You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
julia> θ, φ, ℓ, m = π/2, 0.2, 10000, 5000
(1.5707963267948966, 0.2, 10000, 5000)
julia>@btime FastTransforms.sphevaluatepi(θ/π, ℓ, m)*exp(im*m*φ)/sqrt(2π)
51.562 μs (8 allocations:208 bytes)
0.19235804128133974+0.2828286746396144im
julia># the following clearly doesn't work
julia>sphericalharmonicy(ℓ, m, θ, φ)
NaN+NaN*im
julia># with BigFloat and BigInt it works but is slow
julia>sphericalharmonicy(BigInt(ℓ), m, BigFloat(θ), φ)
0.1923580412813398318764142897415155812528907393225858348966156677614988766433293+0.2828286746396146063051417153359899381451149677419309920950959124851106430082544im
julia># this originates in the call to jacobip
julia> θ, φ, ℓ, m = π/2, 0.2, 10000, 1000
(1.5707963267948966, 0.2, 10000, 1000)
julia>jacobip(ℓ-abs(m),abs(m),abs(m),cos(θ))
1.5242151618568348e277
julia> θ, φ, ℓ, m = π/2, 0.2, 10000, 5000
(1.5707963267948966, 0.2, 10000, 5000)
julia>jacobip(ℓ-abs(m),abs(m),abs(m),cos(θ))
NaN
I wonder how accurate and efficient the normalization is
HarmonicOrthogonalPolynomials.jl/src/HarmonicOrthogonalPolynomials.jl
Lines 175 to 178 in 4049e8f
compared to recurrence relations with normalization built-in
The text was updated successfully, but these errors were encountered: