-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodels_metarh.py
525 lines (446 loc) · 24.3 KB
/
models_metarh.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
from embedding import *
from hyper_embedding import *
import torch.nn.init as init
import torch.nn.functional as F
from torch.autograd import Variable
from torch.nn import TransformerEncoder, TransformerEncoderLayer
import numpy as np
class ScaledDotProductAttention(nn.Module):
def __init__(self, dropout):
super().__init__()
self.dropout = nn.Dropout(dropout)
self.softmax = nn.Softmax(dim=2)
def forward(self, q, k, v, scale, edge_key, edge_value, edge_mask):
# edge_key L,L,H
# q BN,L,H
attn_score = torch.bmm(q, k.transpose(1, 2)) # BN,L,L
edge_bias = torch.bmm(edge_key, q.permute(1,2,0)).transpose(0,2)
attn_score += edge_bias
if scale:
attn_score = attn_score * scale
# q M, B*N, H
# edge_bias M, B*N, M
# attn_score B,M,M
# output B,M,H
new_attn_mask = torch.zeros_like(edge_mask, dtype=torch.float)
new_attn_mask.masked_fill_(edge_mask, float("-inf"))
edge_mask = new_attn_mask
attn_score += edge_mask
attn_score = self.softmax(attn_score)
attn_score = self.dropout(attn_score)
output = torch.bmm(attn_score, v)
# attn B, M, M->M,B,M
# edge_value M,M,H
# edge_bias M,B,H->B,M,H
edge_bias = torch.bmm(attn_score.transpose(0, 1), edge_value).transpose(0,1)
output += edge_bias
return output
class MultiHeadAttention(nn.Module):
def __init__(self, embed_dim, num_heads, dropout):
super().__init__()
self.linear_q = nn.Linear(embed_dim, embed_dim)
self.linear_k = nn.Linear(embed_dim, embed_dim)
self.linear_v = nn.Linear(embed_dim, embed_dim)
self.num_heads = num_heads
self.linear_final = nn.Linear(embed_dim, embed_dim)
self.dot_product_attention = ScaledDotProductAttention(dropout)
self.dropout = nn.Dropout(dropout)
self.layer_norm = nn.LayerNorm(embed_dim)
def forward(self, query, key, value, edge_value, edge_key, edge_mask):
max_seq_length, batch_size, embed_dim = key.size()
residual = query
head_dim = embed_dim // self.num_heads
key = self.linear_k(key)
query = self.linear_q(query)
value = self.linear_v(value)
# M, B*N, H
key = key.contiguous().view(max_seq_length, batch_size*self.num_heads, head_dim).transpose(0,1)
query = query.contiguous().view(max_seq_length, batch_size*self.num_heads, head_dim).transpose(0,1)
value = value.contiguous().view(max_seq_length, batch_size*self.num_heads, head_dim).transpose(0,1)
scale = float(head_dim) ** -0.5
context = self.dot_product_attention(query, key, value, scale, edge_key, edge_value, edge_mask)
context = context.transpose(0,1).contiguous().view(max_seq_length, batch_size, embed_dim)
output = self.linear_final(context)
output = self.dropout(output)
output = self.layer_norm(output+residual)
return output
class PositionalWiseFeedForward(nn.Module):
def __init__(self, embed_dim):
super().__init__()
fnn_dim = 2048
self.dropout = nn.Dropout(0.2)
self.linear1 = nn.Linear(embed_dim, fnn_dim)
self.linear2 = nn.Linear(fnn_dim, embed_dim)
self.layer_norm = nn.LayerNorm(embed_dim)
def forward(self, context):
context = self.linear2(self.dropout(torch.nn.functional.relu(self.linear1(context))))
context = context + self.dropout(context)
context = self.layer_norm(context)
return context
class EncoderLayer(nn.Module):
def __init__(self, embed_dim, num_heads, dropout):
super().__init__()
self.attention = MultiHeadAttention(embed_dim, num_heads, dropout)
self.feed_forward = PositionalWiseFeedForward(embed_dim)
def forward(self, inputs, edge_value, edge_key, edge_mask):
output = self.attention(inputs, inputs, inputs, edge_value, edge_key, edge_mask)
output = self.feed_forward(output)
return output
class GraphTransformerEncoder(nn.Module):
def __init__(self, num_heads=4, num_transformer_layers=12, embed_dim=100, dropout=0.2):
super().__init__()
num_layers = num_transformer_layers
self.num_heads = num_heads
self.encoder_layers = nn.ModuleList(
[EncoderLayer(embed_dim, self.num_heads, dropout) for _ in range(num_layers)]
)
def forward(self, facts, edge_value, edge_key, edge_mask):
facts = facts.transpose(0, 1)
# L, B, H
for encoder in self.encoder_layers:
facts = encoder(facts, edge_value, edge_key, edge_mask)
return facts
def com_mult(a, b):
r1, i1 = a[..., 0], a[..., 1]
r2, i2 = b[..., 0], b[..., 1]
return torch.stack([r1 * r2 - i1 * i2, r1 * i2 + i1 * r2], dim=-1)
def conj(a):
a[..., 1] = -a[..., 1]
return a
def ccorr(a, b):
size = a.shape
a = a.view(size[0]*size[1]*size[2], size[3])
b = b.view(size[0]*size[1]*size[2], size[3])
return torch.irfft(com_mult(conj(torch.rfft(a, 1)), torch.rfft(b, 1)), 1,
signal_sizes=(a.shape[-1],)).view(size[0], size[1], size[2], size[3])
def rotate(h, r):
# re: first half, im: second half
# assume embedding dim is the last dimension
d = h.shape[-1]
h_re, h_im = torch.split(h, d // 2, -1)
r_re, r_im = torch.split(r, d // 2, -1)
return torch.cat([h_re * r_re - h_im * r_im,
h_re * r_im + h_im * r_re], dim=-1)
class LSTM_attn(nn.Module):
def __init__(self, embed_size=100, n_hidden=200, out_size=100, layers=1, device=None):
super(LSTM_attn, self).__init__()
self.embed_size = embed_size
self.device = device
self.n_hidden = n_hidden
self.out_size = out_size
self.layers = layers
self.lstm = nn.LSTM(self.embed_size*2, self.n_hidden, self.layers, bidirectional=True)
self.out = nn.Linear(self.n_hidden*2*self.layers, self.out_size)
def attention_net(self, lstm_output, final_state):
hidden = final_state.view(-1, self.n_hidden*2, self.layers)
attn_weight = torch.bmm(lstm_output, hidden).squeeze(2)
soft_attn_weight = F.softmax(attn_weight, 1)
context = torch.bmm(lstm_output.transpose(1,2), soft_attn_weight)
context = context.view(-1, self.n_hidden*2*self.layers)
return context
def forward(self, inputs):
size = inputs.shape
inputs = inputs.contiguous().view(size[0], size[1], -1)
input = inputs.permute(1, 0, 2)
hidden_state = Variable(torch.zeros(self.layers*2, size[0], self.n_hidden).to(self.device))
cell_state = Variable(torch.zeros(self.layers*2, size[0], self.n_hidden).to(self.device))
output, (final_hidden_state, final_cell_state) = self.lstm(input, (hidden_state, cell_state))
output = output.permute(1, 0, 2)
attn_output = self.attention_net(output, final_hidden_state)
outputs = self.out(attn_output)
return outputs.view(size[0], 1, 1, self.out_size)
class Flen(nn.Module):
def __init__(self, dataset, parameter, embed = None):
super(Flen, self).__init__()
self.device = parameter['device']
self.max_seq_length = parameter['max_seq_length']
self.beta = parameter['beta']
self.embed_dim = parameter['embed_dim']
self.margin = parameter['margin']
self.use_neighbors = parameter['use_neighbors']
self.use_pretrain = parameter['use_pretrain']
self.fine_tune = parameter['fine_tune']
self.abla = parameter['ablation']
# 只包含实体的embed
self.embedding = Embedding(dataset, parameter)
self.few = parameter['few']
self.dropout_i = nn.Dropout(parameter['dropout_i'])
if self.use_neighbors:
self.gcn_w = nn.Linear(2*self.embed_dim, self.embed_dim)
self.gcn_b = nn.Parameter(torch.FloatTensor(self.embed_dim))
self.attn_w = nn.Linear(self.embed_dim, 1)
self.gate_w = nn.Linear(self.embed_dim, 1)
self.gate_b = nn.Parameter(torch.FloatTensor(1))
init.xavier_normal_(self.gcn_w.weight)
init.xavier_normal_(self.attn_w.weight)
init.constant_(self.gcn_b, 0)
init.constant_(self.gate_b, 0)
self.rel_w = parameter['weight']
self.loss_func = nn.MarginRankingLoss(self.margin)
self.rel_q_sharing = dict()
self.relation_learner = parameter['relation_learner']
self.embedding_learner = parameter['embedding_learner']
self.h_norm = None
self.h_embedding = H_Embedding(dataset, parameter)
# num_layers, num_heads, ffn_dim, dropout = 2, 4, 2000, 0.1
self.num_layers = parameter['num_layers']
self.num_heads = parameter['num_heads']
self.dropout_g = parameter['dropout_g']
if self.relation_learner == 'transformer':
encoder_layers = TransformerEncoderLayer(self.embed_dim, self.num_heads)
self.TruTransformerEncoder = TransformerEncoder(encoder_layers, self.num_layers)
self.position_embeddings = nn.Embedding(5, self.embed_dim)
self.position_embeddings.weight.requires_grad = False
elif self.relation_learner == 'gran':
self.n_edge = 5
self.edge_key_embedding = nn.Embedding(self.n_edge, self.embed_dim//self.num_heads, padding_idx=0)
self.edge_value_embedding = nn.Embedding(self.n_edge, self.embed_dim//self.num_heads, padding_idx=0)
self.GraphTransformerEncoder = GraphTransformerEncoder(
num_heads=self.num_heads,
num_transformer_layers=self.num_layers,
embed_dim=self.embed_dim,
dropout=self.dropout_g)
self.object_mask_emb = torch.nn.Parameter(torch.randn(1, self.embed_dim, dtype=torch.float32),True)
# ccorr, sub, mult, rotate
self.qual_opn = parameter['qual_opn']
# sum, mean
self.qual_n = parameter['qual_n']
# sum, concat, mul
self.qual_aggregate = parameter['qual_aggregate']
# sum, min, max, mean, concat
self.few_rel_aggregate = parameter['few_rel_aggregate']
if self.qual_aggregate == 'concat':
self.w_q = nn.Parameter(torch.Tensor(self.embed_dim*2, self.embed_dim))
elif self.qual_aggregate in ['sum', 'mul']:
self.w_q = nn.Parameter(torch.Tensor(self.embed_dim, self.embed_dim))
if self.few_rel_aggregate == 'concat':
self.w_few_rel = nn.Parameter(torch.Tensor(self.embed_dim*self.few, self.embed_dim))
init.xavier_normal_(self.w_few_rel.data)
init.xavier_normal_(self.w_q.data)
if self.few_rel_aggregate == 'attn':
self.few_q = nn.Parameter(torch.Tensor(self.embed_dim, 1))
init.xavier_normal_(self.few_q.data)
def Embedding_learner(self, h, t, q, r, pos_num, norm=None):
if self.qual_aggregate == 'sum':
q = torch.einsum('ijkd, dd -> ijkd', q, self.w_q)
r = self.rel_w*r + (1-self.rel_w)*q
elif self.qual_aggregate == 'concat':
r = torch.cat((r, q), dim=-1)
r = torch.einsum('ijkd, db -> ijkb', r, self.w_q)
elif self.qual_aggregate == 'mul':
size = q.shape
q = q.view(size[0]*size[1]*size[2], size[3])
mask = q.sum(dim=-1) == 0
# q[mask] = 1
for i in range(len(mask)):
if mask[i]:
q[i,:] = 1
q = q.view(size[0], size[1], size[2], size[3])
q = torch.einsum('ijkd, dd -> ijkd', r, self.w_q)
r = r*q
if self.embedding_learner == 'mtransh':
norm = norm[:,:1,:,:] # revise
h = h - torch.sum(h * norm, -1, True) * norm
t = t - torch.sum(t * norm, -1, True) * norm
score = -torch.norm(h + r - t, 2, -1).squeeze(2)
elif self.embedding_learner == 'transe':
score = -torch.norm(h + r - t, 2, -1).squeeze(2)
p_score = score[:, :pos_num]
n_score = score[:, pos_num:]
return p_score, n_score
def neighbor_encoder(self, connections, entself_embeds):
'''
connections: (batch, 200, 2)
'''
# 512, 50, 16
relations = connections[:,:,0].squeeze(-1)
entities = connections[:,:,1].squeeze(-1)
rel_embeds = self.dropout_i(self.embedding.rel_embedding(relations)) # (batch, 200, embed_dim)
ent_embeds = self.dropout_i(self.embedding.ent_embedding(entities)) # (batch, 200, embed_dim)
qualifier = connections[:,:,2:]
qualifier_rel = qualifier[:,:,::2]
qualifier_ent = qualifier[:,:,1::2]
qual_rel_embeds = self.dropout_i(self.embedding.rel_embedding(qualifier_rel))
qual_ent_embeds = self.dropout_i(self.embedding.ent_embedding(qualifier_ent))
if self.qual_opn == 'sub':
qual_embeds = qual_ent_embeds-qual_rel_embeds
elif self.qual_opn == 'ccorr':
qual_embeds = ccorr(qual_ent_embeds,qual_rel_embeds)
elif self.qual_opn == 'mult':
qual_embeds = qual_ent_embeds*qual_rel_embeds
elif self.qual_opn == 'rotate':
qual_embeds = rotate(qual_ent_embeds,qual_rel_embeds)
if self.qual_n == 'sum':
qual_embeds = torch.sum(qual_embeds, dim=2)
elif self.qual_n == 'mean':
qual_embeds = torch.mean(qual_embeds, dim=2)
if self.qual_aggregate == 'sum':
qual_embeds = torch.einsum('ijd, dd -> ijd', qual_embeds, self.w_q)
# qual_embeds = torch.matmul(qual_embeds, self.w_q)
rel_embeds = self.rel_w*rel_embeds + (1-self.rel_w)*qual_embeds
elif self.qual_aggregate == 'concat':
rel_embeds = torch.cat((rel_embeds, qual_embeds), dim=-1)
rel_embeds = torch.einsum('ijd, db -> ijb', rel_embeds, self.w_q)
# rel_embeds = torch.matmul(rel_embeds, self.w_q)
elif self.qual_aggregate == 'mul':
size = qual_embeds.shape
qual_embeds = qual_embeds.view(size[0]*size[1], size[2])
mask = qual_embeds.sum(dim=-1) == 0
for i in range(len(mask)):
if mask[i]:
qual_embeds[i,:] = 1
# qual_embeds[mask] = 1
qual_embeds = qual_embeds.view(size[0], size[1], size[2])
qual_embeds = torch.einsum('ijd, dd -> ijd', qual_embeds, self.w_q)
# qual_embeds = torch.matmul(qual_embeds, self.w_q)
rel_embeds = rel_embeds*qual_embeds
concat_embeds = torch.cat((rel_embeds, ent_embeds), dim=-1) # (batch, 200, 2*embed_dim)
out = self.gcn_w(concat_embeds) + self.gcn_b
out = F.leaky_relu(out)
attn_out = self.attn_w(out)
attn_weight = F.softmax(attn_out, dim=1)
out_attn = torch.bmm(out.transpose(1,2), attn_weight)
out_attn = out_attn.squeeze(2)
# 门控机制使用到了sigmod
gate_tmp = self.gate_w(out_attn) + self.gate_b
gate = torch.sigmoid(gate_tmp)
out_neigh = torch.mul(out_attn, gate)
out_neighbor = out_neigh + torch.mul(entself_embeds,1.0-gate)
return out_neighbor
def split_concat(self, positive, negative):
pos_neg_e1 = torch.cat([positive[:, :, 0, :],
negative[:, :, 0, :]], 1).unsqueeze(2)
pos_neg_e2 = torch.cat([positive[:, :, 1, :],
negative[:, :, 1, :]], 1).unsqueeze(2)
pos_neg_qual = torch.cat([positive[:, :, 2, :],
negative[:, :, 2, :]], 1).unsqueeze(2)
return pos_neg_e1, pos_neg_e2, pos_neg_qual
def qualifier_embedding(self, qual_rel_embeds, qual_ent_embeds, tuples):
idx = [[[self.embedding.rel2id[t[_]] if _%2==1 else self.embedding.ent2id[t[_]] for _ in range(3, self.max_seq_length)] for t in batch] for batch in tuples]
