-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathembedding.py
41 lines (35 loc) · 1.88 KB
/
embedding.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
import torch
import torch.nn as nn
class Embedding(nn.Module):
def __init__(self, dataset, parameter):
super(Embedding, self).__init__()
self.device = parameter['device']
self.ent2id = dataset['ent2id']
self.rel2id = dataset['rel2id']
self.es = parameter['embed_dim']
self.max_seq_length = parameter['max_seq_length']
self.fine_tune = parameter['fine_tune']
num_ent = len(self.ent2id)
num_rel = len(self.rel2id)
self.rel_embedding = nn.Embedding(num_rel, self.es, padding_idx=0)
self.ent_embedding = nn.Embedding(num_ent, self.es, padding_idx=0)
if parameter['use_pretrain'] == 1:
self.ent2emb = dataset['ent2emb']
self.ent_embedding.weight.data.copy_(torch.from_numpy(self.ent2emb))
self.rel2emb = dataset['rel2emb']
self.rel_embedding.weight.data.copy_(torch.from_numpy(self.rel2emb))
else:
nn.init.xavier_uniform_(self.rel_embedding.weight)
nn.init.xavier_uniform_(self.ent_embedding.weight)
if not self.fine_tune and parameter['use_pretrain']:
self.ent_embedding.weight.requires_grad = False
self.rel_embedding.weight.requires_grad = False
def forward(self, tuples):
ht_idx = [[[self.ent2id[t[0]], self.ent2id[t[2]]] for t in batch] for batch in tuples]
ht_idx = torch.LongTensor(ht_idx).to(self.device)
h_t_emb = self.ent_embedding(ht_idx)
qual_idx = [[[self.rel2id[t[_]] if _%2==1 else self.ent2id[t[_]] for _ in range(3, self.max_seq_length)] for t in batch] for batch in tuples]
qual_idx = torch.LongTensor(qual_idx).to(self.device)
qual_rel, qual_ent = qual_idx[:,:,::2], qual_idx[:,:,1::2]
qual_rel_emb, qual_ent_emb = self.rel_embedding(qual_rel), self.ent_embedding(qual_ent)
return h_t_emb, qual_rel_emb, qual_ent_emb