-
Notifications
You must be signed in to change notification settings - Fork 43
/
Copy pathgaussjacobi.jl
427 lines (374 loc) · 12.4 KB
/
gaussjacobi.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
@doc raw"""
gaussjacobi(n::Integer, α::Real, β::Real) -> x, w # nodes, weights
Return nodes `x` and weights `w` of [Gauss-Jacobi quadrature](https://en.wikipedia.org/wiki/Gauss%E2%80%93Jacobi_quadrature)
for exponents `α` and `β`.
```math
\int_{-1}^{1} f(x) (1-x)^\alpha(1+x)^\beta dx \approx \sum_{i=1}^{n} w_i f(x_i)
```
# Examples
```jldoctest
julia> x, w = gaussjacobi(3, 1/3, -1/3);
julia> f(x) = x^4;
julia> I = dot(w, f.(x));
julia> I ≈ 268π/729(√3)
true
```
"""
function gaussjacobi(n::Integer, α::Real, β::Real)
#GAUSS-JACOBI QUADRATURE NODES AND WEIGHTS
if n < 0
throw(DomainError(n, "gaussjacobi($n,$α,$β) not defined: n must be non-negative."))
elseif α == 0. && β == 0.
gausslegendre(n)
elseif α == -0.5 && β == -0.5
gausschebyshev(n, 1)
elseif α == 0.5 && β == 0.5
gausschebyshev(n, 2)
elseif α == -0.5 && β == 0.5
gausschebyshev(n, 3)
elseif α == 0.5 && β == -0.5
gausschebyshev(n, 4)
elseif n == 0
Float64[], Float64[]
elseif n == 1
[(β - α) / (α + β + 2)], [2^(α + β + 1) * beta(α + 1, β + 1)]
elseif min(α,β) ≤ -1.
throw(DomainError((α,β), "The Jacobi parameters correspond to a nonintegrable weight function"))
elseif n ≤ 100 && max(α,β) < 5.
jacobi_rec(n, α, β)
elseif n > 100 && max(α,β) < 5.
jacobi_asy(n, α, β)
elseif n ≤ 4000 && max(α,β) ≥ 5.
jacobi_gw(n, α, β)
else
error("gaussjacobi($n,$α,$β) is not implemented: n must be ≤ 4000 for max(α,β) ≥ 5.")
end
end
# Convenience function: convert any kind of numbers a and b to a joint floating point type
jacobi_rec(n::Integer, α::Real, β::Real) = jacobi_rec(n, promote(float(α), float(β))...)
function jacobi_rec(n::Integer, α::T, β::T) where {T <: AbstractFloat}
#Compute nodes and weights using recurrrence relation.
x11, x12 = HalfRec(n, α, β, 1)
x21, x22 = HalfRec(n, β, α, 0)
x = Array{T}(undef,n)
w = Array{T}(undef,n)
m1 = length(x11)
m2 = length(x21)
sum_w = zero(T)
@inbounds for i in 1:m2
idx = m2 + 1 - i
xi = -x21[i]
der = x22[i]
wi = 1 / ((1 - xi^2) * der^2)
w[idx] = wi
x[idx] = xi
sum_w += wi
end
@inbounds for i in 1:m1
idx = m2 + i
xi = x11[i]
der = x12[i]
wi = 1 / ((1 - xi^2) * der^2)
w[idx] = wi
x[idx] = xi
sum_w += wi
end
c = (2^(α+β+1)*gamma(2+α)*gamma(2+β)/(gamma(2+α+β)*(α+1)*(β+1)))
rmul!(w, c / sum_w)
return x, w
end
function HalfRec(n::Integer, α::T, β::T, flag) where {T <: AbstractFloat}
# HALFREC Jacobi polynomial recurrence relation.
# Asymptotic formula - only valid for positive x.
r = (flag == 1) ? (ceil(n / 2):-1:1) : (floor(n / 2):-1:1)
m = length(r)
c1 = 1 / (2 * n + α + β + 1)
a1 = one(T)/4 - α^2
b1 = one(T)/4 - β^2
c1² = c1^2
x = Array{T}(undef,m)
@inbounds for i in 1:m
C = muladd(2*one(T), r[i], α - one(T)/2) * (T(π) * c1)
C_2 = C/2
x[i] = cos(muladd(c1², muladd(-b1, tan(C_2), a1 * cot(C_2)), C))
end
P1 = Array{T}(undef,m)
P2 = Array{T}(undef,m)
# Loop until convergence:
for _ in 1:10
innerjacobi_rec!(n, x, α, β, P1, P2)
dx2 = 0.0
@inbounds for i in 1:m
dx = P1[i] / P2[i]
_dx2 = abs2(dx)
dx2 = ifelse(_dx2 > dx2, _dx2, dx2)
x[i] = x[i] - dx
end
dx2 > eps(T) / 1e6 || break
end
# Once more for derivatives:
innerjacobi_rec!(n, x, α, β, P1, P2)
return x, P2
end
function innerjacobi_rec!(n, x, α::T, β::T, P, PP) where {T <: AbstractFloat}
# EVALUATE JACOBI POLYNOMIALS AND ITS DERIVATIVE USING THREE-TERM RECURRENCE.
N = length(x)
@inbounds for j = 1:N
xj = x[j]
Pj = (α - β + (α + β + 2) * xj)/2
Pm1 = one(T)
PPj = (α + β + 2)/2
PPm1 = zero(T)
for k in 1:n-1
k0 = muladd(2*one(T), k, α + β)
k1 = k0 + 1
k2 = k0 + 2
A = 2 * (k + 1) * (k + (α + β + 1)) * k0
B = k1 * (α^2 - β^2)
C = k0 * k1 * k2
D = 2 * (k + α) * (k + β) * k2
c1 = muladd(C, xj, B)
Pm1, Pj = Pj, muladd(-D, Pm1, c1 * Pj) / A
PPm1, PPj = PPj, muladd(c1, PPj, muladd(-D, PPm1, C * Pm1)) / A
end
P[j] = Pj
PP[j] = PPj
end
nothing
end
function innerjacobi_rec(n, x, α::T, β::T) where {T <: AbstractFloat}
# EVALUATE JACOBI POLYNOMIALS AND ITS DERIVATIVE USING THREE-TERM RECURRENCE.
N = length(x)
P = Array{T}(undef,N)
PP = Array{T}(undef,N)
innerjacobi_rec!(n, x, α, β, P, PP)
return P, PP
end
function weightsConstant(n, α, β)
# Compute the constant for weights:
M = min(20, n - 1)
C = 1.0
p = -α * β / n
for m = 1:M
C += p
p *= -(m + α) * (m + β) / (m + 1) / (n - m)
abs(p / C) < eps(Float64) / 100 && break
end
return 2^(α + β + 1) * C
end
function jacobi_asy(n, α, β)
# ASY Compute nodes and weights using asymptotic formulae.
# Determine switch between interior and boundary regions:
nbdy = 10
bdyidx1 = n - (nbdy - 1):n
bdyidx2 = nbdy:-1:1
# Interior formula:
x, w = asy1(n, α, β, nbdy)
# Boundary formula (right):
xbdy = boundary(n, α, β, nbdy)
x[bdyidx1], w[bdyidx1] = xbdy
# Boundary formula (left):
if α ≠ β
xbdy = boundary(n, β, α, nbdy)
end
x[bdyidx2] = -xbdy[1]
w[bdyidx2] = xbdy[2]
rmul!(w, weightsConstant(n, α, β))
return x, w
end
function asy1(n::Integer, α::Float64, β::Float64, nbdy::Integer)
# Algorithm for computing nodes and weights in the interior.
# Approximate roots via asymptotic formula: (Gatteschi and Pittaluga, 1985)
K = π*(2(n:-1:1).+α.-0.5)/(2n+α+β+1)
tt = K .+ (1/(2n+α+β+1)^2).*((0.25-α^2).*cot.(K/2).-(0.25-β^2).*tan.(K/2))
# First half (x > 0):
t = tt[tt .≤ π/2]
mint = t[end-nbdy+1]
idx = 1:max(findfirst(t .< mint)-1, 1)
# Newton iteration
for _ in 1:10
vals, ders = feval_asy1(n, α, β, t, idx) # Evaluate
dt = vals./ders
t += dt # Next iterate
if norm(dt[idx],Inf) < sqrt(eps(Float64))/100
break
end
end
vals, ders = feval_asy1(n, α, β, t, idx) # Once more for luck
t += vals./ders
# Store
x_right = cos.(t)
w_right = 1 ./ ders.^2
# Second half (x < 0):
α, β = β, α
t = π .- tt[1:(n-length(x_right))]
mint = t[nbdy]
idx = max(findfirst(t .> mint), 1):length(t)
# Newton iteration
for _ in 1:10
vals, ders = feval_asy1(n, α, β, t, idx) # Evaluate.
dt = vals./ders # Newton update.
t += dt
if norm(dt[idx],Inf) < sqrt(eps(Float64))/100
break
end
end
vals, ders = feval_asy1(n, α, β, t, idx) # Once more for luck.
t += vals./ders # Newton update.
# Store
x_left = cos.(t)
w_left = 1 ./ ders.^2
return vcat(-x_left, x_right), vcat(w_left, w_right)
end
"""
Evaluate the interior asymptotic formula at x = cos(t).
Assumption:
* `length(t) == n ÷ 2`
"""
function feval_asy1(n::Integer, α::Float64, β::Float64, t::AbstractVector, idx)
# Number of terms in the expansion:
M = 20
# Number of elements in t:
N = length(t)
# Some often used vectors/matrices:
onesM = ones(M)
# The sine and cosine terms:
A = repeat((2n+α+β).+(1:M),1,N).*repeat(t',M)/2 .- (α+1/2)*π/2 # M × N matrix
cosA = cos.(A)
sinA = sin.(A)
sinT = repeat(sin.(t)',M)
cosT = repeat(cos.(t)',M)
cosA2 = cosA.*cosT .+ sinA.*sinT
sinA2 = sinA.*cosT .- cosA.*sinT
sinT = hcat(ones(N), cumprod(repeat((csc.(t/2)/2),1,M-1), dims=2)) # M × N matrix
secT = sec.(t/2)/2
_vec = [(α+j-1/2)*(-α+j-1/2)/(2n+α+β+j+1)/j for j in 1:M-1]
P1 = [1;cumprod(_vec)]
P1[3:4:end] = -P1[3:4:end]
P1[4:4:end] = -P1[4:4:end]
P2 = Matrix(1.0I, M, M)
for l in 1:M
_vec = [(β+j-1/2)*(-β+j-1/2)/(2n+α+β+j+l)/j for j in 1:M-l-2]
P2[l,l+1:M-2] = cumprod(_vec)
end
PHI = repeat(P1,1,M).*P2
_vec = [(α+j-1/2)*(-α+j-1/2)/(2n+α+β+j-1)/j for j in 1:M-1]
P1 = [1;cumprod(_vec)]
P1[3:4:end] = -P1[3:4:end]
P1[4:4:end] = -P1[4:4:end]
P2 = Matrix(1.0I, M, M)
for l in 1:M
_vec = [(β+j-1/2)*(-β+j-1/2)/(2n+α+β+j+l-2)/j for j in 1:M-l-2]
P2[l,l+1:M-2] = cumprod(_vec)
end
PHI2 = repeat(P1,1,M).*P2
S = zeros(N)
S2 = zeros(N)
for m in 1:M
l = 1:2:m
phi = PHI[l, m]
dS1 = (sinT[:, l]*phi) .* cosA[m, :]
phi2 = PHI2[l, m]
dS12 = (sinT[:, l]*phi2) .* cosA2[m, :]
l = 2:2:m
phi = PHI[l, m]
dS2 = (sinT[:, l]*phi) .* sinA[m, :]
phi2 = PHI2[l, m]
dS22 = (sinT[:, l]*phi2) .* sinA2[m, :]
if m - 1 > 10 && norm(dS1[idx] + dS2[idx], Inf) < eps(Float64) / 100
break
end
S .+= dS1
S .+= dS2
S2 .+= dS12
S2 .+= dS22
sinT[:,1:m] .*= secT
end
# Constant out the front:
dsa = α^2/2n
dsb = β^2/2n
dsab = (α+β)^2/4n
ds = dsa + dsb - dsab
s = ds
i = 1
dsold = ds # to fix α = -β bug.
while abs(ds/s)+dsold > eps(Float64)/10
dsold = abs(ds/s)
i += 1
tmp = -(i-1)/(i+1)/n
dsa = tmp*dsa*α
dsb = tmp*dsb*β
dsab = tmp*dsab*(α+β)/2
ds = dsa + dsb - dsab
s = s + ds
end
p2 = exp(s)*sqrt(2π*(n+α)*(n+β)/(2n+α+β))/(2n+α+β+1)
# g is a vector of coefficients in
# ``\Gamma(z) = \frac{z^{z-1/2}}{\exp(z)}\sqrt{2\pi} \left(\sum_{i} B_i z^{-i}\right)``, where B_{i-1} = g[i].
# https://math.stackexchange.com/questions/1714423/what-is-the-pattern-of-the-stirling-series
g = [1, 1/12, 1/288, -139/51840, -571/2488320, 163879/209018880,
5246819/75246796800, -534703531/902961561600,
-4483131259/86684309913600, 432261921612371/514904800886784000]
f(g,z) = dot(g, [1;cumprod(ones(9)./z)])
# Float constant C, C2
C = 2*p2*(f(g,n+α)*f(g,n+β)/f(g,2n+α+β))/π
C2 = C*(α+β+2n)*(α+β+1+2n)/(4*(α+n)*(β+n))
vals = C*S
# Use relation for derivative:
ders = (n*((α-β).-(2n+α+β)*cos.(t)).*vals .+ (2*(n+α)*(n+β)*C2).*S2)./(2n+α+β)./sin.(t)
denom = 1 ./ (sin.(abs.(t)/2).^(α+0.5).*cos.(t/2).^(β+0.5))
vals .*= denom
ders .*= denom
return vals, ders
end
function boundary(n::Integer, α::Float64, β::Float64, npts::Integer)
# Algorithm for computing nodes and weights near the boundary.
# Use Newton iterations to find the first few Bessel roots:
smallK = min(30, npts)
jk = approx_besselroots(α, smallK)
# Approximate roots via asymptotic formula: (see Olver 1974)
phik = jk/(n + .5*(α + β + 1))
x = cos.( phik .+ ((α^2-0.25).*(1 .-phik.*cot.(phik))./(8*phik) .- 0.25.*(α^2-β^2).*tan.(0.5.*phik))./(n + 0.5*(α + β + 1))^2 )
# Newton iteration:
for _ in 1:10
vals, ders = innerjacobi_rec(n, x, α, β) # Evaluate via asymptotic formula.
dx = -vals./ders # Newton update.
x += dx # Next iterate.
if norm(dx,Inf) < sqrt(eps(Float64))/200
break
end
end
vals, ders = innerjacobi_rec(n, x, α, β) # Evaluate via asymptotic formula.
dx = -vals./ders
x += dx
# flip:
x = reverse(x)
ders = reverse(ders)
# Revert to x-space:
w = 1 ./ ((1 .- x.^2) .* ders.^2)
return x, w
end
function jacobi_jacobimatrix(n, α, β)
s = α + β
ii = 2:n-1
si = 2*ii .+ s
aa = [(β - α)/(2 + s);
(β^2 - α^2) ./ ((si .- 2).*si);
(β^2 - α^2) ./ ((2n - 2+s).*(2n+s))]
bb = [2*sqrt( (1 + α)*(1 + β)/(s + 3))/(s + 2) ;
2 .*sqrt.(ii.*(ii .+ α).*(ii .+ β).*(ii .+ s)./(si.^2 .- 1))./si]
return SymTridiagonal(aa, bb)
end
function jacobimoment(α, β)
s = α + β
T = float(typeof(s))
# Same as 2^(α+β+1) * beta(α+1,β+1)
return exp((s+1)*log(convert(T,2)) + loggamma(α+1)+loggamma(β+1)-loggamma(2+s))
end
function jacobi_gw(n::Integer, α, β)
# Golub-Welsh for Gauss--Jacobi quadrature. This is used when max(α,β)>5.
x, V = eigen(jacobi_jacobimatrix(n, α, β)) # Eigenvalue decomposition.
# Quadrature weights:
w = V[1,:].^2 .* jacobimoment(α, β)
return x, w
end