk('U', 'T', U4)) .== triu(BLAS.gemm('T', 'N', U4, U4)))
@test all(tril(BLAS.syrk('L', 'T', U4)) .== tril(BLAS.gemm('T', 'N', U4, U4)))
@test all(triu(BLAS.syrk('U', 'T', L4)) .== triu(BLAS.gemm('T', 'N', L4, L4)))
@test all(tril(BLAS.syrk('L', 'T', L4)) .== tril(BLAS.gemm('T', 'N', L4, L4)))
ans = similar(L4)
@test all(tril(BLAS.syrk('L','T', L4)) .== tril(BLAS.syrk!('L', 'T', one(elty), L4, zero(elty), ans)))
@test all(Base.LinAlg.copytri!(ans, 'L') .== BLAS.gemm('T', 'N', L4, L4))
@test_throws DimensionMismatch BLAS.syrk!('L','N',one(elty),eye(elty,5),one(elty),eye(elty,6))
end
end
end
@testset "syr for eltype $elty" for elty in (Float32, Float64, Complex{Float32}, Complex{Float64})
A = rand(elty, 5, 5)
@test triu(A[1,:] * A[1,:].') ≈ BLAS.syr!('U', one(elty), A[1,:], zeros(elty, 5, 5))
@test tril(A[1,:] * A[1,:].') ≈ BLAS.syr!('L', one(elty), A[1,:], zeros(elty, 5, 5))
@test triu(A[1,:] * A[1,:].') ≈ BLAS.syr!('U', one(elty), view(A, 1, :), zeros(elty, 5, 5))
@test tril(A[1,:] * A[1,:].') ≈ BLAS.syr!('L', one(elty), view(A, 1, :), zeros(elty, 5, 5))
end
@testset "her for eltype $elty" for elty in (Complex{Float32}, Complex{Float64})
A = rand(elty, 5, 5)
@test triu(A[1,:] * A[1,:]') ≈ BLAS.her!('U', one(real(elty)), A[1,:], zeros(elty, 5, 5))
@test tril(A[1,:] * A[1,:]') ≈ BLAS.her!('L', one(real(elty)), A[1,:], zeros(elty, 5, 5))
@test triu(A[1,:] * A[1,:]') ≈ BLAS.her!('U', one(real(elty)), view(A, 1, :), zeros(elty, 5, 5))
@test tril(A[1,:] * A[1,:]') ≈ BLAS.her!('L', one(real(elty)), view(A, 1, :), zeros(elty, 5, 5))
end