qualifier_emb = torch.cat((qual_rel_embeds, qual_ent_embeds), dim=3)
qualifier_emb = qualifier_emb.view(qual_ent_embeds.shape[0], qual_ent_embeds.shape[1],qual_ent_embeds.shape[2]*2,qual_ent_embeds.shape[3])
if self.qual_opn == 'sub':
qual_embeds = qual_ent_embeds-qual_rel_embeds
elif self.qual_opn == 'ccorr':
qual_embeds = ccorr(qual_ent_embeds,qual_rel_embeds)
elif self.qual_opn == 'mult':
qual_embeds = qual_ent_embeds*qual_rel_embeds
elif self.qual_opn == 'rotate':
qual_embeds = rotate(qual_ent_embeds,qual_rel_embeds)
if self.qual_n == 'sum':
qual_embeds = torch.sum(qual_embeds, dim=2)
elif self.qual_n == 'mean':
qual_embeds = torch.mean(qual_embeds, dim=2)
mask = torch.zeros(qualifier_emb.shape[0], qualifier_emb.shape[1], self.max_seq_length).bool().to(self.device)
mask[:, :, 3:] = torch.Tensor(idx).to(self.device) == 0
return qual_embeds, qualifier_emb, mask
def forward(self, task, iseval=False, curr_rel='', support_meta=None, istest=False, edge_labels=False):
# transfer task string into embedding
# 这里是ent2id
# support/neighbor都是使用rel2id、ent2id
query, query_qual_rel, query_qual_ent = self.embedding(task[2])
negative, negative_qual_rel, negative_qual_ent = self.embedding(task[3])
query_q, _, _ = self.qualifier_embedding(query_qual_rel, query_qual_ent, task[2])
negative_q, _, _ = self.qualifier_embedding(negative_qual_rel, negative_qual_ent, task[3])
query = torch.cat((query, query_q.unsqueeze(2)), dim=2)
negative = torch.cat((negative, negative_q.unsqueeze(2)), dim=2)
num_q = query.shape[1] # num of query
num_n = negative.shape[1] # num of query negative
if iseval and curr_rel != '' and curr_rel in self.rel_q_sharing.keys():
rel_q = self.rel_q_sharing[curr_rel]
else:
norm_vector = self.h_embedding(task[0])
support, support_qual_rel, support_qual_ent = self.embedding(task[0])
support_negative, support_negative_qual_rel, support_negative_qual_ent = self.embedding(task[1])
support_q, support_qual, support_mask = self.qualifier_embedding(support_qual_rel, support_qual_ent, task[0])
support_negative_q, support_negative_qual, _ = self.qualifier_embedding(support_negative_qual_rel, support_negative_qual_ent, task[1])
support = torch.cat((support, support_q.unsqueeze(2)), dim=2)
support_negative = torch.cat((support_negative,support_negative_q.unsqueeze(2)), dim=2)
object_mask = self.object_mask_emb.repeat(support_q.shape[0], 1).to(self.device)
num_sn = support_negative.shape[1] # num of support negative
# 得到背景增强后的支持集第一个样例中的关系表示
support_left_connections, support_right_connections = support_meta[0]
if self.use_neighbors:
support_left = self.neighbor_encoder(support_left_connections, support[:,0, 0, :]) #512, 5, 3, 200
support_right = self.neighbor_encoder(support_right_connections, support[:,0, 1, :])
else:
support_left = support[:,0, 0, :]
support_right = support[:,0, 1, :]
support_few = torch.cat((object_mask.unsqueeze(1), support_left.unsqueeze(1), support_right.unsqueeze(1), support_qual[:,0,:,:]), dim=1).unsqueeze(1)
for i in range(self.few-1):
support_left_connections, support_right_connections = support_meta[i+1]
if self.use_neighbors:
support_left = self.neighbor_encoder(support_left_connections, support[:,i+1, 0, :])
support_right = self.neighbor_encoder(support_right_connections, support[:,i+1, 1, :])
else:
support_left = support[:,i+1, 0, :]
support_right = support[:,i+1, 1, :]
