-
Notifications
You must be signed in to change notification settings - Fork 86
/
Copy pathinference.py
executable file
·210 lines (185 loc) · 7.17 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
import warnings
import matplotlib.pyplot as plt
import mmcv
import numpy as np
import pycocotools.mask as maskUtils
import torch
from mmcv.parallel import collate, scatter
from mmcv.runner import load_checkpoint
from mmdet.core import get_classes
from mmdet.datasets.pipelines import Compose
from mmdet.models import build_detector
def init_detector(config, checkpoint=None, device='cuda:0'):
"""Initialize a detector from config file.
Args:
config (str or :obj:`mmcv.Config`): Config file path or the config
object.
checkpoint (str, optional): Checkpoint path. If left as None, the model
will not load any weights.
Returns:
nn.Module: The constructed detector.
"""
if isinstance(config, str):
config = mmcv.Config.fromfile(config)
elif not isinstance(config, mmcv.Config):
raise TypeError('config must be a filename or Config object, '
'but got {}'.format(type(config)))
config.model.pretrained = None
model = build_detector(config.model, test_cfg=config.test_cfg)
if checkpoint is not None:
checkpoint = load_checkpoint(model, checkpoint)
if 'CLASSES' in checkpoint['meta']:
model.CLASSES = checkpoint['meta']['CLASSES']
else:
warnings.warn('Class names are not saved in the checkpoint\'s '
'meta data, use COCO classes by default.')
model.CLASSES = get_classes('coco')
model.cfg = config # save the config in the model for convenience
model.to(device)
model.eval()
return model
class LoadImage(object):
def __call__(self, results):
if isinstance(results['img'], str):
results['filename'] = results['img']
else:
results['filename'] = None
img = mmcv.imread(results['img'])
results['img'] = img
results['img_shape'] = img.shape
results['ori_shape'] = img.shape
return results
def inference_detector(model, img):
"""Inference image(s) with the detector.
Args:
model (nn.Module): The loaded detector.
imgs (str/ndarray or list[str/ndarray]): Either image files or loaded
images.
Returns:
If imgs is a str, a generator will be returned, otherwise return the
detection results directly.
"""
cfg = model.cfg
device = next(model.parameters()).device # model device
# build the data pipeline
test_pipeline = [LoadImage()] + cfg.data.test.pipeline[1:]
test_pipeline = Compose(test_pipeline)
# prepare data
data = dict(img=img)
data = test_pipeline(data)
data = scatter(collate([data], samples_per_gpu=1), [device])[0]
# forward the model
with torch.no_grad():
result = model(return_loss=False, rescale=True, **data)
return result
async def async_inference_detector(model, img):
"""Async inference image(s) with the detector.
Args:
model (nn.Module): The loaded detector.
imgs (str/ndarray or list[str/ndarray]): Either image files or loaded
images.
Returns:
Awaitable detection results.
"""
cfg = model.cfg
device = next(model.parameters()).device # model device
# build the data pipeline
test_pipeline = [LoadImage()] + cfg.data.test.pipeline[1:]
test_pipeline = Compose(test_pipeline)
# prepare data
data = dict(img=img)
data = test_pipeline(data)
data = scatter(collate([data], samples_per_gpu=1), [device])[0]
# We don't restore `torch.is_grad_enabled()` value during concurrent
# inference since execution can overlap
torch.set_grad_enabled(False)
result = await model.aforward_test(rescale=True, **data)
return result
# TODO: merge this method with the one in BaseDetector
def show_result(img,
result,
class_names,
score_thr=0.3,
wait_time=0,
show=True,
out_file=None):
"""Visualize the detection results on the image.
Args:
img (str or np.ndarray): Image filename or loaded image.
result (tuple[list] or list): The detection result, can be either
(bbox, segm) or just bbox.
class_names (list[str] or tuple[str]): A list of class names.
score_thr (float): The threshold to visualize the bboxes and masks.
wait_time (int): Value of waitKey param.
show (bool, optional): Whether to show the image with opencv or not.
out_file (str, optional): If specified, the visualization result will
be written to the out file instead of shown in a window.
Returns:
np.ndarray or None: If neither `show` nor `out_file` is specified, the
visualized image is returned, otherwise None is returned.
"""
assert isinstance(class_names, (tuple, list))
img = mmcv.imread(img)
img = img.copy()
if isinstance(result, tuple):
bbox_result, segm_result = result
else:
bbox_result, segm_result = result, None
bboxes = np.vstack(bbox_result)
labels = [
np.full(bbox.shape[0], i, dtype=np.int32)
for i, bbox in enumerate(bbox_result)
]
labels = np.concatenate(labels)
# draw segmentation masks
if segm_result is not None:
if len(segm_result) > 1:
segms = mmcv.concat_list(segm_result[0])
bboxes[:, -1] = np.concatenate(segm_result[1])/1.3#rescale the mask scores to the range of [0,1]
else:
segms = mmcv.concat_list(segm_result)
inds = np.where(bboxes[:, -1] > score_thr)[0]
np.random.seed(42)
color_masks = [
np.random.randint(0, 256, (1, 3), dtype=np.uint8)
for _ in range(max(labels) + 1)
]
for i in inds:
i = int(i)
color_mask = color_masks[labels[i]]
mask = maskUtils.decode(segms[i]).astype(np.bool)
img[mask] = img[mask] * 0.5 + color_mask * 0.5
# draw bounding boxes
mmcv.imshow_det_bboxes(
img,
bboxes,
labels,
class_names=class_names,
score_thr=score_thr,
show=show,
wait_time=wait_time,
out_file=out_file)
if not (show or out_file):
return img
def show_result_pyplot(img,
result,
class_names,
score_thr=0.3,
fig_size=(15, 10),
out_file=None):
"""Visualize the detection results on the image.
Args:
img (str or np.ndarray): Image filename or loaded image.
result (tuple[list] or list): The detection result, can be either
(bbox, segm) or just bbox.
class_names (list[str] or tuple[str]): A list of class names.
score_thr (float): The threshold to visualize the bboxes and masks.
fig_size (tuple): Figure size of the pyplot figure.
out_file (str, optional): If specified, the visualization result will
be written to the out file instead of shown in a window.
"""
img = show_result(
img, result, class_names, score_thr=score_thr, show=False, out_file=out_file)
if out_file is None:
plt.figure(figsize=fig_size)
plt.imshow(mmcv.bgr2rgb(img))