support_pair = torch.cat((object_mask.unsqueeze(1), support_left.unsqueeze(1), support_right.unsqueeze(1), support_qual[:,i+1,:,:]), dim=1).unsqueeze(1) # tanh
support_few = torch.cat((support_few, support_pair), dim=1)
# 得到背景增强后的全部支持集的小样本关系的表示
support_few = support_few.view(support.shape[0]*self.few, self.max_seq_length, self.embed_dim)
support_mask = support_mask.view(support.shape[0]*self.few, self.max_seq_length)
# split on e1/e2 and concat on pos/neg
# 学习支持集中的关系表示
# positions = torch.arange(support_few.shape[1], dtype=torch.long, device=self.device).repeat(support_few.shape[0], 1)
if self.relation_learner == 'transformer':
positions = torch.LongTensor([0,1,2]+[3,4]*((self.max_seq_length-3)//2)).to(self.device).repeat(support_few.shape[0], 1)
positions_emb = self.position_embeddings(positions)
support_few += positions_emb
rel = self.TruTransformerEncoder(support_few.transpose(1,0), src_key_padding_mask=support_mask)[0]
elif self.relation_learner == 'gran':
edge_mask = torch.bmm(support_mask.unsqueeze(2).float(), support_mask.unsqueeze(1).float())
# edge_mask = edge_mask*-1000000.0
edge_mask = edge_mask.repeat(1, 1, self.num_heads).view(self.num_heads*support_mask.shape[0], support_mask.shape[1], support_mask.shape[1]).bool()
# edge_mask = edge_mask.repeat(self.num_heads,1,1)
edge_value = self.edge_value_embedding(edge_labels)
edge_key = self.edge_key_embedding(edge_labels)
rel = self.GraphTransformerEncoder(
support_few,
edge_value,
edge_key,
edge_mask,
)[0]
rel = rel.view(support.shape[0], self.few, 1, self.embed_dim)
if self.few_rel_aggregate == 'mean':
rel = torch.mean(rel, dim=1).unsqueeze(1)
elif self.few_rel_aggregate == 'max':
rel = torch.max(rel, dim=1).unsqueeze(1)
elif self.few_rel_aggregate == 'min':
rel = torch.min(rel, dim=1).unsqueeze(1)
elif self.few_rel_aggregate == 'sum':
rel = torch.sum(rel, dim=1).unsqueeze(1)
elif self.few_rel_aggregate == 'concat':
rel = rel.view(support.shape[0], self.few*self.embed_dim)
rel = torch.einsum('ik, kd -> id', rel, self.w_few_rel)
rel = rel.view(support.shape[0], 1, 1, self.embed_dim)
elif self.few_rel_aggregate == 'attn':
attn_weight = torch.einsum('ikwj, jw -> ik', rel, self.few_q)
soft_attn_weight = F.softmax(attn_weight, 1)
# 1024 5 100 -> 1024 5 1
rel = torch.einsum('ikwj, ik -> ij', rel, soft_attn_weight)
rel = rel.view(support.shape[0], 1, 1, self.embed_dim)
if not self.abla:
rel.retain_grad()
# relation for support
sup_neg_e1, sup_neg_e2, sup_neg_qual = self.split_concat(support, support_negative)
rel_s = rel.expand(-1, self.few+num_sn, -1, -1)
p_score, n_score = self.Embedding_learner(sup_neg_e1, sup_neg_e2, sup_neg_qual, rel_s, self.few, norm_vector) # revise norm_vector
y = torch.Tensor([[1]]).to(self.device).expand([p_score.shape[0], 1])
self.zero_grad()
loss = self.loss_func(p_score, n_score, y)
loss.backward(retain_graph=True)
grad_meta = rel.grad
rel_q = rel - self.beta*grad_meta
norm_q = norm_vector - self.beta*grad_meta # hyper-plane update
else:
rel_q = rel
norm_q = norm_vector
self.rel_q_sharing[curr_rel] = rel_q
self.h_norm = norm_vector.mean(0)
self.h_norm = self.h_norm.unsqueeze(0)
rel_q = rel_q.expand(-1, num_q + num_n, -1, -1)
que_neg_e1, que_neg_e2, que_neg_qual = self.split_concat(query, negative) # [bs, nq+nn, 1, es]
norm_q = self.h_norm
p_score, n_score = self.Embedding_learner(que_neg_e1, que_neg_e2, que_neg_qual, rel_q, num_q, norm_q)
return p_score, n_score